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Introduction

The general frame into which this article fits is the following:

Trees of projective lines (henceforth called TPL’s) arise in several natural ways
in the study of the boundary of the Deligne-Mumford compactification Mg of
the moduli space of curves, i.e. in relation with stable curves: Recall that a

stable curve (over a field k) is a connected projective curve C/k with at most
ordinary double points as singularities; moreover any irreducible component
of C that is isomorphic to P’ k has to meet the rest of the curve in at least three
points.
A stable curve is called totally degenerate if all its irreducible components are

rational. Blowing up as many of the singular points of a totally degenerate
curve as possible without disconnecting it yields our first example of a TPL: a
connected projective curve with all components isomorphic to Pl such that the
intersection graph is a (finite) tree (the vertices of the intersection graph are the
components, the edges correspond to intersection points). Moreover the TPL
comes along with a marking: Each of the blown-up nodes determines a pair of
(distinct!) points on the TPL. In this way we get a finite map from the moduli
space B2g of stable 2g-pointed TPL’s to the subspace D. c Mg of totally
degenerate stable curves of (arithmetic) genus g. The B2g are smooth projective
rational varieties studied systematically in [GHP].

Infinite TPL’s arise when the uniformization theory of Riemann surfaces is
extended to stable curves (working over k = C, now):

For example the universal covering of a totally degenerate curve C of genus g
is an infinite TPL on which the fundamental group of C (isomorphic to the
free group Fg of rank g) acts in a natural way.
Smooth Riemann surfaces of genus g also admit coverings with group of

decktransformations isomorphic to F,,: Schottky uniformization; here the
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covering space is an open dense subset of the Riemann sphere  = Pt which
we view as a trivial TPL (but with nontrivial action of Fg!). It is shown in
[GH] that also all other stable curves of genus g may be represented as a
quotient of an open dense subset of a TPL by a discontinuous group
isomorphic to F., (the construction is, roughly speaking, a mixture of the two
"extreme cases" described above). Moreover it is shown in [GH] that both the
TPL and the F.-action can be recovered from the relative position (i.e. the
generalized cross ratios) of the fixed points of all (primitive) elements of Fg.
Thus using the fixed points as markings and extending the construction of B"
in [GHP] to infinite dimensions one obtains a (huge) moduli space containing
the "extended Schottky space", i.e. the space of Schottky uniformizations of
stable Riemann surfaces.
The goal of this paper is now to embed this construction in a more general

theory in the following way: We fix a (finitely generated) group rand ask for
the moduli space that classifies all possible r-actions on TPL’s that are stable
in some suitable sense. If such a moduli space exists (as a complex provariety,
say) we may consider the subspace of discontinuous actions with compact
quotient; it will classify the uniformizations of stable complex projective curves
by a group isomorphic to r. To classify r-actions on TPL’s we associate with
such an action a marking of the TPL on which the action takes place, i.e. a set
(in general infinite) of points on the TPL determined in some way by the action.
In that way we relate the classification of r-actions on TPL’s to that of stable

marked TPL’s which was carried out in [H].
In this approach several technical difficulties arise that necessitate careful

generalizations of the familiar notions: first, the fixed points of transformations
that act by translating the components are "end points" of the TPL. Hence we
have to work with TPL’s that are compactified by adding the end points. One
reason for the at first sight perhaps somewhat strange looking definition of a
TPL in Section 2 is to include such points.

Secondly, an infinite TPL is not a projective variety and, due to the end
points and also to the fact that a component may intersect infinitely many
others, not even a scheme. A fortiori, our moduli space cannot be expected to
be a scheme. But all occuring spaces turn out to be projective limits of

projective varieties (so-called provarieties). Therefore we shall work with

notions of TPL (and of intersection tree) that are stable under taking projective
limits.

Unfortunately the method sketched above of associating with a r-action on
a TPL the fixed points of the primitive elements only "works" for groups that
are (algebraically) close to free groups (the precise condition is that the

centralizer of any element different from the identity be cyclic). By this we mean
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that only for these groups we obtain in this way a bijection between stable
actions and stable markings. Even more unfortunate, we do not know of any
way of attaching stable markings to stable actions that would yield a bijection
for all finitely generated groups (and we doubt that such a method exists at
all). So we contend ourselves with the study of another natural assignment of
(stable) markings to stable r-actions: the marking of an (arbitrarily chosen)
r-orbit with trivial stabilizer. As we will show in Section 3 this yields a
bijection (even an equivalence of categories) for abelian groups r.
The most important step in the proof of this theorem is the following result

which is of some independent interest: If an abelian group acts on a compact
TPL then there is a common fixed point for the whole group (see Thm. 2.23
for precise statement and exceptions).
For the proof of this result we pass from a TPL to its intersection graph,

which is a tree. Since our TPL’s are projective limits of projective curves, the
intersection tree will also be a projective limit of usual trees. Therefore we first
introduce in Section 1 a category of trees that contains the usual trees of graph
theory, their projective limits, and also the A-trees investigated e.g. in [M]. The
fixed point theorem is first proved for these trees.
The fundamentals on trees and TPL’s were laid in [H]. We take here the

opportunity to supplement the definition of a TPL in [H] in order to assure
certain global topological properties that were tacitly assumed in [H] but
turned out not to be deducible from the axioms there.

In the last two sections we describe in some detail the moduli spaces for the

simplest cases, namely finite abelian groups, and the integers. Of course, a finite
group has only finitely many différent stable actions on TPL’s; more interesting
than the number of actions is the scheme structure on this moduli space

(determined explicitly in Section 5). The moduli space of stable Z-actions on
TPL’s is in Section 4 itself shown to be an (infinite and locally infinite) compact
TPL. The subset S1 of discontinuous actions with compact quotient consists
of the uniformizations of tori by an infinite cyclic group, i.e. in the form C*/q2
for some q with lql ~ 1.
The next group to be investigated would be Z2; here the corresponding

moduli space, which is a two-dimensional provariety, contains the usual

uniformizations of elliptic curves as quotients of the complex plane by a lattice
(all elements of 7L2 have to act parabolically, i.e. by translations). The irreduc-
ible components of this provariety are not all isomorphic to each other; in
particular the base component (corresponding to actions on a single P1) is itself
only a provariety, not a scheme (more precisely it is a P’ x Pl blown up in
infinitely many points). Our results concerning this moduli space are very
incomplete, so we do not give details here.
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1. Trees and their projective limits

As mentioned in the introduction we need a notion of "tree" that allows us to

treat projective limits of usual (finite) trees. One obvious phenomenon is that
between two vertices a and b in a projective limit of finite trees there may be
infinitely many edges. This suggests to replace the path between a and b by the
segment S(a, b), i.e. the set of all vertices and edges between a and b, and to
formulate axioms for the segments, which now are just subsets of the set V of
all vertices and edges. This idea is also used in the concept of a A-tree, see [M],
where a set of axioms different from ours is used (see Remark 1.2 for the
comparison).
Once working with segments it is possible and even natural to drop the

distinction between vertices and edges, see [M] and [H]. That we keep here
this distinction is done with regard to intersection graphs of TPL’s, to be
introduced in Section 2 (Def. 2.13): they in a natural way have vertices

(components) and edges (intersections), and to have them separated is very

helpful in showing that a TPL in our definition is indeed the projective limit
of its finite sub-TPL’s. On the other hand, vertices and edges are not elements
of V of different nature: we only impose (see 1.1(a)(vi) below) the completely
symmetric condition that between any two vertices there is at least one edge,
and conversely, between any two edges there is at least one vertex. In particular
the "end point" of a segment may well be an edge.

1.1. DEFINITION.

(a) A tree is a tripel (Vc, Vs, S) where:
Vc is a set (the set of vertices)
Vs is a set (the set of edges)
V:=Vs  Vc is nonempty
S: V  V ~ P(V) is a map with the following properties:
(i) S(a, a) = {a}
(ii) a, b c- S(a, b)

(iii) S(a, b) = S(b, a)
(iv) ce S(a, b) implies S(a, b) = S(a, c) u S(c, b)
(v) For all a, b, c ~ V there is a unique u = p(a, b, c)e V such that

p is called the median of a, b and c

(vi) If a, b are different elements of VS, then S(a, b) ~ Vc ~ 0
If a, b are different elements of Vc, then S(a, b) n Vs ~ 0

S(a, b) is called the segment between a and b.
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(b) (U c’ us, S’) is a subtree of (Vc, V , S), if it is a tree, Us ~ Vs, Uc ~ Vc and
b’a, b E U one has S’(a, b) = S(a, b) n U

(c) (Vc, VS, S) is called finite, if V is a finite set
(d) A morphism ~:(Vc,Vs,S) ~ (Uc,Us,S’) is a map lp: V -+ U with

(p(S(a, b» = S’(~(a), 9(b» for all a, be V
(e) ~ is an isomorphism if ~(Vs) = Us, ~(Vc) = U, and lp: V - U is bijective.

(One could give a definition of morphism such that a bijective morphism fulfills
the condition of (e), but it would be rather complicated and unnecessary for
our purpose.)
We will usually denote a tree (Vs, Vc, S) just as the set E

1.2. REMARK. We want to show that the category of trees just defined
contains the A-trees in the sense of [M] (for a totally ordered abelian group
A) and hence in particular the graph theoretical trees (for A = Z); this last
statement is already shown in [H], Lemma 2.1.

PROPOSITION. Let V be a set and S: V x VH9(V) a map satisfying (i), (ii)
and (iii).
(a) then (iv) and (v) implies

(iv’) for any a, b, c in V, S(a, b) n S(a, c) = S(a, d) for some d E V
(v’) for any a, b, c in V with S(a, b) n S(a, c) = {a}, S(a, b) u S(a, c) = S(b, c)

(b) if moreover S(a, b) is a A-segment for any a, b ~ V, then (iv’) and (v’) implies
(iv) and (v).

REMARK. It is possible (though may be somewhat artificial) to endow any
A-tree T with a structure T = lli w Tc satisfying (vi).

Proof. (a) to show (iv’) let d = y(a, b, c). Then S(a, d) c S(a, b) n S(a, c); con-
versely let xe S(a, b) n S(a, c). If xe S(b, c), then x = d by (v), so let x e S(b, c).
Assume x e S(a, d) then by (iv) x E S(d, b) n S(d, c) c S(b, c), a contradiction.
To show (v’), note that by (v) a = 03BC(a, b, c) ~ S(b, c), whence by (iv)

S(a, b) u S(a, c) = S(b, c).
(bxiv) is a defining property of a A-segment. For (v) let 03BC ~ V such that

S(a, b)nS(a, c) = S(a, y), and similarly S(a, b)~S(b, c) = S(,u’, b); S(a, c)nS(b, c)
= S(a, 03BC").
Now S(03BC, p’ ) n S(03BC, Jl") c S(a, b) n S(a, c) = S(a, p); but the intersection is

also contained in S(03BC, b), hence is equal to {03BC}. Then it follows from (v’) that
Jl c- S(03BC’, 03BC"). By symmetry we also have M’c- S(03BC, Jl") and Il’’ c- S(03BC, 03BC’), hence all
three coincide, as all segments are A-segments.

1.3. PROPOSITION. For a finite subtree U of a tree V there exists a

(canonical) morphism nv: V ~ U such that 03C0|U = idu. 03C0VU is called the projection
from V onto U.
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Proof. For x ~ V, let Ux:= {y ~ U|S(x,y) ~ U = {y}}, then Ux =1= 0 as U is
finite.

(1) Ux = {y}:Set 03C0VU(x):=y
(2) Ux = {y1, y2} ~ S(y1,y2) ~ U = S’(y1, y2} = {y1, y2}

~ w.l.o.g. y1 ~ Uc, y2 ~ Us (condition (vi)), let 03C0VU(x):= y2
(3) If yl, Y2’ Y3 E Ux are all distinct then x = Jl(Yl’ y2, Y3) ~ x ~ U ~ Ux = M’
Then 03C0VU is a morphism of trees.

1.4. PROPOSITION. U ~ U’ ~ V finite subtrees ~ 03C0VU = 03C0U’U  03C0VU’.
Proof. Easy computation.

1.5. DEFINITION. V a tree, V:= system of finite subtrees. Then V is a
projective system (Prop. 1.4). Let every finite subtree have the discrete topol-
ogy, then V := V is a topological space.
For x = (xU)U~V, y = (yU)U~v ’et:

1.6. PROPOSITION. With the notation of Definition 1.5 one has:
(i) (Vc, Vs, S) is a tree
(ii) V is a compact topological space

(iii) There is a canonical injective map i: V - V with dense image; this induces
a topology on JI:

(iv) Every morphism of trees is continuous.
(v) 03BC: V x V x V ~ V is continuous.

(vi) For U ~ v let nu: V ~ U be the projection; then nu = 03C0VU as defined in
Proposition 1.3.

(vii) S(a, b) is closed for all a, b c- V
Proof.

(i) + (vi) + (vii) are easy to prove, one only needs the fact, that every finite
subset of V is contained in a finite subtree.

(ii) + (iii) hold by definition.
(iv) Let cp: V ~ V’ be a morphism of trees. If U’ c V’ is a finite subtree, then

one can find a finite subtree U c il and a morphism : U ~ U’ such that

As every morphism of finite trees is continuous this shows that lp is continuous.
(v) As y is continuous for every finite tree, the argument is the same as in (iv).

1.7. DEFINITION. A tree V is called compact if V = V.
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We now want to proof that every automorphism of a compact tree has a fixed
point. For this we need some technical results, which are obvious for finite
trees.

1.8. PROPOSITION. V a tree; a,b,c,d~V,b~c, c E S(a, b), b~S(c,d) ~
b, ce S(a, d).

1.9. COROLLARY.

Proof. (Prop.1.8). 03BC:= p(a, c, d), if c e S(a, d) then 03BC ~ c, 03BC c- S(c, d) =

S(c, b) u S(b, d), as b c- S(c, d).
(1) 03BC ~ S(b, c)

ce S(a, b) ~ c = p(a, b, c)
Il e S(a, c) by definition, S(a, b) = S(a, c) u S(c, b), as ce S(a, b) + p e S(a, b) =&#x3E;
Il ~ S(a, b) n S(a, c) n S(b, c) = {03BC(a, b, c)l = {c} ~ 03BC = c

(2) e S(b, d) =* y = b as above. Now ce S(a, b) = S(a, Jl) and

03BC ~ S(a, c) ~ c, y ~ S(a, c) n S(a, p) n S(c, p) ~ c = M.

1.10. COROLLARY. S(a, b) = S(c,d) ~ {a,b} = {c, d}.
1.11. PROPOSITION.

Proof. Let

S := S(b, c) u S(c, d) u S(d, b) = S(b,Jl2) US(C,Jl2)U S(d, P2) = S US2US3’

as Jl2 = M(b, c, d), then 03BC1, M3 eS. As

Jl = 03BC2 unless all Mi are elements of the same Si-
It follows easily from Corollary 1.9 that the median of such "collinear"

points is one of the points.

1.12. THEOREM. Let V be a compact tree, cp: V - V a bijective morphism,
o =1= F c V closed such that g(F) = F and F is closed under taking medians.
Then there exists p c- F such that ~2(p) = p and S( p, 9(p» n F = {p, ~(p)}.
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1.13. LEMMA. Theorem 1.12 is true for V = S(a, b), a, b c- F.
Proof. S(cp(a), cp(b» = ~(V) = S(a, b) ~ (Corollary 1.10) {~(a), ~(b)} = {a, bl.

If cp(a) = a take p = a. If 9(a) = b, 9(b) = a let Z = {z ~ F|03BC(a, z, cp(z» = zl. Z is
closed because cp and y are continuous and V is a Hausdorff space.
CLAIM 1. x, y ~ Z ~ F ~ S(x, y) ~ Z.

Proof. z E S(x, y) n F, w.l.o.g. p(a, x, y) = x, i.e. xeS(a, y), then cp(y) eS(y, b),
because y ~ S(a, cp(y» by definition of Z. zeS(x, y) c S(a, y) because xeS(a, y) ~
(p(z) E S(~(y), b) c S(y, b). So z e S(a, y), cp(z) e S(y, b) ~ 03BC(a, z, (p(z» = z.

For zeZ one has cp2(z)eZ and for z ~ Z one has cp(z)eZ, therefore

F = Z ~ ~(Z). For z E Z let Mz = S(z, ~(z)) ~ F, then Mz is closed. Let

M := ~zEZ Mz.
CLAIM 2. z, z’ e Z, z’ e Mz ~ Mz, c Mz. If z’ =1= z, g(z) one has M z’ =1= Mz.

Proof. S(a, b) = S(a, z) u S(z, cp(z)) u S(cp(z), b) =: S1 u S2 U S3 and S 1 n S2 =

{z}, S2 ~ S3 = {~(z)}, S1 ~ S3 = ~ if z ~ ~(z). z’ ~ S2 ~ z’ ~ S1 ~ ~(z’) ~ S3. If

~(z’) ~ S2 ~ ~(z’) ~ S1 ~ 03BC(a, z’, ~(z’)) = g(z’) ~ z’e Z (as z’ =1= cp(z’». M z’ =1= Mz
because otherwise S(z, cp(z») = S(z’, (p(z’» ~ {z, ~(z)} = {z’, ~(z’)} (Cor. 1.10).
Therefore Mz c Mz, or Mz, c Mz dz, z’ e Z.

CLAIM 3. M ~ Z ~ ~.
Proof. If M ~ Z = Qf one has z1,...,zn ~ Z such that ~ni=1 Mzi ~ Z = ~, as

S(a, b) is compact and Mzi, Z are closed ~ Mzio n Z = Qf for some io, as

Mz c Mz, or Mz, c Mz ~ z, z’ ~ Z, but zio ~ Mzio n Z.
For zo e M n Z one has 

CLAIM 4. cp2(ZO) = ZO.
Proof. ~(z0)~S(z0, b), as z0 ~ Z ~ ~2(z0) ~ S(~(z0), a) = S(a, z0) u S(zo, cp(zo».

(1) ~2(z0) C S(zo, cp(zo» = M Zo

(2) cp2(ZO) E S(a, zo)
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CLAIM 5. Mzo = {z0, ~(z0)}.
Proof. Let z’c- S(z , ~(z0)) n F - cp(z’) ~ S(~(z0), ~2(z0)) = S(z0, cp(zo)). Now

z’ ~ Z or ~(z’) c- Z so Mz. = Mzo or M~(z’) = M zoe Then z’ = Zo or cp(z’) = zo. In
the latter case z’ = 9- l(z.) = cp(zo). D

Proof (Theorem 1.12): Let x E F. If x = ~(x) take p = x. If x = cp2(X) use
Lemma 1.13 for V = S(x, 9(x». Otherwise let y:= M(x, 9(x), ~2(x)), then

y = 03BC(y, ~(y), ~2(y)) E {y, (p(y), ~2(y)} (Prop. 1.11).
(1) 03BC = cp(y)

CLAIM. ~n(y) converges to some yo E F.
Proof (~n(y)n~N has an accumulation point yo c- F, as F is compact. If there

is another one y’0 ~ yo let Mn:= 03BC( Yo, y, 0 cpn( y)) ~ F; then yo, y’ 0 are

accumulation points of (03BCn)n~N, as y is continuous and Il(Yo, Yo, Yo) = Yo,
M(yo, yi, Yo) = yi. Now for n  m

because {03BC(a, b, z)|z e S(x, x’)} = S(03BC(a, b, x), 03BC(a, b, x’)). (Take a = yo, b = Yo,
x = ~n(y), x’ = ~m(y) and use (*)).

If S( yo, y’0) ~ {y0, y’0} take a e S(y0, y’0), a ~ y0, Yo. Then S( yo, a), S(a, y’0) are
closed so one can choose open neighborhoods U(y0), U’(y’0) such that

U(y0) n S(a, y’0) = ~, U’(y’0) ~ S(a, y0) = 0. If 03BCn, 03BCm ~ U(y0), then

so
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as yo is an accumulation point of (03BCn)n~N and hence there are infinitely many
m with 03BCm~U(y0).

If S(y0, y’0) = {y0, y’0} then with the same argument as above 03BCm =

y0 ~m  mo. So (~n(y))n~N  yo and therefore ~(y~) = yo.
(2) 03BC=y

Using Proposition 1.8 one can deduce, that lp2(y)e S( y, lp4(y». Using Part 1

shows, that lp2 has a fixed point a. Let b = ~(a) ~ ~(S(a, b)) = S(lp(a),
lp(b» = S(b, a), so Lemma 1.13 shows the theorem in this case.

(3) M = lp2(y). Replace lp by lp - then

so one can use Part 2. 1:1

1.14. THEOREM. Every automorphism cp: V ~ V of a compact tree has a fixed
point.

Proof. Theorem 1.12 gives us a pe V such that S( p, ~(p)) = {p, 9(p)l. If p c- V,
(resp. Vc) then ~(p) ~ Vs (resp. Vc) by definition of isomorphism and

S( p, cp(p» n Vc (resp. S( p, cp(p» r) Vs) = ~, so by condition (vi) of Definition 1.1
we get p = cp(p).

1.15. THEOREM. Let r be a commutative group acting on a compact tree V
by bijective morphisms then there exist p, p’ e V such that S( p, p’) = {p, p’l and
03B3({p,p’}) = {p,p’} for all 03B3 ~ 0393. If 0393 acts by automorphisms we have p = p’.

Proof. If there exist yo c- r, a, b c- V, a ~ b, yo(a) = b, yo(b) = a, S(a, b) = {a, bl,
then 03B3({a, bl) = {a, bl ’v’ye r, because:

Let a’ = 03B3(a), b’ = 03B3(b) then 03B30(a’) = 03B3° 03B30° 03B3-1(a’) = 03B3 03B30(a) = 03B3(b) = b’ and

yo(b’) = a’, so

Let p = 03BC(a, b, a’) E S(a, b) = {a, b}. w.l.o.g. Jl = a ~ a c- S(a’, b) ~ yo(a) =
b c- S(yo(a’), 03B30(b)) = S(b’, a) - (Prop. 1.8) a, b, c- S(a’, b’) = {a’, b’l.

If no such yo exists, let Fy = {p ~ V|03B3(p) = pl, then one can apply Theorem
1.12, so F., :0 0.
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If ny Fy = 0 one can find 03B31,...,03B3n ~ 0393 such that ~n-1i=1 F03B3i = F ~ 0 and
F ~ Fyn = 0, as Fy is compact. Now Yn fixes F as r is commutative so Theorem
1.12 gives us a p ~ F such that

and 03B32n(p) = p.
If p ~ 03B3n(p) then by Lemma 1.13 one can find q ~ S(p, 03B3n(p)) such that

03B32n(q) = q and

The case q ~ Yn(q) is already done so let q = Yn(q). 03B3i(q)~S(p, 03B3n(p)) so w.l.o.g.

But 03B3n03B3i(q) = 03B3i°03B3n(q) = yi(q) so 03B3i(q)~S(p,q) ~ S(03B3n(p),q) = {q}, so q E F and
F ~ F03B3n ~ ~.

1.16. REMARK. Note that for the trees considered here the situation is more

complicated than for A-trees because Fy need not be "connected". In particular
Lemma 12 of [M] does not hold for non commuting automorphisms.
Moreover in general Fy is not a subtree of V, as condition (vi) of Definition

1.1 is not fulfilled by Fy.

1.17. DEFINITION. For a, b ~ V let 03C0S(a,b): V ~ S(a, b) be defined by
nSCa,b)(r):= p(a, b, r). 
The following result will be used later:

1.18. LEMMA.

(1) 7tS(a,b) is a projection onto S(a, b) =: S.
(2) ns is continuous
(3) Let y,ber, r abelian and y(a) = a, y(b) = b; p ~ 03C0S(03B4(S)BS) ~ 03B3(p) = p

Proof. (1) and (2) are trivial; to prove (3) let a’ = ns(b(a»), b’ = 03C0S(03B4(b)); then
a’ = Jl(a, b, 03B4(a)) and

If a’ = b’ then 03C0S(03B4(S)) = S(a’, b’) = a’.
If a’ =1= b’ then b(S) = S(03B4(a), a’) u S(a’, b’) u S(b’, 03B4(b)) and 03B4(S)BS = S(03B4(a),

03B4(b))BS(a’,b’), so 03C0S(03B4(S)BS) = {a’,b’}, as 03C0S(S(03B4(a),a’) = {a’}, 03C0S(S(b’, 03B4(b))
= {b’}.
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2. Trees of projective lines and intersection trees

To understand the definition of a TPL below recall that we want the category
of TPL’s to be closed under projective limits. Since a projective limit of
projective curves is almost never a scheme we have to define TPL’s as locally
ringed spaces with certain properties. Later (Lemma 2.19) we shall show that
any TPL is open and dense in a provariety, i.e. a projective limit of projective
curves (see [H], Section 1 for some basic properties of provarieties).

2.1. EXAMPLE. Consider the following projective limit of finite TPL’s:

This is to be understood as follows:
- the "end point" p1 is an irreducible component; the local ring at p consists

only of the constant functions
- the middle part is a chain of P1-components.
- every neighbourhood of pi (resp. p2) contains infinitely many P1-compo-

nents of the middle part.
- nevertheless P2 is a smooth point on L.

Due mainly to the presence of points like p and P2 in TPL’s, the’ definition of
the intersection graph of a TPL is much more subtle than in the finite case,
and we avoid it in our definition of a TPL. Instead we characterize the tree-like
nature of a TPL in terms of the segments S(x, y) (see Definition 2.2(a)(iv) and
(v) below); thus the following definition somewhat parallels that of a tree in 1.1:

2.2. DEFINITION.

(a) Let k be a field; a connected locally ringed space (C, (9) over k is called a
tree of projective lines (T PL) over k if:
(i) for any closed point x E C, the local ring (9c,x is isomorphic to k, k[t](t)

or (k[s, t]/(s·t))(s,t).
(ii) every irreducible component of C is isomorphic to P1k or Spec k. The

union of the P1-components is dense in C.
(iii) For any x E C, CB{x} has at most two connected components.
(iv) For x, y e C the intersection S(x, y) of all closed connected subsets of C

containing x and y is connected.
(v) ce S(a, b), a e S(b, c), b E S(a, c) =&#x3E; a, b, ce L, L component of C.
(vi) Let D be a connected component of CBS(x, y), then D n S(x, y) is a

single point.
(vii) every connected component of an open set is open.
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(b) A closed point x E C is called special, if CB{x} is not connected.
(c) A point x e C is called an endpoint of C, if OC,x ~ k and CB{x} is connected.

2.3. REMARK. Properties (vi) + (vii) control the global topology of C. With-
out them there are some strange examples of locally ringed spaces C such that
Lemma 2.20 (resp. Prop. 5 of [H]) is not true.

In Example 2.1, p 1 is an end point; the special points are P2 and the
intersection points of P1-components.

2.4. DEFINITION. For X, Y c C let S(X, Y) = S(X ~ Y) be the intersection
of all closed connected subsets of C containing X v Y. S(X, Y) is called the
segment between X and Y It is easy to see that one has:

2.5. LEMMA: S(X, Y) is connected.

In the first place, a morphism of TPL’s is simply a morphism of the locally
ringed spaces; but as in [H], Section 3, we shall only consider contractions:

2.6. DEFINITION. A (contraction) morphism of TPL’s C, C’ is a morphism
03C0: C - C’ of locally ringed spaces satisfying
(i) for each P1-component L of C, ni C is either constant or an isomorphism

onto n(L)
(ii) for each P1-component L’ of C’ there is at most one P1-component L of C

such that 03C0(L) = L’.
We now want to define the intersection tree of a TPL.

For this we need some technical results, mainly to show that there are no
topological pathologies around.

2.7. LEMMA. For a, b ~ C there is a unique morphism 7rS(a,b): C ~ S(a, b) such
that 03C0|S(a,b) = idS(a,b). One has:

Proof. Let D c CBS(a, b) a connected component, then by property (vi)
D ~ S(a, b) = {pD}. Let nID = pD. Let nIS(a,b) = idS(a,b), then n is defined every-
where and it is easy to see that n is continuous (using property (vii) of
Definition 2.2). The formula holds by definition of 03C0S(a,b) and S.

Uniqueness follows from the fact that by Definition 2.6 03C0S(a,b) must be

constant on any P1-component of CBS(a, b).

2.8. LEMMA. x e S(a, b) ~ S(a, b) = S(a, x) u S(x, b). Let X = S(a, x) n S(x, b),
then X = {x} or X = L, where L is a component of C. In the latter case clearly
x ~ L.

Proof. " c ": S(a, x) u S(x, b) is a closed connected set containing a and b.
"=3": S(a, b) is a closed connected set containing a, b and x.


