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1. Introduction

In recent years considerable attention has been given to disjointness preserving
operators on Banach lattices and their spectral theory (see e.g. [Ab], [Al], [A2],
[H1], [H2], [AH], [LS], [M], [P2], [Wi], and see also the references given in
these papers). Typical examples of such operators are weighted composition
operators in Lp(03BC) and C(K) spaces (i.e., operators of the form

Tf (x) = w(x)f(~(x))). Rather than studying the properties of a single disjointness
preserving operator, we discuss in the present paper some properties of the
collection of all such operators. To be more specific, we will consider the band
e generated by all disjointness preserving operators and its disjoint comple-
ment D, the operators in which we will call diffuse. For linear functionals such a

decomposition has been considered by H. Gordon, who introduced and charac-
terized in [G] positive diffuse functionals. In this connection we note that the
diffuse positive functionals on a C(K) space correspond precisely to the diffuse
Borel measures on the compact Hausdorff space K. For positive operators in
Banach function spaces on a separable metric space an analogous decom-
position was first investigated by L. W. Weis in [W1] and [W2]. His approach is
based on the representation of a positive operator by means of a stochastic
kernel, which is then decomposed in an atomic and a diffuse part. In the present
paper, however, the properties of such a decomposition are studied by different
means and in a more general context.

In Section 2 we describe the band -q of diffuse operators, whereas, in Section 3
this characterization is then used to obtain some algebraic properties of  and

. These properties are reflected in certain averaging properties of the

corresponding band projections. Next we present some typical classes of diffuse
operators, such as kernel operators, compact operators and certain convolution

operators. In Section 5 we prove that for a wide class of Banach lattices the band

projection onto the band generated by a single disjointness preserving operator
is contractive with respect to the operator norm, which can be regarded as an
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extension of the result of J. Voigt [Vl] to the effect that the band projection onto
the center of a Dedekind complete Banach lattice is contractive with respect to
the operator norm. Finally, in the last section, it is illustrated how some of the
results of Sections 3 and 5 can be used to get information about the spectrum of

disjointness preserving operators. In particular it is shown that any norm

bounded aperiodic disjointness preserving operator on a Banach lattice with
order continuous norm has a rotationally invariant peripheral spectrum.
We end this introduction with some preliminary information. We assume that

the reader is familiar with the basic terminology and theory of vector lattices
and Banach lattices, as can be found in the text books [AB], [LZ], [Sch] and
[Z]. All vector lattices considered in this paper are Archimedean. Most of the
results in this paper hold for both real and complex vector lattices (of course, for
results involving the spectrum we consider complex Banach lattices). By a
complex vector lattice E we mean E = Re E Q i Re E, the complexification of a
real vector lattice Re E, where we assume that for each z = x + i y E E the

modulus Izi = sup{(cos 03B8)x + (sin 03B8)y: 0  03B8  203C0} exists in Re E. Note that this
is the case if Re E is uniformly complete ([Z], section 90), in particular if Re E is
Dedekind complete or is a Banach lattice. Throughout we will denote (Re E) +
by E+.

Finally we recall that the linear operator T from the vector lattice E into the
vector lattice F is called disjointness preserving if f 1 g in E implies Tf 1 Tg in F.
As is well known, if T is in addition order bounded, then the absolute value 1 TI
exists and satisfies |Tf| = 1 TI(lfD for all f ~ E. Moreover, if E and F are Banach
lattices, then any norm bounded disjointness preserving operator from E into F
is automatically order bounded (see [Ab] and also [P2], and use [M] for

adaptation to the complex situation). A positive disjointness preserving
operator is a lattice (or Riesz) homomorphism.

2. The band of diffuse operators

First we fix some notation. Throughout, E denotes a vector lattice (Riesz space)
and F a Dedekind complete vector lattice. By an operator from E into F we shall
always mean a linear mapping from E into F. The Dedekind complete vector
lattice of all order bounded ( = regular) operators from E into F is denoted by
!£b(E, F), and n(E, F) is the band in b(E, F) of all order bounded, order
continuous operators from E into F. The set of all lattice homomorphisms (or
Riesz homomorphisms) from E into F is denoted by Hom(E, F). We shall write
(E, F) for the (order) ideal generated by Hom(E, F) in f£ b(E, F). Evidently, any
T E f(E, F) + is a finite sum of lattice homomorphisms. The band generated by
Hom(E, F) in fil b(E, F) is henceforth denoted by e(E, F) and for its disjoint
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complement in b(E, F) we shall put -q(E, F). Observe that f (E, F) (and hence
e(E, F)) contains all order bounded disjointness preserving operators from E
into F and that

Hence we have the band decomposition ftl b(E, F) = e(E, F) 0 E0(E, F). Follow-
ing H. Gordon [G], who used this terminology in the case F = R, we will call an
operator in D(E, F) diffuse. In this connection we mention that L. W. Weis
considered this decomposition in the special case of positive operators in
Banach function spaces on separable metric spaces (see [W1] and [W2]).
Furthermore, W. Arendt studied in his thesis ([Al], Kapitel 1) a related but
different decomposition of b(E). Instead of the band (E) he considered the
band ftla(E) generated by all lattice isomorphisms of E. However, this band Y,,(E)
is in general strictly included in e(E).
We shall write Homn(E, F) for the set of all order continuous lattice

homomorphisms from E into F, whereas n(E, F) and n(E, F) denote the ideal
and the band in b(E, F) generated by all order continuous lattice homomor-
phisms respectively. Their disjoint complement (with respect to n(E, F)) is

denoted by E0n(E, F). Observe that e (E, F) = e(E, F) n n(E, F) and that
E0n(E, F) = D(E, F) n n(E, F).
For any positive operator Te b(E, F)+ we define the mapping pT : E ~ F+

by

(cf. [PW], proof of Theorem 1, where a similar expression for norms is used).
Notice that pT(f) is well-defined since F is Dedekind complete and that
pT(u)  Tu for all U E E+. Furthermore, if T E Hom(E, F), then pT(u) = Tu for all
uEE+.
We claim that PT is an (F-valued) M-seminorm on E, i.e.,

Indeed, positive homogeneity and (ii) are trivial. As for the subadditivity of pT,
take u, v ~ E+ and suppose that we have coverings
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for some

From this we may conclude immediately that pT(u + v)  pT(u) + PrM’ It

remains to verify the M-property (iii). By (ii), pT(u) V pT(v)  pT(u v v) for all u,
v ~ E+. Take u1,...,un, v1,...,vm ~ E+ such that u ni=1 ui, v mj=1 Vj. Then
u v v  (ni= 1 Ui) v (mj= 1 Vj) and hence

Consequently, pT(u v v)  p,(u) v p,(v), so equality holds. By this, the claim is
completely proved.

It is easily checked that for R ~ Hom(E, F) the statements 0  R  T and
Ru  PT(U) for all u E E+ are equivalent.

PROPOSITION 2.1. If T ~ b(E, F)+, then

PT(U) = max{Ru: R ~ Hom(E, F), 0  R  TI

for all u ~ E+. 1 n particular, PT :0 0 if and only if T majorizes a non-trivial lattice
homomorphism.

Proof. Fix u E E + and put Eo = {03B1u: a E RI, the vector sublattice generated by
u. Define Ro E Hom(Eo, F) by Ro(au) = apT(u) for all a E R. Then R0f  pT(f )
for all f E Eo. Now it follows from a Hahn-Banach type theorem for lattice
homomorphisms by G. J. H. M. Buskes and A. C. M. van Rooij ([BR1],
Theorem 3.6) that there exists R E Hom(E, F) such that Rf = Ro f for all f E Eo
(so in particular Ru = p, (u» and Rf  PT (f) for all f E E (hence 0  R  T by
the remark preceding this proposition). This finishes the proof. D

We are now in a position to prove the main result of this section.

THEOREM 2.2. Let E be a vector lattice and F a Dedekind complete vector
lattice. If T ~ b(E, F), then T ~ D(E, F) if and only if

for all f E E.
Proof. We may clearly assume that T  0. Obviously T ~ D(E, F) if and only

if the only lattice homomorphism majorized by T is trivial. By the above

proposition this is equivalent to p, = 0 and the result follows. D
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Theorem 2.2 has been proved for the case F = R by H. Gordon in [G]. Other
characterizations of diffuse operators have been obtained by L. W. Weis in the
case that E and F are Banach function spaces on separable metric spaces (see
[W1] and [W2]).
For later purposes, notice that for T ~ b(E, F)+ it is obvious that

for all U E E +. Moreover, if we assume in addition E to be Dedekind complete
(actually the principal projection property for E suffices), then we may confine
ourselves in this formula to disjoint coverings

For a proof we refer to [PW], lemma 3.

REMARK 2.3. As observed above, every T ~ (E, F) + is a finite sum of lattice
homomorphisms. It is a question of independent interest whether finite sums of
lattice homomorphisms can be characterized in one way or another. The

following remarks extend easily to any finite sum of lattice homomorphisms. If
T = Tl + T2 with Tl, T2 E Hom(E, F), then the positive operator T has the
property that Tu, A T U2 A Tu3 = 0 for each disjoint set {u1, U2, u3} in E+. In
case F = C(X), with X an extremally disconnected compact Hausdorff space, it
can be shown that this property characterizes operators Te Yb (E, F) + which are
sums of two lattice homomorphisms. So far we were unable to prove or disprove
this result for arbitrary F.

3. The projection of !l’,,(E, F) onto (E, F)

Throughout this section E, F, G are vector lattices and F, G are Dedekind
complete. Denote by YEF the band projection of !l¡,(E, F) onto .1f(E, F),
according to the band decomposition b(E, F) = .1f(E, F) (B D(E, F). For

.1f(E, E), D(E, E) and YEE we simply write (E), D(E) and YE respectively. It is
our aim to present in this section some algebraic properties of these projections.
The next two propositions exhibit the algebraic structure of .1f(E, F) and

D(E, F).

PROPOSITION 3.1. If S ~ (E, F) and T ~ n(F, G), then TS E .1f(E, G).
Proof. It is obvious that S ~ (E, F) + and T ~ (F, G) + entails TS E (E, G) +.

Now take SEJt(E,F)+ and T ~ n(F, G)+. There exist S03B1 ~ (E, F)+ such that
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0  Sa iaS. As observed, TSaEf(E, G)+ for all a. By the order continuity of T
we have TS03B1~03B1 TS and so TS~(E,G)+. Finally let S~(E,F)+ and

T~n(F, G)+ be given. Then 0  T03B2~03B2 T for appropriate 703B2~n(F, G) + . Since
T03B2S~(E,G)+ for all f3 and T03B2S~03B2 YS, we may conclude that TS~(E,G)+
from which the assertion in the proposition follows. D

PROPOSITION 3.2. If S ~ D(E, F) and T ~ n(F, G), then TS E D(E, G).
Proof. We may assume without loss of generality that S, T  0. By Theorem

2.2, S ~ D(E, F)+ implies that

for all f E E. Since the set of all such finite suprema ni=1 Sui is directed

downwards, T~n(F, G)+ yields

for all f E E. Now

implies

for all f E E. Once more by Theorem 2.2 we get T S ~ D(E, G). D

A remarkable consequence of the above propositions is the following result, a
special case of which was proved in [Wl], Corollary 2.

COROLLARY 3.3. If E is a Dedekind complete vector lattice, then both n(E)
and Dn(E) are subalgebras of 2,,(E). Actually, Dn(E) is even a left algebra ideal of
2;, (E).

The results of Propositions 3.1 and 3.2 are reflected in the following properties
of the band projections.

THEOREM 3.4. If SE 54(E, F) and T ~ n(F, G), then
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Proof (i) It follows from Proposition 3.2 that T(S - EF(S) ~ D(E, G) and so
EG(TS) = EG(TEF(S)).

(ii) If S ~ b(E, F) and T ~ n(F, G), then EF(S) ~ (E, F) and FG(T)~
n(F, G), so by Proposition 3.1 FG(T). EF(S)~(E, G). Hence, by part (i),

and the proof is complete.

In particular, if E is a Dedekind complete vector lattice, then

for all S ~ f4(E), T E n(E). The latter equality expresses that the band projection
in Y (E) onto Yt,,(E) satisfies the (left) averaging identity. Even if we assume that
S, Te !e,,(E), the identities E(TS) = E(E(T)S), E(TE(S)) = E(T). E(S) need
not hold in general. In fact, we shall present in Section 4.5 operators T, S on
E = L2 ([0, 1]) for which T ~ D(E)+, S ~ Hom(E) such that TS~D(E)+. This
example also shows that i3§ need not be multiplicative and that Dn(E) is in
general not a right algebra ideal of n(E).

The phenomenon of averaging band projections also occurs in other
situations. By way of example we will show that the band projection of b(E)
onto n(E) is averaging. Similar to Propositions 3.1 and 3.2 and Theorem 3.4 we
will discuss a slightly more general situation.
As before, E, F and G are vector lattices and F, G are Dedekind complete. As

usual (see [Z], Section 8.4) we have the band decomposition

where s(E, F) = n(E, F)’ is the band of singular operators. The band

projection of b(E, F) onto Y (E, F) will be denoted by !2EF (and !2E is the band
projection of 2,,(E) onto n(E)).

PROPOSITION 3.5. (i) If S ~ s(E, F) and T E Y,,(F, G), then TS E s(E, G).
(ii) 2EG(2FG(T)S) = !2FG(T). !2EF(S) whenever S E !4(E, F) and T ~ !4(F, G).

Proof. (i) We may assume that 0  S ~ s(E, F) and 0  T ~ n(F, G). By a
result of A. R. Schep (see [S1], Theorem 2.6), the fact that S is singular is

equivalent to

inf{sup Su03B1: 0  u03B1 ~ u} = 0

for all u E E +. Using that the set {sup Sua : 0  u03B1 ~ ul is downwards directed and
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that T is order continuous we obtain

0  inf{sup(TSu03B1): 0  u03B1 ~ u}  inf{T(sup Su03B1): 0  u03B1 ~ u} = 0

for all u ~ E+. Hence, TS ~ s(E, G).
(ii) Applying (i) and observing that !l;,(F, G). !l;,(E, F) c !l;,(E, G), the proof of

this statement is similar to the proof of Theorem 3.4. D

It is a direct consequence of Proposition 3.5(ii) that for a Dedekind complete
vector lattice E the projection flE is averaging, i.e., 2E(2E(T)S) = !2E(T). 2E(S)
for all T, S ~ b(E). A combination with the earlier result on E yields that the
band projection of b(E) onto n(E) is averaging as well.
An interesting spin-off of the above observations is the following result.

COROLLARY 3.6. Let E and F be Dedekind complete vector lattices.

(i) If T ~ n(E, F) such that T-1 exists in b(F, E), then T-1 ~ n(F, E).
(ii) If T~n(E,F) such that T-1 exists in b(F, E), then T-1 ~ n(F, E).
In particular, n(E) and n(E) are full subalgebras of n(E).
Proof. (i) Since TT-1 = IF, the identity mapping on F, it follows from

Proposition 3.5(ii) that

hence T-1 = 2FE(T-1)~n(F, E).
(ii) Use (i) and Theorem 3.4(ii). D

REMARK 3.7. As is well known, another example of a full subalgebra of b(E),
with E Dedekind complete, is provided by the band and subalgebra Orth(E) of
all orthomorphisms on E (for the general theory of Orth(E), see [Z], Chapter
20). In fact, also in this case the band projection onto Orth(E) is averaging. It can
even be shown (see [HP], Theorem 3) that Orth(E) is a full subalgebra of #(E),
the algebra of all linear operators on the vector lattice E (cf. [A2], Proposition
2.7, [BR 2], 3.7.1 and [S2], Theorem 1.8).
We end this section with a formula for EF(T), T ~ b(E, F)+.

PROPOSITION 3.8. If E and F are vector lattices and F is Dedekind complete,
then for any TE2;,(E,F)+

for all u E E + (where PT is as in Section 2).
Proof. We confine ourselves to a rough sketch. Since there exists a maximal

disjoint system in e(E, F)+ consisting of elements in Hom(E, F) and since each
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positive element in the band generated by a lattice homomorphism is itself a
lattice homomorphism, any S ~ (E, F)+ is the supremum of a disjoint set in
Hom(E, F). This implies that

It follows from this formula that if S ~ b(E, F)+ satisfies 0  pT(v)  Sv for all
v ~ E+, then EF(T)  S. On the other hand, an application of Proposition 2.1
shows that pT(v)  EF(T)(v) for all v ~ E+, so

A standard argument yields now the desired result. D

As a consequence of the M-property of ps (with S E ft7b(E, F)+) we see that
ps(u) = Su for all u E E + if and only if S ~ Hom(E, F). This shows that in general
PT =1= EF(T) on E+.

4. Examples

In this section we will illustrate the previous results with some examples (and
counterexamples).

4.1. A class of diffuse operators on ~~

Let L:~~ ~ ~~ be the left translation defined by (Lx)(n) = x(n + 1)(n EN) for all
x ~ ~~. An operator S from ~~ into a Dedekind complete vector lattice F is
called left translation invariant whenever SL = S (observe that S is in this case
right translation invariant as well). We will show that any left translation

invariant operator S E !l;,(t 00’ F) is diffuse. Indeed, note first that ISIL = ISI, so we
may assume that S  0. Since 1 = (1, 1, 1,...) is a strong order unit in ~~,’ it

suffices by Theorem 2.2 to show that

Given m~N, we can write 1 = 03A3mi=1 wi, where wi(i = 1,..., m) are positive
pairwise disjoint elements in toc) such that Li-1wi = w 1 (i = 2,..., m). Since S is
left translation invariant, it is clear that Swi = (1/m)S1 (i = 1,..., m) and hence

Vm 1 Swi = (1/m)S1 from which the desired result follows.
Taking F = R in the above we get in particular that every Banach-Mazur

limit on toc) (see e.g. [Z], Exercises 103.16 and 103.17) is necessarily diffuse.
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In the next example it is shown that there do not exist non-trivial order

continuous diffuse operators on t 00 .

4.2. Vector lattices with only trivial diffuse operators

Let E be a discrete vector lattice (i.e., E contains a maximal disjoint system
consisting of atoms; see [LZ], Exercise 37.22) and F a Dedekind complete vector
lattice. We assert that P4,(E, F) = {0}. To this end, it suffices to show that any
0  Te 2,,(E, F) majorizes a non-trivial lattice homomorphism. Since T is order
continuous and E is discrete, there exists an atom 0  u E E such that Tu &#x3E; 0. It

is well-known that the principal band {u}dd generated by u in E is a one-
dimensional projection band ([LZ], Theorem 26.4). Let Pu be the band

projection of E onto {u}dd. Then TPu is evidently a non-trivial lattice homomor-
phism dominated by T.

Note that this result implies in particular that D(~p) = {0} and

b(p) = (p)(1  p  oo). Moreover, Dn(~~) = {0}, so n(~~) = n(~~).

4.3. Kernel operators

Let (Y, 03A3, v) and (X, A, p) be 6-finite measure spaces and let Lo(Y, v) and Lo(X, p)
be the Dedekind complete vector lattices of all measurable functions on these
measure spaces with the usual identification of almost equal functions. Let L and
M be order ideals in Lo( Y, v) and Lo(X, p) respectively. We may assume without
loss of generality that the carriers of L and M are Y and X respectively (see [Z],
Section 86). It is well known that the set of all absolute kernel operators from L
into M is a band ([Z], Theorem 94.5).
As another application of Theorem 2.2 we will show that in case ( Y, E, v) does

not contain atoms, all absolute kernel operators from L into M are diffuse.

Indeed, let T be a positive kernel operator from L into M with positive kernel
T(x, y), i.e.,

a.e. on X. By Theorem 2.2 we have to prove that pT(u) = 0 for all u E L+. Since T
is order continuous, a standard argument shows that it is sufficient to prove that

PT(XI) = 0 for all A ~ 03A3, 0  v(A)  oo and xA E L. Since (Y, 03A3, v) is non-atomic
there exist for each n ~ N disjoint sets Ank ~ 03A3 with
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We claim that 2nk=1 T~Ank ~n 0 in M. If not, there exist B ~ , 0  J1(B)  oo and

8 &#x3E; 0 such that (2nk=1 T~Ank)(x)  s for all x e B (n = 1, 2,...). Fix xo E B. It

follows that there exists for each n~N a natural number k(n) such that

(T~An,k(n)(x0)  03B5, i.e.,

On the other hand

a.e. on Y and T(xo, y)XAn,k(n)(y) - 0 a.e. on Y, which is at variance with the

dominated convergence theorem, so the claim is proved. It follows immediately
from the definition of PT that PT(XA) = O.
The fact that kernel operators are disjoint to lattice homomorphisms was

already obtained by the second author in ([Pl], Theorem 8.1) by somewhat
différent means.

4.4. Compact operators

It was shown by the second author (see [Pl], Theorem 5.2) in 1979 and
independently by A. W. Wickstead ([Wi], Theorem 5.3) that if E, F are Banach
lattices and E* is non-atomic, then the only compact lattice homomorphism
T: E - F is 0. However, if E* does contain atoms, then there exist non-trivial

compact lattice homomorphisms. Indeed, if 0  ~ ~ E* is an atom (so cp is a non-
trivial real lattice homomorphism on E) and 0  g E F, then T = cp Q g (i.e.,
Tf = cp(f)g for all f E E ) is a rank one operator and hence compact. Furthermore
cp E Hom(E, R) implies that T ~ Hom(E, F). It is in fact shown by the above
authors that every non-zero compact T E Hom(E, F) can be written in the form

for suitable disjoint atoms 0  ~n ~ E* and disjoint elements 0  gn E F.

A related question is whether 0  T  K, T E Hom(E, F), K compact, implies
that T is compact as well. Notice that in case E* and F have order continuous
norms the answer is affirmative by the Dodds-Fremlin result ([Z], Theorem
124.10). Observe in this connection that it was shown by A. R. Schep ([S2],
Theorem 1.6) and also by W. Arendt ([Al], Satz 1.25) that if E is a Banach
lattice, 0  03C0  K, 03C0 ~ Z(E), the center of E, and K compact implies that 03C0 is
compact and that 03C0 = 0 provided E does not contain atoms. In general, the
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answer to the above question is negative. By way of example, take E = t 1,
F = ~~, T the imbedding of e, 1 into ~~ and K: ~1 ~ ~~ defined by

for all f ~ ~1.
In the next theorem we will show that the answer to the above question is

positive if E* is non-atomic.

THEOREM 4.1. Let E, F be Banach lattices such that E* does not contain atoms.

If T ~ Hom(E, F), K: E ~ F is compact and 0  T  K, then T = 0.

In order to prove this result, we first consider a special situation to which we
shall reduce the general case.

PROPOSITION 4.2. Let E, F be Dedekind complete Banach lattices such that E
is non-atomic and ~(F*n) = {0}. If T ~ Homn(E, F), K: E ~ F compact and

0  T  K, then T = 0.

Proof. We will show that the present hypotheses imply 0  2T  K from
which the result is immediate. For this purpose, choose 0  M~E, 0  03C8 ~ F*n
and put ~ = T*03C8 ~ (E*n)+. We have to prove that Ku, 03C8&#x3E;  2Tu, 03C8&#x3E;, so we
may assume that u, ~) &#x3E; 0. Since E is non-atomic there exist for each n E N

disjoint components Unk of u such that unk, ~&#x3E; = 2-nu, qJ) (k = 1,..., 2n) and

un-1,k = un,2k-1 + Un,2k (k = 1,..., 2n-1) (with u01 = u). For n = 1, 2,..., we
define

A straightforward argument shows that if nl  n2  ...  np then

This implies easily that limsupi u,,, ~&#x3E; = u, ~&#x3E; for every subsequence {ni} of
N. A similar computation yields that limsupi(u - uni), ~&#x3E; = u, ç) or, equiva-
lently, liminfi Uni’ ~&#x3E; = 0.

It follows from 0  un  u that {un}~n=1 is norm bounded so that {Kun}~n= 1 has

a norm convergent subsequence, say Kuni ~ v c- F ’ in norm. Now, since every
norm convergent sequence in a Banach lattice has an order convergent
subsequence (according to [Z], Theorem 100.6) we may assume that Kuni ~ v in
order as well, hence v = limsupi Ku"i . Evidently, we have
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T(limsupl u"i) = limsupi Tun1, as T is an order continuous lattice homomorphism
and hence

It follows that

In like manner, 0  Ku - v = limsupi K(u - un) yields that

Hence,

which is the desired result. D

Proof of Theorem 4.1. Observe first that T*: F* -+ E* is interval preserving
(see e.g. [AB], Theorem 7.8). Moreover, T** maps (E°)g into (F°)g, as T * is

order continuous. By [AB], Theorem 7.7, T** ~ Homn(E**, F**). If (T*)’
denotes the restriction of T** to (E*)*n, then we have (T*)’ ~ Homn((E*)*n, (F*)*n).
Clearly, 0  (T*)’  (K*)’ and (K*)’ is compact. Furthermore, E* is non-atomic,
so (E*)* is non-atomic as well. Proposition 4.2 gives (T*)’ = 0 and hence T = 0
(since E can be considered as a subspace of (E*)*n). D

Under the assumption that T is order continuous, the conclusion of the above
theorem remains valid under the weaker hypothesis that E is non-atomic. This
follows by observing that 0  T  K: E - F, with T order continuous and K
compact, implies T*(F*) ~ Eg. Now the reduction to Proposition 4.2 is similar
to the proof of the theorem above.
Combining the above results with Theorem 2.2 the following corollary is

immediate.

COROLLARY 4.3. Let E and F be Banach lattices, with F Dedekind complete.

(a) If E* is non-atomic and 0  K: E ~ F compact, then K E D(E, F) and hence
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(b) If E is non-atomic, then K ~ n(E, F)d for all compact 0  K: E ~ F.

In connection with Corollary 4.3(b) it should be mentioned that W. Arendt
showed in [Al], Korollar 1.26, that any positive compact operator on a non-
atomic Dedekind complete Banach lattice is disjoint to all lattice isomorphisms
(which are, of course, all order continuous).

Finally note that in the situation of Corollary 4.3(b), K need not be disjoint to
all 6-order continuous lattice homomorphisms. In fact, the Dedekind 6-

complete Banach lattice E = ~~/c0 is non-atomic and has cr-order continuous
norm, whereas the real valued lattice homomorphisms separate the points of E.

4.5. Convolution operators

In this example we will characterize a class of diffuse convolution operators.
Let A = {-1, 1}N be the Cantor group with Haar measure Â. For n = 1, 2,...,
let the probability measure ,un on {-1,1} be defined by 03BCn({1}) = 03B1n,
03BCn({-1}) = 1 - an with 0  03B1n  1 and let 03BC = ~~n=1 03BCn be the corresponding
product measure on A. Note that for the choice an = !(n = 1, 2, ... ) we get 03BC = 2.
For ease of notation we shall write henceforth 03B1(1)n = 03B1n and 03B1(-1)n = 1 - a"
(n = 1, 2, ...). The Rademacher functions {rn}~n=0 on A are defined by

for all t ~ A. For each finite subset F of N the corresponding Walsh function is
defined by WF = rl,,c-Fr,, (w~ = 1). The Walsh functions constitute an ortho-
normal basis of E = L2 (A, 03BB).

The convolution operator T03BC~b(E)+ is defined by 7§ f = 03BC*f for all f ~ E. It
follows from

that T03BC is a diagonal operator in E. In passing we note that for 0  an  1 (n = 1,
2, ... ) according to a classical result of S. Kakutani (see e.g. [HS], Theorem
22.36 and Exercise 22.38), J1 is either absolutely continuous or singular with
respect to 03BB depending on the convergence or divergence of the series

Z’ 1 (2an - 1)2, respectively. Furthermore, in this case T03BC is a kernel operator if
and only if 03A3~n= 1 (2an - 1)2  oo and T03BC is compact if and only if 03B1n ~ 1 2 as n ~ ~
(for details we refer to [PS], Example 3.7). It is not difficult to show that

T03BC E Hom(E) if and only if an E {0, 11 (n = 1, 2, ... ), i.e. J1 is a Dirac measure (cf.
[A1], Satz 2.8). Our aim is to derive a necessary and sufficient condition for T, to
be diffuse. We first need a lemma which is formulated for the space E = L2(A, Â)
although the result extends easily to Banach function spaces with order
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continuous norm on a wider class of measure spaces. The proof involves a
standard measure theoretical argument and is therefore omitted. First we settle
some notation. For t = (t 1,..., t") e{-1,1}n we define the cylinder set

Observe that A = ~{0394t: t ~{-1,1}n}, a disjoint union. By the very definition of
the product measure Il we have 03BC(0394t) = 03B1(t1)1 ... 03B1(tn)n.
LEMMA 4.4. If TE y"(E) +, then PT(’) = infsup (TXA : t~{-1, 1}n).
THEOREM 4.5. T03BC~D(E) if and only if

Proof. Obviously, T. is diffuse if and only if pT03BC(1) = 0. For s, t~{-1,1}n we
will write st = (s1t1,...,sntn). A straightforward computation shows that

T03BC~0394t(x) = 03BC(0394st) for all x~0394s and hence

for all t~{-1, 1}n. Hence,

By Lemma 4.4,

from which the result of the theorem is immediate. D

The above theorem shows that if we choose 1 2  03B1n  1 (n = 1, 2, ... ) the
convolution operator T03BC is diffuse if and only if 03B11 ··· a" = 0, i.e., 03A0~n= 1 03B1n

diverges to 0. Furthermore, if 0  03B4  03B1n  1 - 03B4 (n = 1, 2,... ) and an 1 2, then
we obtain examples of diffuse convolution operators T03BC which are neither
compact nor kernel operator.

It was proved in Proposition 3.2 that T ~ D(E), S ~ n(E) (with E a Dedekind
complete vector lattice) implies ST ~ D(E). We now present an example which
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illustrates that TS need not be diffuse. To this end, define the measure preserving
transformation 03C3: 0394 ~ A by

for all t ~ 0394 and let S ~ Hom(E) be defined by (Sf )(t) = f(03C3(t)), f E E, t E 0394. A

similar computation as in the proof of Theorem 4.5 shows that

Consequently, if 1 2  03B1n  1 (n = 1, 2,...), then T. S is diffuse if and only if

03A0~n=1 03B1n2 diverges to 0. Hence, for the particular choice 03B1n = 1 - (n + 1)-1
(n = 1, 2, ... ) we obtain a diffuse operator T, for which T03BCS is not diffuse.

5. The projection onto the band generated by a disjointness preserving operator

Throughout this section E and F are Dedekind complete vector lattices. For any
Te !4(E, F) we shall denote the principal band generated by T in ££(E, F) with
{T}dd. If T is disjointness preserving then |T| E Hom(E, F). It follows from

{T|dd = {|T|}dd that, when considering the band generated by an order bounded
disjointness preserving operator T, we may assume from the beginning on that
T ~ Hom(E, F). Let T be the band projection of !lb(E, F) onto {T}dd. In the
present section we shall investigate properties of YT in detail.

In our observations the ’Luxemburg t-map’ will play an important role (see
[L], section 3.3). We denote the Boolean algebra of all band projections in E by
(E) (see [LZ], Section 30). Fix T ~ Hom(E, F). For any P ~ B(E) the band
projection in F onto {T(P(E))}dd is denoted by t(P). The mapping t: B(E) ~ B(F)
defines a Boolean homomorphism satisfying t(P)T = TP for all P ~ B(E) (for
details, see [L], 3.3 and [Hl], 3.15).

If S ~ b(E, F) +, then, as already observed, S ~ {T}dd implies S ~ Hom(E, F). It
was proved by W. A. J. Luxemburg and A. R. Schep in [LS], Theorem 4.2 that

S ~ {T}dd if and only if S is absolutely continuous with respect to T, i.e.,
Su ~ {Tu}dd for all u ~ E+. For our purposes we need a slight refinement of their
result.

LEMMA 5.1. Let E, F be Dedekind complete vector lattices, T E Hom(E, F) and
S ~ b(E, F)+. Then the following statements are equivalent.

(i) S ~ {T}dd
(ii) t(P)S = SP for all P E B(E)

(iii) Su ~ {T{u}dd}dd for all u~E+.



367

Proof. (i) ~ (ii). For fixed P the mappings S H SP and S H t(P)S are band
projections in b(E, F) which coincide on T and hence on {T}dd.

(ii) ~ (i). First we show that S + T E Hom(E, F). Suppose U A v = 0 in E and
let P be the band projection of E onto {u}}dd. Then

Now decompose S = S1 + S2 with 0  S1 ~{T}d and 0  S2 E {T }dd. It follows
from S + T ~ Hom(E, F), 0  S1  S1 + T, 0  T  S1 + T that there exist nl,
03C02 ~ Orth(F), 0  03C01, 03C02  IF such that S1 = 03C01(S1 + T) and T = 03C02(S1 + T) (a
result due to S. S. Kutateladze; see e.g. [AB], Theorem 8.16). Hence

(use the result of [AB], Exercise 8.11).
Put p 1 = 03C01 - 03C01 A 03C02 and 03C12 = 03C02 - 03C01 ^ 03C02. Then p 1 A 03C12 = 0 in Orth(F),

S 1 = 03C11(S1 + T) and T = P2(Sl + T). Since the infimum of two orthomorph-
isms is pointwise on positive elements (see [Z], Theorem 140.4) we infer

S 1 w A Tw = 0 for all w ~ E+. This implies easily that S 1 u ^ Tv = 0 for all u,
v ~ E+, so S 1(E) ~ {T(E)}d. On the other hand, the hypothesis on S yields that
S(E) ~ {T(E)dd, so it follows from 0  Siu 6 Su that S1u ~ {T(E)}dd for all

u ~ E+, showing that S1(E) ~ {T(E)}dd. Hence, S1 = 0 and consequently
S = S2 ~ {T}dd.
As to the equivalence of (ii) and (iii), condition (ii) is evidently equivalent to

S(B) ~ {T(B)}dd for all bands B in E and hence equivalent to (iii). The proof is
complete. D

Observing that S E f4(E, F) satisfies t(P)S = SP for all P ~ B(E) if and only if
t(P)|S| = |S|P for all P ~ B(E) the following corollary is immediate.

COROLLARY 5.2. E, F and T as in Lemma 5.1. Then

{T}dd = {S ~ Lb(E, F): t(P)S = SP for all P ~ B(E)).

The above corollary is the main ingredient in the proof of the following result.

PROPOSITION 5.3. Let E, F be Dedekind complete vector lattices,
Te Hom(E, F), T the band projection in b(E, F) onto {T}dd and S E b(E, F) + .
Then
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Proof Denote the infimum on the right hand side of the above formula by R.
Obviously, R  S. Since T(S) ~ {T}dd we have by Lemma 5.1 that

t(P)T(S) = T(S)P for all P ~ B(E). Take disjoint band projections
P1,...,Pn~B(E) such that 03A3ni=1 Pi = lE. Then

showing that T(S)  R. Furthermore, for all P ~ B(E) we have

Put U = t(P)SP + t(I E - P)S(1 E - P). As observed earlier, left multiplication
with t(P) and right multiplication with P are band projections of !l¡,(E, F), which
agree on U, as t(P)U = UP = t(P)SP. Therefore, they coincide on {U}dd, so
t(P)R = RP for all P E 3l(E). By Corollary 5.2, R ~ {T}dd, i.e., T(R) = R.
Consequently, R  S yields R  YT(S) and hence R = YT(S). D

In the special case that E = F and T = 7 (so t = id. and {T}dd = Orth(E)) the
above result is due to A. R. Schep ([S2], Theorem 1.1).

Let E be a Dedekind complete vector lattice, T ~ Hom(E) and S a linear
operator on E. For any partition II = {P1,...,Pn} of IE into (disjoint) band
projections Pi E 3l(E) (i = 1,..., n) (so 1 E = 03A3ni=1 Pi) we will write

In the next lemma we shall mean by 03A3(03B5) the summation over all n-tuples
8 = (E1, ... , En) for all possible choices of 8i = + 1 (i = 1,..., n).

LEMMA 5.4

for all f E E.
Proof. It is sufficient to treat the case n = 2. The general situation follows then

from a standard induction argument. To this end, take band projections P,,
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P2 ~ B(E) such that IE = Pl + P2. Then

This shows the validity of the inequality for n = 2. D

Recall that the norm in the Banach lattice E is said to be lower semicontinuous

whenever for every net {f03B1} in E which converges in order to f ~ E (i.e., there
exist Pa E E +, Pa ! 0 such that |f - f03B1|  p03B1 for all a) we have ~f~  liminf03B1 ~f03B1~. It
is easily seen that lower semicontinuity of the norm is equivalent to saying that
the norm in E is a Fatou norm according to the definition in [Z], Section 107.
Clearly, every order continuous norm is lower semicontinuous.
For a Dedekind complete Banach lattice E the space 2;,(E) is a subalgebra of

the Banach algebra 2(E) of all norm bounded operators on E. In general, 2;,(E)
need not be closed in 2(E) with respect to the operator norm. However, if we
equip b(E) with the so-called regular norm (which is defined by ~S~r = II ISI for
all S E b(E)), then 2;,(E) is a Banach lattice algebra (for details, see [AB],
Section 15 and [Sch], Exercise IV.4). Obviously, any band projection in 2;,(E) is
contractive with respect to the regular norm, but in general not with respect to
the operator norm. The following result shows that certain band projections in
2;,(E) are contractive for the operator norm.

THEOREM 5.5. Let E be a Dedekind complete Banach lattice with lower

semicontinuous norm and T E Hom(E). Then the band projection f?JJT in b(E) onto
{T}dd is contractive with respect to the operator norm, so 119,(S)II  ~S~ for all
S E b(E).

Proof. Take S E 2;,(E) +. If Il runs over all partitions of 1 E consisting of band
projections in B(E), then the set {03C0(S): Il partition of IE} is downwards directed
under refinement of the partitions, so it follows from Proposition 5.3 that

03A0(S)u~03A0T(S)u for all u~E+. Hence, if S~b(E) is arbitrary, then

03A0(S)f ~ T(S)f in order for all f E E. Since the norm in E is lower semi-
continuous it follows that

~PT(S)f~  liminf ~03A0(S)f~
n
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for all f E E. Lemma 5.4 implies that for all partitions n

where we have used that |03A3ni=1 8iPifi = |03A3ni=1 Pif|, as the elements P1 f, ... , Pnf
are pairwise disjoint. Hence, we may conclude that ~T(S)f~  ~S~~f for all
f E E. D

The arguments in the proofs of Lemma 5.4 and Theorem 5.5 are for the case
T = IE (so {T}dd = Orth(E) = Z(E), due to J. Voigt, who kindly placed his
(unpublished) preprint [V2] at our disposal and permitted us to use his proof in
this more general context. In [V1] J. Voigt showed that the band projection of
Y,(E) onto Z(E) is contractive with respect to the operator norm even without
the extra assumption that the norm is lower semicontinuous. At present we do
not know whether the result of Theorem 5.5 also holds in this more general
context.

6. Applications to spectral theory

In this final secton we indicate some consequences of Theorem 5.5 and Theorem

3.4 for the spectral theory of disjointness preserving operators.

6.1. Tyce peripheral spectrum

Let E be a Banach lattice and T ~ (E). Recall that the peripheral spectrum
Per03C3(T) of T is the set {03BB E C: IÂI = r(T)j n 03C3(T), where r(T) denotes the spectral
radius of T. Obviously, Per6(T) is a non-void closed subset of 6(T). For
information on Per 03C3(T) we refer to [Sch], V.4 and V.5.

If, in addition, E is Dedekind complete and T ~ b(E), then T is said to be
aperiodic whenever Tn 11 (n = 1, 2, ... ) (see [Al], Kapitel 4 or [H1], Chapter
4).

THEOREM 6.1. Let E be a Dedekind complete Banach lattice with lower

semicontinuous norm and T ~ (E) an order continuous aperiodic disjointness
preserving operator on E. Then

Per 03C3(T) == {03BB E C: 121 = r(T)I.

Particularly, any norm bounded aperiodic disjointness preserving operator on a
Banach lattice with order continuous norm has this property.
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Proof. We may assume without loss of generality that r(T) = 1. Using that T
is order continuous and disjointness preserving it is easily seen that T is

aperiodic if and only if Tn 1 Tm (n, m = 0, 1, ... ; n ~ m). Observe that T" E Yb (E)
is disjointness preserving as well. Denote by f the band projection of !/j,(E)
onto {Tn}dd (n = 0, 1,... ). By Theorem 5.5, n is contractive with respect to the
operator norm. The operator

is order bounded, as the series converges in the regular norm. It follows from
T m ~ T’ (m ~ n) that

so

Hence,

Letting n - oo, we find er(T) = e  r(eT), so

It follows that 1 E 6(T). Replacing T by ei~ T we get {03BB E C: 121 = 1} c 03C3(T), which
yields the desired result. D

In [AH], Corollary 7, it was shown by W. Arendt and D. Hart that any
aperiodic quasi-invertible disjointness preserving operator on a Dedekind

complete Banach lattice has a rotationally invariant spectrum.

6.2. The essential spectrum

Recall that the Banach lattice E is said to have the weak Fatou property if

every norm bounded upwards directed set in E + has a supremum, i.e., 0  u03B1 ~ in
E and sup Il uexll Il  00 implies that sup« u03B1 exists in E + . It is clear that E is
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Dedekind complete in this case. Notice furthermore that every AL-space has the
weak Fatou property.
The following application of Theorem 3.4 is analogous to the argument used

by L. W. Weis in [W1], proof of Theorem 11.b.

THEOREM 6.2. Let E be a Banach lattice with the weak Fatou property and F
an AL-space such that E* and F* are non-atomic. If T E n(E, F) is a Fredholm
operator, then T is invertible and T-1 E n(F, E).

Proof. Since T is Fredholm, T has a pseudo-inverse S E Y(F, E), i.e.,

for some finite rank projections P E 2(E) and Q E 2(F). By [Z], Theorem 113.5,
2(F, E) = ££(F, E) = Y. (F, E), so S ~ n(F, E). Since Q is a finite rank operator,
|Q| is compact (e.g. by an appeal to [AB], Theorem 16.8). It follows from

Corollary 4.3 that Q is diffuse, i.e., F(Q) = 0. Using Theorem 3.4 we see that

and hence T(S - £3Ï’PE(S)) = Q. Since the kernel of T is finite dimensional, the
latter equality yields that S - FE(S) is a finite rank operator, so

is of finite rank as well and therefore diffuse, as E* is non-atomic. Since P is
diffuse this implies FE(S)T = I,, showing that T-1 = FE(S) ~ n(F, E). D

In the next corollary, which is an immediate consequence of the above

theorem, the essential spectrum of an operator T E 2(E) is

6ess(T) = {03BB~C: 03BBIE - T is not Fredholm}.

COROLLARY 6.3. Let E be a non-atomic AL-space. Then 03C3(T) = 03C3ess(T) for all

T ~ (E). In particular, 03C3(T) = 6ess(T) for any norm bounded disjointness
preserving operator T on E.

For the special case that E is an L,-space on some standard measure space the
above result is due to L. W. Weis ([W1], Theorem 1 l.b). Notice in this

connection that A. R. Schep showed in [S2], Theorem 1.11 that 6(T) = 6ess(T)
for all orthomorphisms T on a non-atomic Banach lattice (cf. [PS], Proposition
3.20).
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Note added in proof

(i) It was pointed out to us by W. A. J. Luxemburg that the results of H.
Gordon [G] already appear in an earlier paper by A. Sobczyk and P. C.
Hammer, "A decomposition of additive set functions", Duke Math. J. 11
(1944), 839-846.

(ii) Extensions of the results of L. W. Weis [Wl, W2] can be found in an article
of I. I. Shamaev "Expansion and representation of regular operators",
Siberian Math. J. 30 (1989), 323-331 (English translation).

(iii) The problem of Remark 2.3 has been solved in the meantime by S. J. Bernau
and the authors. They prove in a forthcoming paper, entitled "Sums of
lattice homomorphisms", the following:
if E, F are vector lattices and F is Dedekind complete, then 0  T: E ~ F is
n-disjoint (n ~ N) (i.e., 1B7=0 Txi = 0 in F for all disjoint sets {xi}ni=0 in E+) if
and only if T is the sum of n lattice homomorphisms.

(iv) It was observed by W. Arendt that our method of proof of Theorem 6.1 also
gives the following result:
if E is an AL-space and Te .P(E) satisfies Tn 1 Tm(n, m  0 integers, n ~ m),
then

Per a(T) = {03BB~C: IÀI = r(T)I.


