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1. Introduction, statement of results and conjectures

The purpose of this paper is to determine the dimension of the Chow variety d,r
parametrizing curves of degree d in Pr. Of course, this variety has many
components; by its dimension we mean as usual the maximum of the dimension
of its components. The answer (stated precisely in Theorem 3 below) is not
unexpected: except for a few exceptional cases of low degree, the component of
the Chow variety having maximal dimension is the component whose general
member is a plane curve, so that

This result is, however, a by-product of a much more interesting investigation,
and one that is not yet complete. This concerns the question: "What is the
largest dimension of a component of d,r whose general member is an

irreducible, nondegenerate curve in Pr, and which components achieve that
dimension?". Here is what we have proved:

2022 in Pl, the maximum dimension of a component of the Chow variety d,3
whose general member is irreducible and nondegenerate is achieved by the
component parametrizing curves on a quadric surface of balanced bidegree
(that is, either complete intersections with the quadric or residual to single
lines in complete intersections). For d  8, this is the unique component of
that dimension.

2022 in pr with r  4, for sufficiently large d the maximum dimension of a
component of the Chow variety d,r whose general member is irreducible
and nondegenerate is achieved by a component parametrizing curves lying
on a rational normal scroll and having certain classes in the Picard group of
the scroll. By contrast, for low values of d the maximum dimension is
attained by the component parametrizing rational curves. We conjecture
that one of these two components always achieves the maximal dimension,
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and that these are the only components to do so. We can at present prove
this for small values of d and for large values of d; there is an intermediate
range where the conjecture is not yet proved.

To make these statements more precise, let us introduce some notation and
terminology. To begin with, we define the restricted Chow variety d,r to be the
union of those irreducible components of the Chow variety rc d,r whose general
point corresponds to an irreducible, nondegenerate curve in P". As a first

approximation to the dimension of a component of d,r, we define the Hilbert
number h(d, g, r) to be

This number arises in several ways. To begin with, it is the Euler characteristic
of the normal bundle Ne of a smooth curve C of degree d and genus g in Pr. Since
the space HO(N c) of global sections of NC is the Zariski tangent space to the
Hilbert scheme at the point [C], the Hilbert number is an a priori estimate on
the dimension of a component of the Hilbert scheme through C. The Hilbert
number may also be realized as the sum of the Brill-Noether number

p = g - (r + 1Kg - d + r), the dimension 3g - 3 of the moduli space of abstract
curves of genus g, and the dimension (r + 1)2 - 1 of the group PGLr+1 of
automorphisms of P"; this is another reason why h(d, g, r) is a naive estimate for
the dimension of the Hilbert scheme.

In fact, from the latter point of view we can see that every component E of the
restricted Chow variety d,r whose general member has geometric genus g has
dimension at least h(d, g, r). To see this, suppose that [Co] is a general point of the
component E of C¡d,r; let g be the geometric genus of Co. The standard
determinantal representation of the variety of linear systems on curves of genus
g shows that every component of the variety W(d, g, r) parametrizing pairs (C, D)
with C a smooth curve of genus g and -q a linear series on C has dimension at

least 3g - 3 + p. Since E is birational to a PGLr+ 1-bundle over a component of
G(d, g, r), the basic dimension estimate follows. (Brill-Noether theory also tells us
that for any d, r and g such that 03C1  0 and r  3 there exists a unique component
Of Wd,, dominating the moduli space Mg, and that this component has dimension
exactly h(d, g, r).) We can also see the inequality dim(03A3)  h(d, g, r) from the
normal bundle point of view, at least in case the general point [C] ~ 03A3
corresponds to a smooth curve: Jonathan Wahl has pointed out to us that a
modification of Mori’s argument in §1 of [M] shows that the dimension ouf 19 at
such a point (C) is at least the différence hO(N c) - h1(N c) = h(d, g, r). (Indeed, the
same argument can be made when C is singular, but we have to be careful what
we mean by the normal bundle NC; and the bound we get is in terms of the
arithmetic genus g’ of C and so is weaker.)
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By way of terminology, we will call an irreducible component E of the Chow
variety general if its dimension is exactly h(d, g, r), where g is the genus of a
general member of 1:; we will call it exceptional if dim(03A3) is strictly greater than
h(d, g, r).
The next objects we want to introduce are the curves that, as we will show,

move with the greatest degree of freedom among irreducible, nondegenerate
curve of degree d in Pr when d is large. To do this, let X c Pr be a rational
normal scroll. The Picard group of X is then generated by the class H of a
hyperplane section, together with the class F of a line of the ruling of X. In these
terms, we have the formula for the canonical bundle of X:

We can use this to calculate the dimension of the linear system |C| associated to
an irreducible nondegenerate curve C - aH + eF on X. It’s not hard to check
that the line bundle OX(C) has no higher cohomology, and so by Riemann-Roch

Noting that the degree d of a curve C - aH + eF on X is 03B1(r - 1) + 03B5, we may
write

and substituting we find that

This may be maximized for given d by taking e between -1 and r - 2; this
motivates the

DEFINITION. We say that a curve C ci [?’ is a Chow curve if it lies on a
rational normal scroll X and has class

with -
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Note that if d is not congruent to -1 mod r - 1, e is determined by d and so
we see that the family of Chow curves is irreducible. If d ~ -1 (mod r-1), on
the other other hand, there will in general be two components of this family (if
r = 3 there will only be one because of the ambiguity in the choice of ruling).

It should be observed that Chow curves are not in general Castelnuovo
curves - that is, curves of maximal genus for their degree - even though the
description is similar and indeed the two classes overlap substantially. Indeed, a
Castelnuovo curve may be characterized as a smooth curve having class
C - aH + vF on a rational normal scroll, with - (r - 2)  v  1. Thus, a Chow
curve is Castelnuovo if and only if e = - 1, 0 or 1; but in the remaining cases it
still has very close to the maximal genus for an irreducible, nondegenerate curve
of degree d in P": the genus of the Chow curve is just E - 1 less than the genus
03C0(d, r) of a Castelnuovo curve of the same degree.

In particular, it follows from the result of [EH] for large d that any curve of
that genus and degree must lie on a scroll, so that Chow curves will form an
open subset of an irreducible component of the Chow variety (or of two
components if d ~ -1 mod (r - 1)).

If d &#x3E; 3r/2 - 1, a general Chow curve C will lie on a unique scroll X (to see
this, note that except in the cases d = 2r - 3 or 2r - 2 and e = - 1 or 0, X may
be characterized as the intersection of the quadrics containing C; in the two
exceptional cases as the union of lines joining points conjugate under the
hyperelliptic involution on C). We may thus calculate the dimension of the
family of Chow curves of degree d: it is the dimension (calculated above) of the
linear system |OX(C)| associated to a Chow curve C on a scroll X, plus the
dimension r2 + 2r - 6 of the family of rational normal scrolls in pro We will call
this number

the Chow number. Again, bear in mind that this is known to be the dimension of
a component of the Chow variety containing Chow curves only for d large; for
small d it may not be true that a deformation of a general Chow curve is a Chow
curve (for example, if d = 3r - 4 and 8 = r - 2 the Hilbert number exceeds the
Chow number by 2r - 6, so that the Chow curves cannot be dense in a
component of the Chow variety d,r for r  4). At present when r  4 we do not
know for which values of d (and e, where there is ambiguity) this is the case. This
does not affect our results, since in the case r  4 they apply only for large d; but
in order to settle the remaining unknown cases this will have to be answered.
With all this said, we can now describe our results.



295

1. The situation in P3

First, observe that the Hilbert number h(d, g, 3) = 4d is independent of g, i.e., all
general components of the Chow variety of curves of degree d have the same
dimension. The Chow number ô(d, 3) is less than or equal to 4d for d  7, strictly
greater when d  8. This suggests the

THEOREM 1. For d  7 every component of the restricted Chow variety d,3 has
dimension h(d, g, 3) = 4d. For d  8, the dimension of d,3 is b(d, 3), and the unique
component of this dimension is the component containing Chow curves.

Comparing the dimension max(4d, 03B4(d, 3)) of d,3 to that of the family of plane
curves of degree d in P3, we have the

COROLLARY. For d &#x3E; 1, the dimension of the Chow variety d,3 is

3 + d(d + 3)/2; and for d  4 the unique component of this dimension is the

component whose general member is a plane curve of degree d.

2. The situation in pr, r a 4

The picture here is somewhat more complicated, and our results only partial. To
begin, we look at the restricted Chow variety d,r. We note in this case that the
Hilbert number h(d, g, r) is a decreasing function of g; among general compo-
nents of C¡d,r the one of maximal dimension is the one parametrizing rational
curves, which has dimension

For low values of d - specifically, for d  2r - the normal bundle of any

irreducible, nondegenerate curve C c P’ is non-special; thus every component
of Wd,, is general and the dimension of Wd,, is h(d, 0, r). On the other hand, for
large d the Chow number 03B4(d, r) is much larger, and this we claim is the

dimension of cid,r’ Precisely, we can prove
THEOREM 2. Let r  4. For d  2r, the dimension of every component of the
restricted Chow variety d,r whose general member has geometric genus g is

h(d, g, r)  h(d, 0, r) = (r + 1)(d - r) - 4, and the unique component of dimension
h(d, 0, r) is the one parametrizing rational curves. For

the dimension of d,r is 03B4(d, r), and the only components of this dimension are the
ones containing Chow curves.
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On the basis solely of "experimental evidence", it seems likely that this
behavior holds as well in the intermediate range of degrees not covered in the
statement of Theorem 2. Specifically, we make the

CONJECTURE. For any d, the dimension of the restricted Chow variety is

dim(d,r) = max(h(d, 0, r), 03B4(d, r)).

Moreover, (assuming r  4) any component of maximal dimension in d,r
parametrizes either rational curves or Chow curves.
The situation with regard to the unrestricted Chow variety CCd,r is likewise

slightly more complicated for r  4 than in the case r = 3. In both cases the
largest dimension of a component whose general member is irreducible is that of
the component parametrizing plane curves; but in P" for low values of the degree
d components of CCd,r whose general member is reducible may have larger
dimension than this. To state this precisely, we have

THEOREM 3. The dimension of the Chow variety is given by

and the general member of a component of this dimension is either a union of d lines
or a plane curve.

Conjectures

The discussion so far is concerned only with Chow varieties parametrizing
curves. It is natural to ask what may be true for Chow varieties parametrizing
higher-dimensional subvarieties of projective space. As in the curve case, we can
break up the problem by introducing the restricted Chow variety: if d,m,r is the
Chow variety of varieties of degree d and dimension m in P", we let d,m,r be the
union of the irreducible components of d,m,r whose general member is

irreducible and nondegenerate. There are then statements clearly analogous to
what is stated above and proved below for the Chow varieties of curves of large
degree. Thus by analogy we may make the

GUESS. Given r and m, for all sufficiently large d

(i) The components of maximal dimension of the restricted Chow variety
d,m,r parametrize divisors on rational normal scrolls X ~ Pr of dimen-
sion m + 1; and

(ii) The component of maximal dimension of the Chow variety d,m,r
parametrizes hypersurfaces in linear spaces Pm+1 pr.
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What is likely to go on in low-degree cases is less clear. One obvious candidate
for a component of maximal dimension in the restricted Chow variety would be
the component parametrizing projections of rational normal scrolls (the ones
parametrizing projections of veronese varieties are slightly smaller). These do in
fact seem to be the largest in many cases, but not always - for example, in the
first nontrivial case, surfaces of degree r in Pr, projections of rational normal
scrolls move in a larger-dimensional family than do del Pezzo surfaces for any
r  5, but for r = 4 the del Pezzos do better. You might counter this by saying
that in case r = 4 the degree 4 is large enough that the conjecture above takes
over (del Pezzos in P4 are divisors on rational normal threefold scrolls, which in
this case are just quadrics of rank 4 or less); but the situation remains unclear.
Similarly, for the unrestricted Chow variety, that the component whose general
member is a union of m-planes is largest seems a natural guess.
A note about the techniques used in this paper. They are very simple, even

though the arithmetic gets complicated at points. Basically, we know the
dimension of the family of Chow curves, and we know that they are the largest-
dimensional family of curves of given degree lying on scrolls. To prove our
results, then, it suffices to show that any curve moving in a family of dimension
greater than 03B4(d, r) must lie on a scroll. We do this by looking at the normal
bundle N of C: for pi,.... Pr - 2 E C general points we exhibit an exact sequence

where M ~ KC(3)(- 03A3pi); and we use this sequence to bound the dimension
h°(N) of the space of global sections of N in terms of the genus of C. (See also the
discussion of Lazarsfeld’s Lemma in [Ein] for an application of a similar exact
sequence for the restricted tangent bundle of a projective curve.) To finish, we
invoke a result of Halphen and its generalization by Eisenbud-Harris to the
effect that a curve in p3 (respectively, Pr) of sufficiently high genus relative to its
degree must lie on a quadric surface (resp., a scroll).

Finally, one note about the Chow variety and the Hilbert scheme. We have
chosen to state our results in terms of the Chow variety, even though most of our
techniques relate to the geometry of the Hilbert scheme. In the present
circumstances: the irreducible components of the Chow variety correspond to a
subset of the irreducible components of the Hilbert scheme. There are two

differences, however. The first is simply a matter of convention: the Chow variety
rcd,r parametrizes all curves of degree d, while the Hilbert scheme is broken up
into subschemes according to the genus of the curves parametrized. Since we are
concerned with the maximal dimension of a component of the family of curves of
degree d irrespective of genus, it seemed natural to express our results in terms of
the Chow variety.
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The second reason for working with Chow rather than Hilbert is that the
Hilbert scheme will have additional components whose general members are
not of pure dimension (e.g., consist of the union of a reduced curve and a zero-
dimensional subscheme). For all we know these components may have larger
dimension than those corresponding to components of the Chow variety.

2. Irreducible, nondegenerate curves in P3

In this section we will deal with the case of irreducible, non-degenerate space
curves; our goal will be to prove Theorem 1 above. The first part of the
statement of Theorem 1 - that for d  7 every component of the restricted Chow

variety % 3 is general - is relatively easy. We recall first Clifford’s theorem (that
if C c pr is a nondegenerate curve of degree d  2r then OC(1) is nonspecial) and
the fact that the normal bundle N of such a curve is a quotient of a direct sum of
copies of 19c(l) (so that if OC(1) is nonspecial then N is). It follows in case r = 3
that except for the case d = 7, g  5 the normal bundle N of the curve C c p3
corresponding to a general point in any component of cid, 3 is nonspecial, and the
remaining cases d = 7 and g = 5 or 6 can be checked directly (these are curves
on quadrics). We are thus in the following situation:

Let X be any irreducible component of the restricted Chow variety cid,3 with
d  8, and let Co ~ P3 be the curve corresponding to a general point of 1:; let g
be the geometric genus of Co. Our object is to show that if the dimension of 1: is
at least b(d, 3), then Co is a Chow curve. Note that since we have already checked
that the component of cid, 3 parametrizing Chow curves has maximal dimension
among components whose general member lies on a quadric, it is sufficient to
show that Co lies on a quadric.
To do this, let x: C ~ Co ~ P3 be the normalization of Co, let g be the genus of

C, and let N = Nc/p3 the normal sheaf of the map C ~ p3 - that is, the quotient
of the pullback x*Tp3 by the image of Tc under the differential map
duc : TC ~ 03C0*TP3. Now, since [C] is a general point of 1:, every deformation of Co
is equisingular; this means in particular that every deformation of Co comes
from a deformation of the map 03C0: C - P3, and hence that the dimension of the
Chow variety at [Co] is at most the dimension of the space of global sections of N:

We may thus assume that h0(N)  l5(d, 3).
The argument is now very straightforward, subject to two simplifying

hypotheses: that Co is immersed (so that the normal sheaf N is a vector bundle)
and that the linear series l(9p3(1)llc is complete - that is, the map C ~ Pl does not
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factor through a nondegenerate map C -+ pr for r &#x3E; 3. We will give the

argument first in case these two hypothesis are satisfied, and then consider the
cases in which they are not.

In this case, we claim that for a general point p E C there exists an exact
sequence for the normal bundle N:

where L ~ OC(1)(p) and correspondingly M ~ Kc(3X-p). To exhibit such a
sequence is simple: just choose H c P3 a general plane, choose coordinates Z on
P3 with H given by Zo = 0 and the image p = 03C0(p) = [1, 0, 0, 0], and consider
the vector field

This is the vector field on P3 associated to the one-parameter subgroup

flowing from H to p. As a vector field on p3, it is zero exactly along H and at p;
its restriction to C thus gives rise to a section of the normal bundle N vanishing
on the divisor H · C + p, plus at any points q E C whose tangent line passes
through p. If p is chosen generically, there will be no such points ([K]), so that
the subbundle L c N spanned by this section will be isomorphic to OC(1)(p), as
desired.

We can use the exact sequence (1) to estimate h°(N). To begin with, note that
M ~ KC(3)(-p) is nonspecial. We may thus assume the line bundle Oc(l) is
special (otherwise we would have hl(N) = 0 and dim(03A3) = 4d). Since p is general
it follows that

Next, we have
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Using our hypothesis that this is greater than or equal to the Chow number

if d is even; and

if d is odd.

we arrive at the inequality

so that

At this point we may use a classical result of Halphen [Hal] (see also [GP] and
[Har] for modern treatments), which says that if a curve Co ~ P3 does not lie on
a quadric, then its geometric genus g satisfies

with equality holding (in the sense that g is equal to the integer part of the right
hand side) only if Co is a complete intersection with a cubic surface, or residual
to a line or a conic in a complete intersection with a cubic surface. Comparing
the two inequalities (2) and (3), we see that we have a contradiction whenever
d  13. In the remaining cases 8  d  12, we can list the allowable values of g:

At this point, we can dismiss all but one of the possibilities by using the strong
form of Halphen’s result to deduce that, except in the case d = g = 9, Co must be
residual to a plane curve in a complete intersection with a cubic surface S. The
dimension of the family of such curves may be readily computed and seen to be
strictly less than b(d, 3) in each of the above cases; alternately, since the cubic
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surface S must be smooth for a general such Co, the exact sequence

associated to the inclusion of Co in S reads

We thus have

since 3d  2g - 2 in all the above cases. The remaining case d = g = 9 can be
handled similarly: such a curve Co must, by the Riemann-Roch formula applied
to the line bundles &#x26;c(3) and &#x26;c(4), lie on a cubic surface S and on a quartic
surface T not containing S; the residual intersection of S and T will be a twisted
cubic curve. Again, the dimension of the family can be worked out directly, or we
can use the fact that S is smooth for a general such Co to obtain an exact
sequence as above and conclude that in fact E has dimension 4d.

We have thus established our result in case Co is immersed and

h°(C, O(1)) = 4. We may also deal with the case of Co immersed and
h°(C, O(1)) &#x3E; 4 in pretty much the same fashion. In this case, Co is the regular
projection of a nondegenerate, linearly normal curve Co c pr, r a 4 (here
"regular" means with center of projection disjoint from the curve Co). This
means that the first inequality (2) above is weakened by r - 3: we have
h0(OC(1)(p)) = g - d + r - 1 rather than g - d + 2, so that instead of (2) we
have

On the other hand, since Co is birational to an irreducible, nondegenerate curve
of degree d in P", we may apply Castelnuovo’s bound on the genus to conclude
that

where e = d(mod r-1) and -r + 2  03B5 ] 1. This formula is equivalent to the
one given on page 87 of [EH] though the e here is not equal to the e there; it is
derived by writing the class of a curve C of degree d on a 2-dimensional scroll as
C ~ ((d - e)l(r - 1))H + eF, where F is the ruling, and maximizing the formula
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for the genus of this class, given d. For example, if r = 4, the two inequalities
imply

and

which is a contradiction for any d. As r increases by 1, moreover, the first of these
two inequalities is weakened by 1; since 03C0(d, r + 1)  03C0(d, r) - 1 for all r and
d  r, the contradiction holds for all r  4 as well.

Finally, if C - P3 is not an immersion the same argument applies once we
make one additional observation. In this case the normal sheaf N of the map 03C0

has a torsion subsheaf Ntors supported at the points of C lying over the cusps of
Co. We still have, as before, an exact sequence

But now we cannot simply use the fact that cl(M) &#x3E; 2g - 2 to deduce that
h0(M)  cl(M) - g + 1: M will have torsion, and the quotient M/Mtors may be
special, so that

The key observation that saves us here is one made by Arbarello and Cornalba
[AC]: that the torsion sections of the normal bundle N do not give rise to
equisingular first-order deformations of the map ’Tt. Since Co is presumed to be
general in a component E of the Hilbert scheme, all first-order deformations of it
are equisingular. It follows then that the space of sections of N coming from the
tangent space to the reduced Hilbert scheme does not intersect the subspace
H0(Ntors), so that

But since deg(M/Mtors)  3d + 2g - 3, we have h0(M/Mtors)  3d + g - 2, and
the argument now proceeds exactly as before.


