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Introduction

In the area of Diophantine equations one studies polynomial equations and
their solutions. Typically, these are polynomials defined over the rationals Q or
a number field K, and one is interested in solutions in the same field. Often there
are infinitely many solutions, and optimally one would like a method that
explicitly constructs all, or at least infinitely many, of these solutions. If no such
method is known, one may take a different approach and try to find how many
solutions there are of certain "size." In order to carry through with this line of
thought, one needs a quantification for the "size" of a solution. This is the
purpose of a height. If there are infinitely many solutions, one would like to
know how many solutions exist with height less than or equal to a given bound.

This approach is often phrased in arithmetic-geometric terms. Suppose V is a
projective variety defined over a number field and equipped with a height H.
Usually this is done via an object called a metrized line bundle (see [CS] chapter
VI). If N(V, B) denotes the number of points x c- 1,’ with H(x)  B, the

asymptotic behavior of N(V, B) gives some insight into the algebraic/geometric
properties of V. The question then becomes: Can one describe the asymptotic
behavior of N(V, B)?

Explicit answers to this last question are few and far between. Two known
examples are the number of points on an abelian variety with bounded height
and S. Schanuel’s asymptotic result in [S] for the number of points in projective
space with height  B. Manin et al. in [FMT] gave asymptotics for the number
of rational points on flag varieties of bounded height (which includes Schanuel’s
result as a special case) using deep results on analytic continuation of

Langlands-style L-series.
Recently the author was able to give explicit estimates for the number of

points on grassmannians, rational over a given number field, with height  B
(see [Tl]). The method of proof resembled that used by Schanuel in that it

involved geometry of numbers and a result on the number of lattice points in a
bounded domain in Rn. It is the purpose of this paper to generalize the work of
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[T1] to include a broader notion of height and then to extend this to flag
varieties.

This paper is organized as follows. In part 1 we give definitions for heights and

flag varieties. In part II we prove asymptotics for grassmannians which

generalize those given in [T1]. Finally, in part III we show how this can be used
to give explicit terms in the asymptotics for general flag varieties. For example,
we can show the asymptotic relation

for flag varieties "P, where c(V) is an explicitly given constant (depending on the
number field, V, and the height chosen) and 1 is the rank of Pic(V) (see theorem
5 below).

PART I. HEIGHTS ON FLAG VARIETIES

1. Heights on projective space

Let K be a number field of degree x = r + 2r, over the field O1. Let M(K) be the
set of places of K, and let

denote the embeddings of K into the complex numbers, ordered so that the first
r, are real and

for ri + 1  i  r1 + r2, where a denotes the complex conjugate of the number
a.

For each non-archimedean place u E M(K) let |·|v be the corresponding
absolute value on K, normalized to extend the p-adic absolute value on Q,
where v lies above the rational prime p. We also have the absolute value |·|v for
each archimedean place v E M(K), defined by

where v corresponds to the embedding a H a(i) and 1.1 denotes the usual absolute
value on R.

For each place v E M(K) let nv be the local degree. We have the product formula
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for all a E K* = KB{0} (see [L], Chapter 5).
Classically, the height on Pn-1(K) is defined as follows. Given a vector

a = (a1, a2,..., an) E K" and a v E M(K), put

Note that by the product formula and the definitions

for all a E K*. One then may define the height of a Ka E Pn-1(K) to be

The reader should be aware that often Ilailv is defined to be max{|ai|nvv} at the
archimedean places as well. This is the case for instance, in Schanuel’s paper.
The definition we use here has the advantage of being "rotation invariant" in a
sense (see, for example, the parenthetical remark before theorem 2 below). It may
also give better error terms in the type of estimates we are dealing with (cf.
Schanuel’s result in the case n = 2 with that of theorem 4 below).

In what follows, we will need more flexibility with the choice of coordinates.
Specifically, we must allow local changes in the coordinates. With this in mind
we proceed as follows.

For each place v E M(K) let Kv denote the completion of K at v. Let îv denote
the canonical injection of K into Kv. We will also use 03BBv to denote the canonical
injection of Kn into Knv. Let Av E GLn(Kv) with Av = In, the identity matrix, for all
but finitely many v.
Now for a E K" and any place v we have a point av = 03BBv(a)Av ~ Knv. We get a

height on Pn-1(K) given by these Av’s defined by

Such a height is well defined by the product formula and since the Av’s are non-
trivial at only finitely many places. Note that the "classical" height above is the
height obtained when all the A,’s are the identity matrix. We will write H instead
of HA whenever the A"’s are understood.
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2. Heights on flag varieties via line bundles

Let V be an n-dimensional vector space over a number field K. Let G be the

automorphism ring Aut(V). We fix once and for all a basis vl, v2, ... , vn of V and
identify with K nand G with GLn(K), with matrices acting on the right by
matrix multiplication. For d = 1, 2,..., n - 1 let Pd denote the maximal parabo-
lic subgroup consisting of matrices (Pu) E G with Pu = 0 if d  j  n and
1  i  d. Elements of Pd are nonsingular matrices of the form

where Ap ~ GLd(K), Cp ~ GLn-d(K), Bp is an (n - d) x d matrix, and Od is the
d x (n - d) matrix all of whose entries are 0. We let Po denote the minimal
parabolic subgroup

The subgroup Pd fixes the d-dimensional subspace Vd = ~di=1 Kvi c V. The
homogeneous space PdBG is thus Grd(V), the grassmannian of d-dimensional
subspaces of E More generally, if

is any parabolic subgroup containing Po, then P fixes the nested sequence of
subspaces Vdl c Vd2 ~ ··· ~ Vdl and PBG is the corresponding flag variety.
On each Pd we have the character xd, where Xd(P) = det(A,) for p E Pd written

as in (1). Let X’(Pd) be the subgroup of the character group X(Pd) generated by
xd. More generally, for P a parabolic subgroup as in (2), let X’(P) be the
subgroup of the character group X(P) generated by ~d1,..., 1 Xd, -
Let c(n, d ) denote the set of ordered d-tuples of integers (i1, i2,..., ia) satisfying

1 ~ i1  i2 ...  id ~ n. Order the elements of c(n, d) lexicographically. For
a E c(n, d ) and g = (gij) E GLn(K), define

Note that these fa’s satisfy



159

for all p e Pd and g e G. These fa’s are global sections generating the (very ample)
line bundle L~d. They give a morphism of PdBG into [P(nd)-1(K). For a point Pdg
corresponding to the d-dimensional subspace S c V, this morphism takes Pd g to
the grassmann coordinates of S.

Similarly, if m E N, then

for all p E Pd and g E G, and the f,,,"s generate the line bundle L~md. More generally,
if x = ~m1d1 ··· xdil E X’ (P) for P as in (2) and mi E N, then {03A0 fmlal: ai E c(n, di)} are
global sections generating the line bundle L. on PBG. All ample line bundles on
PBG are of this form since the rank of Pic(PBG) is equal to the rank of X’(P) (see
[FMT]).

In this manner, for any ample line bundle on the variety PBG we get a
morphism into P’(K) for some m, whence a height on PBG. Such a height will
depend on the height on P’(K). If one were to choose different global sections
generating the line bundle, the corresponding height would change for indiv-
idual points, but not affect the asymptotics of N(PBG, B).

Since we will be dealing with heights on flags, we cannot allow arbitrary
heights on the projective spaces P(nd)-1(K). These heights must be consistent, in
some sense. Once we have chosen a height on Pn-1(K) (i.e., on Gr1(V)) we get
heights on the other grassmannians in the following way.

Let matrices Av E GLn(K) be as in section 1, giving a height on Pn-1(K). Recall
that we think of the A"’s as representing local changes of coordinates. Suppose
S ~ V is a d-dimensional subspace with basis s1=(s11,s12,...,s1n),...,
Sd = (sd1, Sd2, ... , Sdn ), i.e., Si = 03A3nj=1 sijVj for i = 1, 2, ... , d. Then

is a d-dimensional subspace of Knv. Identify S with the matrix (sij) and Sv with
(03BBv(sij)). Write Av = (03B1vij). Grassmann coordinates of SvAv = (bvij) are given by

Thus, Av induces a linear change of the grassmann coordinates given by the
matrix
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This matrix is called the d-th compound of Av. One easily verifies that I(d)n = I(nd).
We define a height H on Grd(V) given by the 4,’s via the line bundle L~d with

the global sections described above and the height on P(nd)-1(K) given by the
matrices A(d)v~GL(nd)(Kv). Finally, we define H({0}) = 1 and

In [Tl] the number of points on Grd(Kn) with height  B is estimated, where
the height is the one given by Av = In at all places v. This is the height introduced
in [Sch] and also used by Bombieri and Vaaler in [BV], where they prove the
existence of points on Grd(Kn) with small height. As soon as one looks at points
on general flag varieties, however, one is forced to consider the more general
notion of height on grassmannians we have described here, i.e., allowing local
changes of coordinates. In the language of arithmetic geometry, we have a line
bundle L~ with a metrization determined by the A"’s.
With this definition of height there is a (perhaps well known) duality which

will be useful to exploit later.

DUALITY THEOREM. Let H be the height given by matrices AvE GLn(Kv) and
H* be the height given by the matrices Bv = (ATv)-1 E GL n(Kv), where the

superscript 
T denotes the transpose. Let S be a d-dimensional subspace where

0  d  n and let S* be the dual space defined by

where the dot product is defined with respect to the basis v1,...,vn of v Then

Proof. The theorem is obvious if d = 0 or n, so we will assume 0  d  n. For

03B1~c(n, d) let a’ be its complement in {1,2,...,n}. Let 8a be 1 if (a, 03B1’) is an even
permutation of (1, 2, ... , n) or - 1 if it is an odd permutation. Let sl, ... , s, be a
basis for S as above and let si , ... , S*n-d be a basis for S*. Identify S with the
matrix (sij) and similarly for S*. For a E c(n, d) and 03B2~c(n, n - d) let

By theorem 1 in chapter VII, section 3 of [HP], there is an a E K with

Ea Sâ = aSa for all oc E c(n, d). But by equation (6) on page 296 of [HP] (this is in
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the proof of the theorem just quoted), we then have

Our theorem follows.

3. Heights on Grassmannians via Lattices

Let V be an n-dimensional space over K as in section 2. Let matrices Av be given,
yielding a height on Grd(V) as above. We will reformulate this height in terms of
determinants of lattices in a Euclidean space. This section is a straightforward
generalization of work done in [Sch] and [Tl].
By a lattice A in a Euclidean space E we will mean a discrete subgroup of the

additive group E. The dimension of the lattice A is the dimension of the subspace
it spans. Suppose X1, X2, ... , Xm are a basis for A, so that

The determinant of A is defined to be

where X * Y denotes the inner product in E of X and Y. By convention

det((0)) = 1.
For X E Rnr1 C c2nr2 we write

where

Let Enic C R nri ~ C2nr2 be given by the set of points satisfying

For X and Y in F"" we define their inner product to be X · Y, the usual inner
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product in C"B Thus, for X = (x1, x2,..., xK ) and Y = (y1, y2, ... , yK ) in IEnB

One easily verifies that Enk is a Euclidean vector space of dimension nk with this
inner product. In particular, X · Y is real and X. Y = Y · X.
The archimedean places give an embedding of V into Enk as follows. For each

archimedean place v and v E V let 03C1i(v) = 03BBv(v)Av, where v corresponds to the

embedding aa(i), 1  i  ri + r2, and let Pi+ r2(V) = pi(v) for ri  i  ri + r2.
Define 03C1: V ~ En’ by p = p  03C12  ··· x 03C103BA. The nonarchimedean places give a
lattice via this embedding. For each finite place v, multiplication by Av gives a
change of coordinates in Ki from those with respect to the basis

03BBv(v1), 03BBv(v2),..., Âv (Vn) to a new basis vv1, v2, ... , vv. Letting V denote the ring of
integers in K and Dv denote the integers in Kv, we have

is an Dv-module in Knv and 9Jlv = Dnv for all but finitely many v’s. Thus,

is an D-module spanning V with localization mv at each finite place v (see [W]
chapter V, section 2, for example). For S ~ V a subspace we will write I(S) for
the D-module S n 9Jlv.

THEOREM 1. Let 0  d  n and suppose S is a d-dimensional subspace of E
Then p(I(S)) is a dk-dimensional lattice in En, with

where A is the square root of the absolute value of the discriminant of K.
Proof. This is a generalization of [Sch] theorem 1, where V = K" and the

height is the "classical" height (Av = In at each place v). For d = 0 the theorem
simply follows from the definitions. We will now suppose that 1  d.

Let sl, ... , s, be a basis for S over K with si E mV for each i. For the moment,
let 9Jl = EBDsi. Using the notation in the proof of the duality theorem, a minor
variation of [Sch] lemma 4 shows
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At each finite place v let

where v corresponds to the prime ideal 03B2v and N denotes the norm of an ideal.
Note that by our hypotheses on the si’s, SvAv is a d x n matrix with entries in Dv,
so that the rational integers av are all less than or equal to 0. Our proof will be
complete if we show that the index of m in I(S) (and hence 03C1(m) in 03C1(I(S))) is
N(U), where U = 03A003B2v-av.

So suppose bisi + b2s2 + ··· + bdsd is an element of I(S). If we let

then the entries of BvSvAv are in Dv, and

for all 03B1~c(n, d). Similarly, one can show

for all 03B1~c(n, d ), v  ~ , and i = 1, 2,..., d. So if a~U, then ci = bia~D for
i = 1, 2,..., d. It suffices to show that the number of d-tuples ci, c2, ... , Cd of D
modulo (a) with

equals N(U), and this is shown in the proof of [Sch] lemma 5.
Of course, we may reverse the order in which we have defined height and start

with lattices. Specifically, suppose we are given an n-dimensional vector space V
and a finitely generated D-module mv spanning E For 1  i  k let pi be a

1 - 1 map
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satisfying

and

Then p = pi x P2 x ... x 03C1k and Wlv will give a height on Grd(V) by defining the
height of a d-dimensional subspace S to be

Theorem 1 is the key ingredient of our method. Questions regarding points on
grassmannians, and ultimately points on flag varieties, are translated via this
theorem into questions about lattices in a Euclidean domain. We will put this to
use immediately by constructing a height on factor spaces with a certain useful
property.

For S a subspace of E SVIAvl will span a subspace of Rn if 1  i  rI’ or Cn if

ri  i  K, where is the archimedean place corresponding to the embedding
aa(i). For a subspace W~Rn, let W 1 be its orthogonal complement. Similarly,
for W a subspace of Cn, let W 1 be the orthogonal complement:

Let n’ be the orthogonal projection from Rn or C" onto the space spanned by
(SvlAvl) when 1  i  r, or r,  i  K, respectively. Define

so that

for all X = (x 1, ... , xj E E"’. Note that vr o p is linear on V and vanishes only on S.
When we write we assume the subspace S is given.

Let S be a do-dimensional subspace of Y Denote the (n - do)-dimensional
factor space VIS by S. We then have the D-module ms = 9X, + S and the map
pg on 9 defined by
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for à = a + S E S, giving a height Hs on Grd(g). For T c S a d-dimensional
subspace,

where I(T)  Mg n 1: (Strictly speaking, 03C1s maps S to an (n - do)-dimensional
subspace of Enk. But after an appropriate unitary transformation r, we have

i o ps : S ~ E(n-do)k, and this transformation will not affect the determinants of
lattices).

THEOREM 2. Let S, S, and Hs be given as above. For T a subspace of S, let
S + T be the subspace of V defined by

Then

1 n particular

Proof. We will use theorem 1. Each point in 03C1(I(S + T)) will either be in
03C1(I(S)) or will be the sum of a point in p(S) and a point in

03C0°03C1(I(S + T)) = 03C1s(I(T)). But for s E S and v e E we have p(s) and 03C0 ° p(v) are
orthogonal. Thus,

which proves the theorem.

We make a final remark. Let Ka c v be a one-dimensional subspace. Let H
be a height on Gr1(V) given by the C-module Wlv and embedding p. Define

so that I(Ka) = 3(a)a. Clearly 3(a) is a fractional ideal. One easily verifies that
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where Il.11 den otes the usual norm on R" if 1  i  r,, or on cn if rl  i  K. We

then have

(See lemma 4 below).

PART II. ASYMPTOTICS FOR GRASSMANNIANS

1. Auxiliary results and statement of theorems

Our method for giving asymptotics on flags hinges on giving asymptotics for
grassmannians. Once we have an asymptotic result for grassmannians with a
reasonable error term, the generalization to flag varieties will follow from simple
partial summation arguments. Before we state any theorems, however, it is

convenient to introduce some ideas from the geometry of numbers.
We first map Enk into Rnk:

is defined by

where, for xi = (xil, Xi2’...’ xin) and i = r, + 1, r, + 2,..., r, + r2, we define

One sees that the determinant of T is 2 - r2n. For Y E Rnk, we write

where

Now let A be an 1-dimensional lattice in R’ and let 03BB1  03BB2  ···  03BBl be the
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successive minima of A with respect to the unit ball. Pick linearly independent
points yi E A (the choice is not necessarily unique) satisfying

Define

and

Minkowski’s second convex bodies theorem ([C] chapter VIII) asserts that

where Y(l ) denotes the volume of the unit ball in R’. Since the successive minima
of A - are, by construction, 03BB1  03BB2  ···  ,11- for i  l, we have det(A - i) is
minimal among sublattices of A of dimension 1 - i.

Let V be an n-dimensional K-vector space. The successive minima of t ° 03C1(mV)
were investigated in [Tl]. They correspond to "minimal" subspaces. Let

03BB1  03BB2  ···  03BBnk be the successive minima of t 0 03C1(mV). We define i-

dimensional subspaces lg z V and minima 03BC1  03BC2  ···  03BCn as follows:

and recursively

and

These subspaces are not necessarily uniquely defined by these conditions; at
each stage one may need to make a choice. The following lemma is proven in

[T1].
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LEMMA 1. Let v be as above and let 03BB’1  03BB’2  ···  03BB’ik be the successive
minima of t ° 03C1(I(Vi)). Then

By lemma 1 and Minkowski’s theorem, the subspaces v are i-dimensional
subspaces of minimal height. Moreover, suppose S c V is a d-dimensional

subspace and 0  i  n - d. By the duality theorem ((S*)i)* is an (n - i)-
dimensional subspace containing S of minimal height, so we define

We will also use the following result which relates the successive minima arising
from a height and its dual.

LEMMA 2. Let V, p, and mV be as above. Let H* be the dual height with
corresponding embedding p* and D-module m*v. Suppose S is a d-dimensional

subspace and write S for the factor space VIS. If 03BB1  03BB2  ···  À(n-d)K are the
successive minima of ta 03C1s(ms) and J.11 1  J.12  ···  03BC(n- d)k are the successive

minima of t - 03C1*(I*(S*)), then

Proof. Consider the subspaces Si . These correspond to (d + i)-dimensional
subspaces Ti~S of minimal height, by theorem 2. Thus, by lemma 1

where the empty product is interpreted as 1. This shows

and inductively

Our lemma now follows from lemma 1.

This result is strongly reminiscent of a theorem of Mahler ([C] theorem VI, p.
219) relating the successive minima of a lattice with those of the polar lattice.
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This is not coincidental. In fact, in the case K = Q, the dual lattice is the polar
lattice, which gives an alternate method for proving the duality theorem.
The next lemma will be used in the proof of theorem 3 below.

LEMMA 3. Let V be an n-dimensional vector space over K and let S be a d-

dimensional subspace where n &#x3E; d &#x3E; 0. Let T = SI and suppose S n Vn-d = {0}.
Then

Equivalently, if S is an (n - d)-dimensional subspace with S n V, = tOI, then

Proof. The two statements are seen to be equivalent by taking duals and
invoking lemma 2. We will prove the first statement. It is obvious if d = 1, so we
may assume d &#x3E; 1. Let sl, s2, ... , sd be elements of I(S) from the construction of
the Si’s, i.e.,

and define

Let

be the canonical homomorphism. Then by lemma 1 and Minkowski’s theorem

But since S n Vn-d = {0}, there are n - d linearly independent elements of
03C1T(mT) (namely 03C1T(~(a1)),..., 03C1T(~(an-d)), where the at’s are the elements ofIDlv
in the construction of the V’is) with smaller length. We thus have

which implies the desired result.
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Finally, we will need the following result which is lemma 1 of [T1].

LEMMA 4. Let 9Jl be an D-module in a vector space over K spanning a subspace
of dimension d  1 and let u be an integral ideal. If we let um denote the set of
finite sums

then the index of um in 9Jl is N(u)d.

As an example of how this lemma will be used, suppose S " V is a d-

dimensional subspace and let u be an arbitrary ideal. Write u = 03B2-1, where
03B2 and OE are integral ideals. By lemma 4

giving

We are now ready to state our theorems for grassmannians.

THEOREM 3. Let V be an n-dimensional space over K. Let Av E GLn (Kv) be
matrices giving a height H. For 0  d  n let M(d, V, B) denote the number of d-
dimensional subspaces S c V with S n Vn-d = {0} and H(S)  B. Then

as B ~ oo and the constant implicit in the 0 notation depends only on n and K.

The values of the constants above are as follows.

Let R be the regulator, h be the class number, and w be the number of roots of
unity of K. Further, let ’K be the Dedekind zeta function of K, and introduce the
function V2(n) = V(2n). Given a function f defined for n = 2, 3, ... and having
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non-zero values, introduce the generalized binomial symbol

defined for 0  d  n, with f(2)f(3)··· f(d) to be interpreted as 1 when d = 1.

Note that (fln) = (f|nn-d). With this notation,

We remark that the main term here is larger than the error term only for
B  H(V)/H(Vn-d). In fact, we will assume this, since M(d, V, B) = 0 for B smaller
than H(V)/H(Vn-d) (see proof of lemma 6 below). In the case d = 1 we may
estimate points in projective space using Schanuel’s method, but incorporating
some ideas we have introduced above and substituting a stronger lattice point
estimate. Since we will use this case to prove theorem 3, we state it separately.

THEOREM 4. Let V, Av, and H be as above. The number of one-dimensional
subspaces S c V with H(S)  B is asymptotically

as B ~ oo, where the constant implicit in the 0 notation depends only on n and K.

COROLLARY. Let Jt: Av, and H be as above. The number of (n - l)-dimensional
subspaces S c V with H(S)  B is asymptotically

as B - oo, where the constant implicit in the 0 notation depends only on n and K.

This corollary follows immediately from theorem 4 and the duality theorem.
As for theorem 4, the proof follows exactly as that given in chapter 5 of [T2],
except that the lattice point estimate used (the one used by Schanuel in [S]) is
replaced by theorem 4 of [T3]. The exception is the case n = 2 and K = 01 (i.e.,
K = 1). In this case one must use an even better estimate for the number of lattice
points of length  B in R2 than that given by theorem 4 of [T3]. Earlier this
century Sierpinski showed in [Si] that the number of integral points in the circle
of radius B is 03C0B2 + O(B 2/3). in general, his method gives the number of lattice


