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Abstract. The notation of a (non-commutative) regular, graded algebra is introduced in [AS]. The
results of that paper, combined with those in [ATV1, 2], give a complete description of the regular
graded rings of global dimension three. This paper considers certain algebras that were defined by
Sklyanin [Sk 1, 2] in connection with his work on the Quantum Inverse Scattering Method. We
prove that these Sklyanin algebras are regular graded algebras of global dimension four, and are
Noetherian domains. Moreover, we show that much of the machinery developed in [ATV] to deal
with 3-dimensional algebras has an analogue in dimension four.
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Introduction

0.1. Fix once and for all an algebraically closed field k of characteristic not equal
to 2. Throughout this paper, a graded algebra A will mean a (connected) N-
graded algebra, generated in degree one; thus A = ~i0 Ai, where Ao = k is
central, dimk Ai  oo for all i, and A is generated as an algebra by A1. We will be
interested in rings that satisfy the following notion of regularity.

DEFINITION. A graded algebra A is regular of dimension d provided that

(i) A has finite global homological dimension, gldim A = d;
(ii) A has finite Gelfand-Kirillov dimension, GKdim A  oo, in the sense of,

say, [KL]; that is, there exists p E Il such that dim An  n° for all n.
(iii) A is Gorenstein; that is, ExtqA(k, A) = 03B4d,qk. Equivalently, there exists a

projective resolution

of the trivial left A-module k, such that the dual complex 0 ~ P*0 ~ ... ~ P*
is a (deleted) projective resolution of the right module kA. Here,
P* = HomA(P, A).

The papers [AS] and [ATV1, 2] give a complete description of the regular
graded algebras of dimension 3. In doing so, they provide some new and
interesting examples of non-commutative Noetherian rings and develop inter-
esting techniques for studying these rings.
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0.2. In [Sk 1, 2], Sklyanin considers the following class of algebras. Let a, fl, y E k
satisfy

The Sklyanin algebra S = S(a, fi, y) is the graded k-algebra with generators xo,
xl, x2, X3 of degree one, and relations fi = 0, where

Sklyanin’s interest in these algebras arises from his study of Yang-Baxter
matrices and the related "Quantum Inverse Scattering Method" (called the
Quantum Inverse Problem Method in [Sk]) as these algebras provide the
general solution to this method corresponding to Baxter’s simplest examples of
Yang-Baxter matrices. Among other questions, Sklyanin raises the problem of
describing the Hilbert series Hs(t) = 03A3i0 (dim Si)t’.
0.3. The main result of this paper is the following fairly complete description of
the structure of S(a, j8, y).

THEOREM. Assume that (a, fi, yl is not equal to {-1, + 1, yl, {03B1, -1, + Il or
{+1, 03B2, -1}. Then:

(i) S is a regular graded algebra of dimension 4.
(ii) Hs(t) = 1/(1 - t)4 is the Hilbert series of a commutative polynomial ring in 4

variables.

(iii) S is a Noetherian domain.

For the other values of a, 03B2, y, the ring S has many zero-divisors.

For generic values of {03B1, 03B2, 03B3}, part (ii) of the theorem has been proved by
Cherednik [Ch, Theorem 14], by regarding S as a deformation of the graded
analogue of U(so3) (see (1.6) for more details). Some of part (i) of the theorem,
again for generic values of (a, 03B2, yl, has been proved in [OF1, OF2].
0.4. Assume that S satisfies the hypothesis of Theorem 0.3. In order to prove
that S is regular we examine the Koszul complex (K. (S), d), as defined in [Mal]
or [Ma2]. In the terminology of [AS], this is a potential resolution of sk. This
Koszul complex is studied in Section 4 and we prove there that it is a complex of
free S-modules of the following form:

The right hand end, S(6)  S(4) .4 S  sk ~ 0, of this sequence is the natural
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exact sequence obtained from the generators and relations for S. Thus the map
-x denotes right multiplication by the vector x = (Xo, Xl, X2, x3)T, while M is a
matrix obtained from the defining relations f . Moreover, each map is graded of
degree one. Once one has proved that (0.4.1) is exact, this gives a simple
recursion formula for dim Si, and hence determines those dimensions. Unfor-
tunately there seems to be no simple way to prove that the Koszul complex is
exact, and no simple way to determine dim Si. Indeed, some explicit com-
putations suggest that there is no easily described basis for the Si and, in
particular, that S will not have a PBW basis, in the sense of [Pr]. Thus there
seems to be no direct method for proving that S is regular.
The same problem occurred in [AS]. For certain of the three dimensional

algebras that they constructed, there was also no canonical basis, and they were
unable to prove regularity. Thus, one of the main aims of [ATV1] was to
complete the results of [AS], by showing that these rings were indeed regular.
The method, however, was rather indirect. This involved using the defining
relations of the given algebra A to construct a certain projective variety, and
then to use the geometry of that variety to construct and describe a factor ring B
of the algebra A. This factor ring was then exploited to give sufficient

information about A to prove exactness of the Koszul complex, and hence
establish regularity.
The approach of [ATV1] will be used in order to prove Theorem 0.3. This will

also show that many of the basic results of [ATV1] have an analogue in
dimension 4 (see (5.6) for more details).

0.5. Some of the results in this paper depend upon explicit computations that
tend to obscure the ideas involved in the proof. Thus, we will devote the rest of
this introduction to an outline of the strategy behind the proof of Theorem 0.3.

Consider the condition

If {a, fi, 03B3} do not satisfy this condition, then it is fairly easy to describe S(a, 03B2, y)
directly (see Section 1) and so for the rest of this introduction we assume that
{03B1,03B2, yl satisfy (0.5.1). To each of the defining relations f = 03A3aijkxjxk, one
associates a multihomogeneous form

The set of zeroes of {i: 1  i  6} is a subvariety F c P3  p3. Let 03C0i, for i = 1,
2, denote the two projections Pl x p3 -+ p3 and write Ei = 03C0i(0393). In Section 2 we
prove:

LEMMA. If {03B1, 03B2, 03B3} satisfy (0.2.1) and (0.5.1), then:

(i) El is the union of an (irreducible, non-singular) elliptic curve E and four points.
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(ii) The maps 03C0i|0393 provide isomorphisms F --+ Ei.
(iii) The natural identification of nl(p3 x (3) with n2(p3 x (3) also identifies El

with E2. Thus Q = n2 0 n¡l is an automorphism of E.

Let £f = i*OP3(1) be the ample line bundle associated to the embedding
i: E ~ P3. Thus, associated to the Sklyanin algebra S(a, 03B2, y) one has the
geometric data

àF = (E, 03C3, 2).

0.6. The main technique of this paper is to exploit this geometric data. First,
define Ln = L ~ L03C3~··· (8) 03C3n-1 and set B" = H°(E, Ln), where Bo = k.
Next, define the geometric ring B = B(a, 03B2, y) = (D n "0 = 0 Bn, where the multiplica-
tion map Bn  Bm ~ Bn+m is obtained from the natural isomorphism
Yn 0 ~ Ln+m. Algebraic-geometric methods allow one to understand B
and, in particular, to prove the following result (see Section 3).

PROPOSITION. If {03B1, 03B2, 03B3} satisfy (0.2.1) and (0.5.1), then B satisfies:

(i) dim Bo = 1 and dim B" = 4n for all n ] 1.
(ii) B is a graded domain, generated by B,, with defining relations in degree 2.

(iii) For any n  0 and g c- Bn, the socle, Soc(BIgB), is zero.

0.7. It is implicit in the construction of B that Si and Bi are isomorphic and that
this induces a ring homomorphism ~:S ~ B. By Proposition 0.6(ii), ~ is

surjective and hence, by part (i) of the proposition, B ~ SI(fllS + n2S) for some
03A91, 03A92 E S2. In fact, the ni are central elements of S. These observations, together
with Proposition 0.6 and a careful analysis of the Koszul complex (0.4.1), are
sufficient to prove parts (i) and (ii) of Theorem 0.3. Part (iii) of Theorem 0.3 then
follows from the results in [ATV1, 2]. See Section 5 for the details.

1. Degenerate cases

1.1. This section discusses certain degenerate values of {03B1, fi, 03B3} for which the
analysis of the rest of the paper does not hold. In particular, we find values of (a,
fi, 03B3} for which the Sklyanin algebra has zero-divisors and show that, for certain
other values of these parameters, S is an iterated Ore extension. In the latter

case, S maps onto the quantized enveloping algebra U q(sI2(k)).
For many computations it is useful to rewrite the condition a + fl +

y + afly = 0 as

1.2. Suppose that 03B3 = -03B2 ~ 0. Then the defining relations for S can be

rewritten in a particularly simple form. Write t = JP for a fixed square root of fl
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and let

and

Therefore [K +, YjJ = T it[K +, Y±]+. It is now easy to obtain the following
result.

as above. Then

and

1.3 COROLLARY. Assume that f3 = -1 and y = + 1, and set t = 03B2 = i.
Then

Similar results hold if a = -1 and fi = + 1, or if y = -1 and a = + 1.

The final part of the corollary follows from the first part by cyclically
reindexing the {xj: 1  j  3}. Similar comments will apply whenever a result is
proved for particular values of (a, fl, yl, and so we will usually ignore such
comments in future.

One can presumably show that, as is the case for the ring k{X, Y}/XY&#x3E;, the
algebra S(a, -1,1) is a non-Noetherian, non-regular ring.

1.4. The second degenerate case occurs when a = 0. By (1.1.1) this forces

p = - y so we may use the notation of (1.2). Since the case p = - 1 is covered by
(1.3), we will also assume that 03B2 ~ -1. For the moment, we will also assume that
03B2 ~ 0. Thus [xo, xl] = 0, and [x2, X3] = 2xoxl. Therefore,

It is easy to check that these two relations, combined with those of Lemma 1.2,
are equivalent to the defining relations of S. Thus one obtains:

LEMMA. Assume that a = 0 and 03B2 ~ 0, -1. Then, in the notation of Cohn [Co,
§12.2], S = S(a, fi, y) is an iterated Ore extension:

for appropriate automorphisms ui and U2-derivation Ô2-
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Similar results hold if fi = 0 and 03B3 ~ 0, -1 or y = 0 and 03B1 ~ 0, -1.
Proof This follows easily from the earlier comments, combined with [Co,

Theorem 1, p. 438].

1.5. As is apparently well-known to physicists, if 03B2 ~ 0, -1 then S(o, 03B2, -03B2) is a
graded analogue of the quantum enveloping algebra Uq(sI2). More precisely,
observe that K+K- is central in S and that

S(O, 03B2, -03B2)/(K+K- - 1) ’’" Uq(sI2(k)),
in the notation of [Ji]. We would like to thank S. Majid for this observation.

This observation also removes one awkward (or at least tedious) point in the
proof of Lemma 1.4. For, in order to apply [Co], one needs to prove that the
elements Ki+Kj-Yk+Yl- form a basis for S. The earlier observations certainly
show that they span S, but the fact that they are linearly independent (or, as is
equivalent, the fact that the ai are automorphisms and that Ô2 is a U2-derivation)
is tedious to prove directly. However, since S is graded, any linear dependence
between these monomials will be a sum of homogeneous relations. Moreover,
any such relation will induce a non-trivial relation between elements of the

natural basis {Ki+-Ki-Yk+Yl-:ij = 0} of Uq(sI2(k)), giving the required
contradiction.

1.6. The final degenerate case arises when a = fl = y = 0 (this occurs whenever
two of a, fi, y are zero). The following is easy to prove.

LEMMA. If oc = 03B2 = y = 0, then xo is central, while [xi, xi+1] = 2x0xi+2, for
i = 1, 2, 3 mod 3. Furthermore, S = S(O, 0, 0) is an iterated Ore extension

S ~ k[x0; 1, 0][x1; 1, 0][(x2 + ix3); 03C31, 0][(x2 - ix3); U2, Ô21,

for appropriate automorphisms ai and U2-derivation Ô2.

REMARK. Observe that, for any /Le kB{0}, one has S(O, 0, 0)1(xo + 03BB) ~ U(S03)’
the enveloping algebra of the Lie algebra 503. Indeed, it is reasonable to regard
the ring S(0, 0, 0) as a graded version of U(so3). As such, its structure is fairly easy
to understand. One can also regard S(a, fi, y) as a deformation of S(O, 0, 0), and
for applications of this to the study of S(a, fi, y), for generic values of (a, fi, yl, see
[Ch].

Alternatively, one can regard S(a, 03B2, y) as a deformation of the commutative
polynomial ring C = k[zo, zl, Z2, Z3]. To see this, use the elements

to generate S and adjust the relations accordingly. Then it is an easy exercise to
show that S(0, 0, 0) ~ C.

1.7 COROLLARY. If 03B1, 03B2, y satisfy the hypothesis of Lemmas 1.4 or 1.6, then
S(03B1, 03B2, 03B3) is a Noetherian domain of global dimension 4.
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Proof. Since S is an iterated Ore extension, this is standard; use, for example,
[MR, Corollary 9.18, p. 273] or [Pr] to prove that gldim S = 4.

1.8. Suppose that a, fi, y are as in (1.4) or (1.6); thus a = 0 and 03B2 ~ -1 (or the
cyclic permutations thereof) and S = S(a, fi, y) can be written as an iterated Ore
extension. The analysis of the later sections will not include these cases, although
it can probably be extended to incorporate them. The problem is that, just as
happens when iterated Ore extensions are considered in [ATV1], the projective
variety constructed from S will not be an elliptic curve. For example, if

a = j8 = y = 0, then one obtains a variety E &#x26;é ¡p2 while, in the situation of
Lemma 1.4, E will be singular and reducible. It is just such special cases in
dimension three that lead to many of the complications in [ATV1]. However, it
is easy to show directly that these special cases are indeed regular (see Corollary
4.13).

1.9. In summary, the cases not covered by the computations of this section are
as follows:

By cyclically reindexing {x1, x2, x3}, the last three cases are equivalent. Thus the
remainder of the paper considers just the cases (1.9.1) and (1.9.4).

2. The geometric data

2.1. Throughout this section, assume that a, fi, 03B3 ~ k satisfy (0.2.1) and either
(1.9.1) or (1.9.4). Let S = S(03B1, 03B2, 03B3) be the Sklyanin algebra defined by the
relations (0.2.2). This section constructs the geometric data {E, Q, }, which
consists of an elliptic curve E ~ P3 (throughout this paper an elliptic curve is
taken to be smooth and irreducible), an automorphism Q of E, and an invertible
(9E-module .
There are two ways to obtain E. First, following [ATV1], one multilinearises

the defining relations {fi} of S and uses the resulting polynomials to define a
variety r c p3 x p3. Then E is the projection of r, minus four points, onto the
first copy of P3, while i’ (less those four points) is the graph of the automorphism
03C3 of E. This method, which is the one we will use, requires a considerable
amount of computation and makes the fact that E is actually an elliptic curve
seem surprising. The second method comes from Sklyanin’s original con-
struction of S, where the constants a, fi, y e C are given in terms of certain theta
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functions. So (at least when k = C) the elliptic curve E is implicit in the
construction of S. This is explained at the end of the section.

2.2. The method for constructing geometric data from a graded ring is given in
considerable generality in [ATVI]. We begin by recalling the details required
for the Sklyanin algebra.

Write T = k{xo, xl, x2, X31 for the free k-algebra on four generators (x;) of
degree one. This induces a graded structure T = ~n0 Tn on T. Given a
homogeneous element f = 03A3 faxa1 ... xan E Tn, then associate to f the multi-
homogeneous form  = 03A3 f03B1x03B11,1 ··· xan,n. Since f is multi-homogeneous, f
defines a hypersurface in the product space P x ... x P of n copies of P = P3.

Let I be the ideal in T generated by the defining relations f. of S, given in
(0.2.2). Therefore 7 is a graded ideal; I = ~In, where In = I ~ Tn. Set

n = {:g~In} and write 0393 for the locus of Î2 in P x P. Thus r is defined by the
six equations f = 0 where, for example,

1 = xOlxl2 - x11x02 - a(x21x32 + x31x22).

It will be useful to write these as a single matrix equation M 1 v = 0, where

and v = (x02, x12, x22, x32)T. Equivalently, one may write the equations for r as
UM2 = 0, where u = (xoi, x11, x21, x31) and

REMARK. The precise form of the matrices Mi and M2 will be needed later.
Whenever it will cause no confusion, we will ignore the second subscript in the

xij.

2.3. For i = 1, 2, let 03C0i denote the projection from P x P to its i th component.
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We will identify Im(1tl) = Im(1t2) = P via xi 1 ~ xi2 and set Ei = 03C01(0393) c P. The
rest of this section is devoted to proving that:

(a) E1 = E2.
(b) Ei is the union of an elliptic curve E and four other points.
(c) For i = 1, 2, the map 03C0i|0393 is an isomorphism from r to Ei. Thus (1 = 1t2 0 03C0-11

is an automorphism of E 1 and hence of E.

Given that thèse assertions hold, let i : E  P be the inclusion, and write
If = i*OP(1) for the corresponding very ample, invertible sheaf. The geometric
data of interest is

Equivalently, E 1 is defined by the vanishing of the 4 x 4 minors of M 1; that is by
fifteen quartic equations. However, these simplify considerably.

PROPOSITION. Let {03B1, fi, 03B3} satisfy (1.9.1) or (1.9.4) and let El = 1tl(r) be
defined as in (2.3). Write

and

and set

Then El = E ~ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.
Proof. Let hii denote the 4 x 4 minor obtained by deleting rows i and j from

M1. Then a straightforward computation, making frequent use of (0.2.1) shows
that the hij simplify to the following expressions.
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The proposition now follows easily.

2.5. PROPOSITION. The variety E is a smooth elliptic curve.
Proof. As a scheme, E is defined by

We first show that the Jacobian J(gl, g2) has rank 2 at all points p E E. Given
p = (x0, xm x2, X3) E Y(g 1, q2), then

Thus, rank J( g 1, g2)(p)  2 if and only if

The restrictions on the scalars {03B1, fi, 03B3} imposed by (1.9.1) or (1.9.4) ensure that
each coefficient in the above equation is defined and non-zero. Hence

rank J(g 1, g2)(p)  2 if and only if xixj = 0 for all i ~ j. Clearly this cannot
happen for any point p ~ V(g1, g2). Thus each of the local rings
(k[xo, xl, X2, X3]/(gl, g2))m is a regular ring, and hence a domain. This in turn
implies that the ring k[xo, Xl, X2, X3]/(gl, 92) is reduced. V(g1) ~ P3It remains to prove that E is irreducible. Since P1  P1 ~ V(g1) ~ P3, E is a
divisor on P1  P1. Recall that Pic(P1  P1) zé 7L 0 Z, with the hyperplane in p3
intersecting P1  P1 in the divisor (1, 1) (see for example [Ha, Chapter II,
Example 6.6.1]). Thus E = (2, 2). If E is reducible, say E = F 1 U F2 ~ ..., then
write (2, 2) as a corresponding sum of effective divisors. Since the intersection
pairing in Pic(P1  P1) is given by the formula (a, b) · (a’, b’) = ab’ + a’b, it is easy
to check that, however one writes E as a sum of divisors, this forces Fi n Fj ~ 0,
for some i and j. But, if p ~ Fi ~ Fj, then rank J(gl, g2)(p)  2, a contradiction.
Thus E is irreducible and, by the Jacobian criterion, E is smooth.

Finally, the Adjunction Formula ([Ha, Ex. 1.5.2, p. 362]) shows that E has
genus one.
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2.6 LEMMA. For i = 1, 2, the map 03C0i induces an isomorphism 03C0i: r - Ei.
Proof. We will only prove this for 03C01, the other case being similar. Let

Mi = M1(xi) be the matrix defined in (2.2.1). If nI is not injective then, for some
u = (si), there exist two linearly independent solutions V1 and v2 to the equation
M1(u)v = 0. Thus, rank M1  2.
Now, the appropriate row operations reduce Mi to the matrix

where

There are two cases to consider. First, suppose that 3 of the xi are zero. Then it is
easy to see that Mv = 0 has a unique solution. Secondly, assume that at most
two of the xi are zero. Then rank M  2 implies that rank N’  1. It is now
routine to check that this contradicts both (1.9.1) and (1.9.4).

2.7 LEMMA. El = E2.
Proof. By Proposition 2.4, E 1 is invariant under the automorphism.

Thus E 1 = {u = (xi) ~ P : rk N1(u)  3}, where N 1 (u) is the matrix obtained from
M1(u) by replacing every occurrence of xo by - xo. On the other hand

where M2 is defined by (2.2.2). Let N2(v) be the matrix obtained from M2(v) by
multiplying rows 2, 3 and 4 by ( -1). Then (N2)T = NI whence E2 = El.

2.8 COROLLARY. The map 6 = 03C02°03C0-11 is an automorphism of El’ Each of the
four isolated points is fixed by the action of (f and u restricts to an automorphism of
E. As an automorphism of E, (f is defined (on a dense open set) by

Proof. By Lemma 2.6, 1tl1:É1-+r and 03C02:0393 ~ E2 are both isomorphisms.
Thus J is an automorphism. That UIE is an automorphism then follows from
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Proposition 2.4, The precise form of u is left as an exercise to the reader (use the
fact that a is defined by U(XOI x 1, x2, x3) = v, where v is defined by M1(xi)· v = 0).

REMARKS. (i) The corollary can be rephrased as saying that r is the graph of
the automorphism u of E 1. The explicit formula for 03C3 is also valid at the four
isolated points.

(ii) Following [ATV1], a graded right S-module M = ~n0Mn is called a
point module if (a) M is generated as an S-module by Mo, and (b) dimk Mn = 1 for
all n  0. It follows from Corollary 2.8, combined with [ATV1, Corollary 3.13]
and the remarks thereafter, that the point modules for S are in bijection with the
points of E 1.

2.9. Sklyanin’s original construction of S was motivated by his interest in the
Quantum Inverse Problem Method corresponding to Baxter’s original R-
matrix. This matrix is defined in terms of certain theta functions and the

addition formulae for those functions determine the multiplication rules for S
(see [Sk 1, §2] for more details). Since theta functions can be used to define an
elliptic curve, this suggests that (at least when k = C) the existence of the elliptic
curve E is not a coincidence, but rather is implicit in the very construction of S.
The aim of the rest of this section is to show that this is, indeed, the case.

2.10. We adopt the notation of [We] for theta functions. Fix mec with

Im(w) &#x3E; 0 and write A = Z + 7Lw for the associated lattice. As in [We, p. 71 ], let

{03B800, 03B801, 010’ 03B811} be the four theta functions of Jacobi corresponding to this
lattice. Thus the eob are holomorphic functions on C such that

and (J ab has zeroes at the points 1-b 2) + (1 + a 2) Q) + A.

To explain the connection with the Sklyanin algebra, we need to introduce
some auxiliary functions. Fix a point i E C such that T is not of order 4 in C/A.
Thus 03B8ab(03C4) ~ 0 for all ab E {00, 01, 10, 11}. For each ab E {00, 01, 10, 11}, define

gab(z) = 03B8ab(2z)03B8ab(03C4)03B3ab for Z E C,

and

where {ab, ij, kl} = {00, 01, 10} and yoo = Vu = i, yoi = 03B310 = 1.
Define a = aoo, fl = aol, Y = 03B110. It follows from [We, Eqs. (13) and (14), p. 74]

that

and a simple calculation shows that a + 03B2 + y + 03B103B203B3 = 0. Conversely, given a


