
COMPOSITIO MATHEMATICA

YU I. MANIN

YU. TSCHINKEL
Points of bounded height on del Pezzo surfaces
Compositio Mathematica, tome 85, no 3 (1993), p. 315-332
<http://www.numdam.org/item?id=CM_1993__85_3_315_0>

© Foundation Compositio Mathematica, 1993, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1993__85_3_315_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


315

Points of bounded height on del Pezzo surfaces

YU. I. MANIN1 and YU. TSCHINKEL2
’Steklov Mathematical Institute, 42 Vavilova, Moscow 117966, USSR

2Department of Mathematics, M.LT., Cambridge (MA) 02139, U.S.A.

Received 7 May 1991; accepted 14 February 1992.

Compositio Mathematica 85: 315-332, 1993.
(Ç) 1993 Kluwer Academic Publishers. Printed in the Netherlands.

0. Introduction

0.1. Heights

In this paper, we prove some results on the asymptotic behaviour of the number
of algebraic points of bounded height on del Pezzo (and more general) rational
surfaces. The basic (Weil) height on a coordinatized projective space over an
algebraic number field k is given by the formula

where the product is taken over all places v of k, and local norms lxil, are defined
as multipliers of local additive Haar measures on kv . More generally, we shall
consider various Weil heights ylL,k,s’,s" where L is an invertible sheaf on an
algebraic variety V defined over k, represented as a quotient of two ample
sheaves and s’ (resp. s") are some families of sections of (L resp. L") generating
these sheaves. We shall usually denote such a height simply hL . The chosen
normalization (0.1) makes our heights non-invariant with respect to ground field
extensions. In compensation, they possess the following "linear growth pro-
perty". Denote by NPn(2013K,H) the number of points in Pn(k) whose anticanon-
ical height h-K(x) = hO(1)(x)n+1 does not exceed H. Put d = [k:]. Then

This is a restatement of Schanuel’s theorem (cf. [Se]). The constant c depends on
k, n, and the exact normalization of the height.

0.2. Del Pezzo cubic and quartic surfaces

Consider smooth surfaces Vs (resp. V6) over k, which are embedded into p4 (resp.
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P3) as a complete intersection of two quadrics (resp. as a cubic). It is well known
that over k, V5 contains 16 lines, whereas V6 contains 27 lines. Let us call V split if
all lines are defined already over k.
One of the results of this paper, having the most direct number-theoretical

meaning, can be stated as follows. As above, put NV(L, H) =
cardtx c- V(k))hi(x) 5 H}. Notice that - KVa is isomorphic to O(1)|Va.

0.3. THEOREM. (a) For a split Y = Vs and any 8 &#x3E; 0 we have

(b) For a split V = V6 and any e &#x3E; 0 we have

Actually, we prove a more precise statement. Namely, the leading term cH2 in
(0.3), (0.4) counts the number of points of height  H on lines whereas the
remainder term is an estimate for Nua«(9(l), H), where Ua = VaB{union of lines}.
This structure of the leading term follows from the Schanuel theorem, and an
estimate for Ua is our main concern.

0.4. Strategy of proof

More generally, let va be a split del Pezzo surface over k of degree
d = K 2 = 9 - a (cf. e.g. [Ma]). Denote by Ua the complement to the union of all
exceptional curves (lines) on Va. For a  4 over  (and for a  3 in general) we
prove directly in section 1 that

The proof uses combinatorial properties of the intersection graph of lines and
arithmetics of partial (finite) heights. Then we represent V5, V6 as a blow up of V3
or V4 and apply an estimate of exceptional heights in terms of anticanonical
heights, using algebro-geometric arguments.
We know of only one result of this type for cubic surfaces previously discussed

in the literature. Namely, C. Hooley ([Ho]) proved by a sieve method that the
number of points of xô + xi + x2 + x33 = 0 over Q with height  H outside of
lines is O(HS/3 + 03B5). However, this surface is not split, so that Hooley’s theorem is
not contained in ours.
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0.5. A perspective

In [BaMa], we proposed the following general notions related to counting
points of bounded height. Let V be a projective variety over a number field k, L
an ample sheaf on E U a quasiprojective subset of K Put

If U(k) is infinite, there exists a unique minimal Zariski closed subset Z in U such
that

Of course, Z may coincide with U. This subset is called the (minimal)
accumulating subset (in U with respect to L). This notion does not depend on the
exact choice of a height hL used to count points.

Repeating this construction, we obtain a sequence of open subsets

such that Zi = ViBVi+1 is the minimal accumulating subset in Vi and a sequence
of real numbers 03B2i = 03B2Vi(L). The sequence {Vi} is called an arithmetical

stratification and 03B2i are called growth orders. If 03B2i = 1, we say that Y has a linear
growth property (with respect to L).

According to the philosophy explained in [BaMa] we expect that if the

ground field is made sufficiently large, then both the arithmetical stratification
and its growth order should be computable in algebro-geometric terms

(although their definitions involve arithmetics). In particular, we expect that for
Fano varieties the arithmetical stratification stabilizes at a finite step, and the
last growth order with respect to - K equals 1 (again, if the ground field is large
enough).
From this viewpoint, what we prove here means in particular that if all

exceptional curves on a two-dimensional Fano variety over Q of degree d  3
are defined over Q, they form the first accumulating subset. Moreover, the
complement has the linear growth property for d  5.

0.6. Plan

The paper is structured as follows. In Section 1, we prove directly (0.5). In
Section 2, we estimate exceptional heights and deduce the Theorem 0.3. In
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Section 3, we discuss the growth orders with respect to other ample sheaves,
complementing the results of [BaMa]. Finally, in Section 4, we derive an

approximation to the linear growth conjecture for anticanonical heights on
rational surfaces obtained by blowing up rational cycles on a projective plane.

1. Finite heights and del Pezzo surfaces of degrees 5 and 6

1.1. Finite heights

Let V be a projective variety defined over k, L an invertible sheaf on it, hL a Weil
height. A choice of an isomorphism L ~ (9(D) allows one to decompose hL into a
product of archimedean and non-archimedean (finite) partial heights: for

x~ VBD, hL(x) = hD,~ hD,f(x), In an Arakelov set up, hD, f(x) is just the product of
the exponentiated intersection indices D, xB over archimedean places v E Mk, f.
We do not want to choose a Z-model and hermitean metrics, so that we will rely
upon the more elementary version of A. Weil’s distributions. In particular, let Di
be the divisor xi = 0 on Pn (see (0.1))). Then

Our basic technique consists in studying finite heights with respect to lines on
the del Pezzo surfaces (it was applied by V. Batyrev in the context of toric
varieties). In order to control the resulting loss of information, we start with
looking more closely at Pn.

Let A be the ring of integers in K, A* the group of units. Choose a family of
ideals a 1, ... , ah c A representing all ideal classes, and put

A* acts diagonally upon An+1prim, and we can identify P"(k) with An+1prim/A*. When
we represent a point by its coordinates we usually take coordinates in An+1prim.
From (1.1) it follows that, for (xo :... : xn) E An+1prim, xi * 0 we have

where di : Pn(k) ~ &#x3E;0 is a finite-valued function. In particular, finite heights are
"almost integers" for any choice of local Weil’s functions (or Arakelov model).
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Then the number of points x with he(l)(x)  H having the same image ri(x) is

bounded by 0(1), if k = Q, and by O(Hi for any e &#x3E; 0, in general.
Proof. For k = Q, (1.2) shows that the knowledge of hdi,f (x) allows us to

reconstruct projective coordinates of x up to a finite bounded ambiguity.
In general, knowing the norm N k/O (Xi), we can reconstruct first the ideal of xi

in A in no more than O(Hi ways. In fact, (xi) divides (Nk/(xi)), and the number
of ideals dividing (N k/O (xi)) is bounded by C(03B5)(Nk/(xi))03B5 (look at the Dedekind
zeta of k).

Fix now a family of ideals (xi) corresponding to a given 17(X). From (1.2) one
sees that a set of such points is a union of a bounded number of subsets

{(x0:03B51x1:03B52x2 : ··· : 03B5nxn)} where (xo :... : xj are fixed, and e, E A* are variable (80
can be killed by the overall multiplication by A*). Now,

The left hand side is bounded by H only if c1H-2(n-1)  |03B5i|03BD  c2H2 for all
i = 1,..., n ; 03BD~M~, and certain ci, c2 &#x3E; 0. From the Dirichlet theorem it

follows that there are no more than 0«Iog H)") units with this property.
Notice that lemma 1.2 is still true if finite heights (1.2) are replaced by

equivalent ones.

1.3. Finite exceptional heights on del Pezzo surfaces

Let now V be a split del Pezzo surface of degree 9 - a over k, Ea the set of
exceptional curves (lines) on Va, Ua = VaB~l~Ea l. Choose a family of finite
exceptional heights hl,f, l E Ea . We may and will assume that they take values in
Z&#x3E;0. Put now

Generally, we compute hl,f(x) as follows. We represent 1 as an infimum (or gcd)
of divisors Di for which hDi, f(x) are known (e.g. by (1.2)), and then

hl,f(x) = gcd(hDi,f(x)).

1.4. LEMMA. If a  3 then the number of points x~ Ua(k) with h-K(x)  H
having the same image ri(x) doesn’t exceed O(1)for k = Q, and O(H£) for any e &#x3E; 0.

Proof. Consider a birational morphism 03C0: Va ~ p2 blowing down pairwise
disjoint lines on Va. Choose three lines Dl, D2, D3 on P2 joining pairwise three
fundamental points of 03C0-1 on P2. For {i, j, k} = {1, 2, 3}, let li = 7r - ’(Di n Dk),
and lfl = 03C0-1(Di) (proper inverse image).
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Then, by functoriality,

where d’i are finite-valued functions. Hence, knowing (x), we can reconstruct
’1(n(x)) with a bounded indeterminacy, and then 03C0(x) with indeterminacy O( 1 ) for
k = Q, and O(H£) for any e &#x3E; 0 generally, in view of Lemma 1.2, where il is a
bound for hO(1)(03C0(x)). But in view of Lemma 2.2 below, one can take for il a fixed
positive power of H.

1.5. REMARK. We shall consider the family of finite heights

as a marking of the vertices of the intersection graph of Ea by positive integers.
The proof of Lemma 1.4 shows that (on the set of points XE U a(k) with
h-K(x)  H)) the total marking can be reconstructed with indeterminacy 0(1),
resp. O(H’), from the marking of any complete subgraph of the form

Fig. 1

This means that for a  4, {li(x)} must satisfy a system of strong constraints.
Some of them are made explicit in the following Lemma.

1.6. LEMMA. (a). If 1 n l’ = QS, then gcd(l(x), l’(x)) is a finite valued function (we
shall express this by saying that 1(x) and l’(x) are almost relatively prime).

(b). Consider a complete subgraph A of Ea of the form
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Then there exist functions

and finite-valued functions di: U a(k) -+ 0*, i = 1, 2, 3, such that

Proof. The first statement is classical, it is due to A. Weil. In order to prove
the second statement, we first notice that any complete subgraph of type A
consists of three degenerate fibers of a morphism 03C1: Va - P’ representing Va as a
conic bundle. Hence we can find three sections s,, s2, S3 of p*(l9(l)) such that

si + S2 + S3 = 0 and 1; u l’ = {si = 01 Primitive coordinates of p(x) with respect
to these three sections define functions 03C3i(x). Formula (1.3) then follows from

(1.2).
We can now prove two main results of this section.

1.7. THEOREM. For V = V3 over an arbitrary number field k we have:

Proof. The intersection graph of E3 is a hexagon (Fig. 1), and

-KV3 = 03A33i=1(li + l’i). Therefore, for x~ U3(k),

Considering {li(x), 1§(x)) as independent integer variables, we see that points x
with h-K(x)  H define O(H(log H)5) markings of E3, whereas every marking
corresponds to O(1) (resp. O( Hf)) points.

1.8. REMARK. For k = Q, in [BaMa] it was proved that

It would be important to know the correct power of logarithm in general.
Furthermore, using the morphism 03C0: V3 ~ P2, one sees that Nu 3 ( - K,

H) a exp(O(1))H, so that 03B2U3(-K) = 1.

1.9. THEOREM. For V=V4 over k = Q and arbitrary e &#x3E; 0, we have
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Proof. We start with choosing finite heights hl,f: U4() ~ Z&#x3E;0, 1 E E4. Rep-
resent U4() as a union of subsets U(’) such that

x E U(’) ~ 1(x) = min {l’(x)}.

Clearly, it suffices to prove the estimate O(H(log H)6) for points in every subset
U(’). Fix 1 = 1. and consider a complete subgraph r of E4 of the form

Fig. 3

Since the automorphism group of the intersection graph of Ea, a  3, is
transitive on vertices, it suffices to exhibit one complete subgraph isomorphic to
r. Representing V4 by P2 blown up at points po, ... , P3, and denoting their
preimages 03BBi, and inverse image of the line joining Pi’ Pj by 03BBi,j, we can describe r
by the following identifications:

Table 1

Using the same model, one sees that - K = 03A35i=1 li. Hence we can weaken the
inequality hK(x)  H to 03A05i-1 li(x)  H, which has O(H(log H)4) solutions.

However, we cannot prove that one can reconstruct x even with indeterminacy
O(H03B5) from ll(x), ... , l5(x). Therefore we shall apply the following trick. Put
l’2(x) = [l2(x)/l0(x)]  1 and weaken the inequality h-K(x)  H to

Consider the members in the I.h.s. of ( 1.4) as independent variables. The number
of solutions of (1.4) is O(H(log(H)5), but now we shall be able to reconstruct x
with desired ambiguity. We shall first explain how to set O(H%.



323

(i) Reconstruction of 16(x), 1,(x). Consider the subgraph of F: (10’ 11, l3, l4, l6, 17),
We can apply to it Lemma 1.4 and obtain the relations (here the assumption
k = Q is used):

Knowing 10, 1,, l3, l4, we can reconstruct l6, 17 in O(03C4(a)) ways where r is the
number of divisors, and a = O(H). Clearly, max(i(a))a 5 H} = O(H% for any
03B5 &#x3E; 0.

(ii) Reconstruction of 12(x)mod lo(x). To do this, consider a different complete
subgraph of Ea, isomorphic to the one of Fig. 2. It is not contained in r. In terms
of the description given at the beginning of the proof it can be identified as (l2, l7;
l4, 11; 10, 03BB03). From the relations

it follows that knowing 17(x), 14(x), 1,(x) one can reconstruct 12(x) mod lo(x) up to
a finite ambiguity. Here we use the fact that 17(x) and lo(x) are almost relatively
prime (Lemma 1.6(a)).

(iii) Reconstruction of x. We can now reconstruct 12(x), because we know
[l2(x)/l0(x)] and l2(x) mod lo(x). And, since we know already the marking of a
hexagon, we can reconstruct x up to a finite ambiguity.
Now we will prove a sharper estimate replacing HE by (log H)6. We are

thankful to Don Zagier for help. We start with a refinement of relations (1.3).
Split Y4 has no moduli, and we can normalise li(x) for x~ U4() in such a way

that quadratic relations of Lemma 1.6 take a canonical form. Choose coor-
dinates in p2 in such a way that n: V4 ~ P 2 blows up points Pi = (1 : 0 : 0),
P2 = (0 : 1 : 0), P3 = (0 : 0 : 1), P4 = (1 : 1 : 1). Let x~ U 3(0). Then 03C0(x) can be
represented by (xl, x2, x3)~Z3prim. Define the following ten integers:
di = gcd(xj, xk), yi = xi/djdk, {i,j,k} = {1, 2, 3}; D = gcdi~k{yidk - ykdi};
zj = |yidk - YkdillD. One can check that they define the marking of E4 by the
respective finite heights. More precisely, with the notation of the Table 1, one
has the following correspondence:

Table 2

The symmetries of this marking are not at all obvious from the direct
construction. Here is the list of all marked subgraphs of the type 0 (Lemma 1.6):
One can directly check that every quadratic relation corresponding to such a
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Fig. 4

subgraph can be written in the form: maximal product of two marks connected
by an edge equals to the sum of two remaining products.
We can call all markings of E4, obtained in this way, standard. In the proof of

Theorem 1.9 we use a majoration of h-K(x) in terms of the respective marking,
but actually we can reconstruct the total anticanonical height:

We leave (1.5) as an exercise to the reader, since we will not use it. We will make
further estimates assuming that the marking {li(x)} is standard.

Returning to the reconstruction procedure (i)-(iii) and writing for brevity h
instead of former li(x) etc. we see that

where ôi = 1 or - 1 because our marking is standard. We first estimate the r.h.s.
by

It remains to show that the r.h.s. sum in (1.7) is O((log H)5).
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Step 1. We prove that

Notice that bi can depend on a, b ; however, it suffices to prove this estimate for
constant 03B4’is in two separate cases:

(i) when b1 = 1, b2 = -1; a &#x3E; b;
(ii) when ô = b2 = 1.

The second case reduces to the first one if one denotes a + b by a’, b by b’, and
observes that a’b’ 5 2n. Now

For a fixed b

where

co(q, s) = card{p(mod s)|pq ~ b(mod s)}

equals d:= (q, s) if d divides b, and 0 otherwise. We continue to estimate (1.9):

where 03C3-1(b) = 03A3d/b 1/d. Now (1.8) becomes
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Step 2. Now apply Abel’s summation:

2. Exceptional heights

In this section, we shall prove the following inductive estimate (cf. 0.5 for

notation).

2.1. PROPOSITION. Assume that for a given ground field k some a  2 and all
split del Pezzo surfaces Va of degree 9 - a over k we have

where Ua = VaB{all lines}, and /3a is a constant. Then the same is true for all split
del Pezzo surfaces va + 1 with /3a replaced by 03B2a + 1 = (9 - a)/(8 - a)03B2a.

For example, if we know that fi, = 1, we deduce that 03B25 = 5/4 and fl6 = 5/3;
and if we know only that fl3 = 1, we get /34 = 6/5, and /35 = 3/2, /36 = 2. Thus the
Theorem 0.3 follows from the Proposition 2.1 and the results of the previous
section.

We start with the following auxiliary result.

2.2. LEMMA. Let a  2. Denote by {l1,..., le(a+ 1)} the set of all exceptional
curves of the first kind (lines) on a del Pezzo surface V = Va+1 of degree 8 - a. The
class of their sum in Pic(V) equals (e(a + 1)/(8 - a))( - Kv).

Proof. Consider the formal symmetry group Wa+ 1 of the configuration of
lines {li}, that is, the group of the permutations of lines, conserving their
intersection indices. From the classical identification of this group with a Weyl
group, it follows that the subgroup of Wa+1-invariant elements is cyclic, with
generator - K. In order to identify the coefficient, it suffices to intersect both
sides with - K.

2.3. COROLLARY. Choose some Weil heights h-K and hli for all i. Then there
exists a constant A such that for every x~ Ua+ 1(k) one can find a line 1 = 1(x) with
the property
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Proof. From the Lemma 2.2 and general properties of heights it follows that

Now (2.1) is obvious.
Notice that the same argument shows the existence of another exceptional

height h", for which

so that exceptional heights have infinitely often the same growth order as ample
heights.

2.4. Proof of the proposition 2.1. Fix k, a split del Pezzo surface Va+1, and some
heights hK, hji on Va+1(k). Corollary 2.3 allows us to define a partition of U(k)
into a finite number of subsets Ul numbered by lines 1 such that (2.1) is valid in
Ul. It suffices to prove that the number of points of ( -Ka+1)-height  H in VI is
O(H03B2a+1+03B5) where Pa+ 1 = ((9 - a)/(8 - a))03B2a, Ka+1 = K(Va+ 1). Embed 1 into a

maximal system of pairwise disjoint lines on Va+1:l1,...,la, la+1= 1 (This is
always possible: cf. [Ma]). Denote by n : V,,,,, 1 ~ P2 the morphism which blows
down this system. Let A be the class of n*( O( 1)) in Pic(Va+1). Choosing all
necessary Weil heights, we have for xe Ul:

where 03C3: Va+1 ~ Va blows down la+1 = 1 and Ka is the canonical class of Va.
Hence for x~Ul

Finally, by assumption, the number of points 6(x) whose ( - Ka)-height is

bounded by H, does not exceed O(H03B2a+03B5). This finishes the proof.

3. Growth orders with respect to other ample sheaves

Let V = Vr be an arbitrary split del Pezzo surface over a numberfield k,
represented as a result of blowing up r  8 points in P2(k), U = Ur the
complement to the union of lines, L an arbitrary ample invertible sheaf on V,.
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Denote by a(L) the (unique) rational number such that a(L)[L] + Kv belongs to
the boundary of the cone of effective elements of Pic(V). In [BaMa], the

following theorem was proved:

3.1. THEOREM. a(L)  03B2U(L)  03B1(L)03B2U(- K).

It follows that for k CD and r  4, we have 03B2U(L) = a(L).
In [BaMa], we have also given an explicit formula for calculation of a(L), in

terms of a fixed representation n : Vr ~ P2 blowing down r lines. Namely, let
A = [n*«9(l»]. Denote by l1,...,lr the classes of blown down lines in Pic(V),
L = A039B-B1l1- ... -Brlr.

Consider all classes E = aA - b1l1 - ··· - brlr with the following properties:
E is either a preimage of a line on ¡p2 under a morphism blowing down a
maximal system of r pairwise non-intersecting exceptional curves on E or a
preimage of a generator of a quadric under a morphism blowing down a
maximal system of r - 1 pairwise non-intersecting exceptional curves on E
Then

Clearly, all classes E are contained among the solutions of the following system
of diophantine equations:

for which a &#x3E; 0 and bi  0.
We shall give below the complete list of solutions of (3.2) (with r = 8, and b

numbered in decreasing order). The table in [BaMa] contained only solutions
with r  7, and several solutions with 8=0 were missing.

3.2. Solving 3.2. This system for r = 8 is equivalent to the following one:

From the first two equations it follows that
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Hence we can solve (3.2) in three steps:

(i) List all (xÿ), ... , x(’» for which

and xjmod 3 do not depend on j.
(ii) Find a 10-tuple (a(i); b(’), b(’» corresponding to each entry of the list,

with x(i)j = a(i) - 3b(i)j; leave only those for which 3a(i) = 03A3b(i)j.
(iii). In each progression (a(i) + 3N, b(i)1 + N,..., b(i)9 + N) leave only solu-

tions with positive a and non-negative b’s, one of which equals 2 + e. Delete
b = 2 + 8 and renumber b’s in decreasing order.

3.3. All solutions to (3.2) can be used in (3.1). To prove this one can argue as
follows.

First, check directly that all classes E corresponding to the solutions of (3.2)
are effective. To establish this, it suffices to present every E as a sum of

exceptional classes listed in [Ma], Proposition 26.1.
Second, from Riemann-Roch it follows that dim|E|  1 + e. Therefore, every

point 1 of the closure of effective cone satisfies (E· l )  0 for every E.

Hence, even if among E’s there were some hyperplanes not contained in the
set of walls of this cone, they would not contribute into (3.1).

Solutions of (3.2) with e = 0
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Solutions of (3.2) with = 1
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4. An approximation to the linear growth conjecture

In this section, we prove the following result. Consider a rational surface V
which is obtained from p2 by blowing up a k-rational cycle z, n: V - p2 (z may
have infinitely near components).

4.1. THEOREM. For every £ a 0, there exists an integer N &#x3E; 0, an open Zariski
dense subset U c V, a constant c &#x3E; 0 and a partition

with the following properties

(a) for all a, card U (%(k)  N.

(b) for all et,

max hO(1)(03C0(x))  c min hO(1)(03C0(x)),
JCE a a

(c) one can choose a point x« in each subset in U03B1(k) in such a way that the series

will converge.

Comment. For a del Pezzo surface V, we expect ([BaMa]) that (3u( -Kv) = 1.
This would follow from the Theorem 4.1, if we could take N = 1. On the other

hand, our statement holds even without assumption that V is del Pezzo. Its main
interest probably lies in the method of proof, which is one more variation of the
general idea that "heights with respect to the exceptional divisors should be
small in average".

4.2. PROOF. Consider a large integer M and M elements id = gl, ... , 9m of
Autk p2 in a sufficiently general position. Put zi = gi(z) where z is the cycle we
have blown up to obtain V. Denote by W the result of blowing up ~zi, and by v
the result of blowing up zi. Obviously, gi induces an isomorphism of V = V, with
Jti. Moreover, there is a canonical birational morphism fi: W ~ Vi.

In order to shorten notation, we shall consider inverse image maps fi on Pic-
groups as embeddings, and f themselves as identifications outside their

fundamental sets. Let Ki be the canonical class of Vi (in Pic W) and A the inverse
image of OP2(1). Put Zi = 3A + Ki.
Denote by P = P(M) the smallest integer for which the linear system


