TAKAKO KUZUMAKI

The cohomological dimension of the quotient field of the two dimensional complete local domain

<http://www.numdam.org/item?id=CM_1991__79_2_157_0>
The cohomological dimension of the quotient field of the two dimensional complete local domain

TAKAKO KUZUMAKI
Department of Mathematics, Kyushu University 33, Fukuoka 812, Japan

Received 19 June 1989; accepted 15 October 1990

Let A be a complete Noetherian local domain with separably closed residue field k and with quotient field K. For a prime number p which is different from $\text{char}(K)$, let $\text{cd}_p(K)$ be the p-cohomological dimension of the absolute Galois group $\text{Gal}(K^{\text{sep}}/K)$ (cf. [13], [14], here K^{sep} denotes the separable closure of K). In this paper, we determine $\text{cd}_p(K)$ in the case $\dim(A) = 2$, $\text{char}(k) = p$ and $\text{char}(K) = 0$.

In general, if $\text{char}(k) \neq p$, a standard conjecture (Artin [2]) is that

$$\text{cd}_p(K) = \dim(A). \quad (0.1)$$

In the more delicate case where $\text{char}(k) = p$ and $\text{char}(K) = 0$, Artin suggests in [2] that the rank of the absolute differential module $\Omega^1_k = \Omega^1_{k/Z}$ should be involved in $\text{cd}_p(K)$. The precise form of his conjecture in this case should be

$$\text{cd}_p(K) = \dim(A) + \dim_k(\Omega^1_k). \quad (0.2)$$

The aim of this paper is to prove (0.2) in the case $\dim(A) = 2$.

THEOREM. Let A be a complete Noetherian two dimensional local domain of mixed characteristic $(0, p)$ with a separably closed residue field k, and K be the quotient field of A. Then,

$$\text{cd}_p(K) = \dim_k(\Omega^1_k) + 2.$$

The conjecture (0.1) has been proved in the case $\dim(A) \leq 2$ (the case $\dim(A) = 1$ is classical and the case $\dim(A) = 2$ is due to O. Gabber [4]). The conjecture (0.2) has been proved in the case $\dim(A) = 1$ (cf. [6]II, [13], [14]), and in the case where $\dim(A) = 2$ and k is algebraically closed (then $\Omega^1_k = (0)$) by K. Kato ([12] §5).
Notation

A ring means a commutative ring with a unit.

For a local ring A,

$
\hat{A}:$ the completion of A by the maximal ideal m_A,

$A_\mathfrak{p}:$ the localization of A at a prime ideal $\mathfrak{p},$

$k(\mathfrak{p}):$ the residue field of $A_\mathfrak{p},$

Ω_A^i: the ith exterior power over A of the absolute differential module Ω_A^1.

For a field k,

$K_i(k):$ the ith Milnor's K-group of k ([11]).

For an abelian group M and a family $S_\lambda(\lambda \in \Lambda)$ of elements of M, $\langle S_\lambda; \lambda \in \Lambda \rangle$ is the subgroup of M generated by S_λ for $\lambda \in \Lambda$.

Proof of theorem. Throughout this paper, let A be a complete Noetherian two-dimensional local domain with a separably closed residue field k of characteristic $p > 0$ and with the quotient field K of characteristic 0. Without loss of generality, we assume that if $p \neq 2$ (resp. $p = 2$) K contains a primitive pth (resp. 4th) root of unity ([15]).

First of all, we have

PROPOSITION 1.

$$\text{cd}_p(K) \geq \dim_k(\Omega_A^1) + 2.$$

Proof. Let \mathfrak{p} be a prime ideal of A such that $\text{ht}(\mathfrak{p}) = 1$ and $\text{char}(k(\mathfrak{p})) = 0$, and let $K_{\mathfrak{p}}$ be the quotient field of the henselization of the local ring of A at \mathfrak{p}. Then we have

$$\text{cd}_p(K) \geq \text{cd}_p(K_{\mathfrak{p}}) \geq \text{cd}_p(k(\mathfrak{p})) + 1 \geq \dim_k(\Omega_A^1) + 2.$$

Hence it remains to prove that $\text{cd}_p(K) \leq \dim_k(\Omega_A^1) + 2$. In the rest of this paper, we assume $\dim_k(\Omega_A^1) < \infty$. Let $r = \dim_k(\Omega_A^1)$ (so $[k : k^r] = p^r$).

We fix an algebraic closer \overline{K} of K, and r elements b_1, b_2, \ldots, b_r of A such that the residue classes \overline{b}_i of b_i ($1 \leq i \leq r$) form a p-basis of k. Then we can pick up elements $\{b_{i,j}; \ 1 \leq i \leq r, \ j = 0, 1, 2, \ldots \}$ of \overline{K} which satisfy the following conditions:
For integers \(n (n = 0, 1, 2, \ldots, \infty) \), we define extensions \(A^{(n)} \) (resp. \(K^{(n)} \)) of \(A \) (resp. \(K \)) by

\[
A^{(n)} = A[b_{i,n}; 1 \leq i \leq r]
\]

\[
A^{(\infty)} = \bigcup_{n=0}^{\infty} A^{(n)}
\]

\[
K^{(n)} = K(b_{i,n}; 1 \leq i \leq r)
\]

\[
K^{(\infty)} = \bigcup_{n=0}^{\infty} K^{(n)}.
\]

PROPOSITION 2.

\[
\text{cd}_p(K) \leq r + 3.
\]

Proof. In Lemma 1 below, we shall prove that \(A^{(\infty)} \) is an excellent henselian local domain. Since the residue field of \(A^{(\infty)} \) is algebraically closed, \(\text{cd}_p(K^{(\infty)}) = 2 \) (cf. [12] §5 Th. the excellence of \(A^{(\infty)} \) is needed here). Let \(\zeta_p^* \) be a subgroup of \(K^* \) which consists of all roots of unity of \(p \)-primary orders. Then \(\text{cd}_p(K^{(\infty)}(\zeta_p^*)) \leq 2 \) ([14]).

On the other hand, the field \(K^{(\infty)}(\zeta_p^*) \) is a Galois extension of \(K \) and the Galois group of \(K^{(\infty)}(\zeta_p^*)/K \) is isomorphic to \(\mathbb{Z}_p^{-1} \) (\(\mathbb{Z}_p \) is the ring of \(p \)-adic integers). Then we have inequalities

\[
\text{cd}_p(K) \leq \text{cd}_p(\mathbb{Z}_p^{-1}) + \text{cd}_p(K^{(\infty)}(\zeta_p^*))
\]

\[
\leq r + 3. \quad ([14])
\]

LEMMA 1. \(A^{(\infty)} \) is an excellent henselian two dimensional local ring.

Proof. By [9], \(A \) is finite over \(R[[X]] \) where \(R \) is a complete discrete valuation ring with mixed characteristic containing \(b_1, b_2, \ldots, b_r \) whose residue field is the same as that of \(A \), and \(X \) is a variable. So we may assume that \(A = R[[X]], b_1, b_2, \ldots, b_r \in R \). We define rings \(R^{(n)} = R[b_{i,n}; 1 \leq i \leq r] \) for integers \(n \geq 0 \) and \(R^{(\infty)} = \bigcup_{n=0}^{\infty} R^{(n)} \), and fix a prime element \(\pi \) of \(R \).

First, we will prove that \(A^{(\infty)} \) is Noetherian.

It is enough to show that every prime ideal \(\mathfrak{p} \) of \(A^{(\infty)} \) is finitely generated ([9]). Since \(A^{(\infty)} \) is a two dimensional ring, every prime ideal \(\neq (0) \) is either maximal or of height one. Assume \(\mathfrak{m} \) is a maximal ideal of \(A^{(\infty)} \). Then \(\mathfrak{m} \cap R^{(n)}[[X]] \) is a...
maximal ideal of $R^{(n)}[[X]]$ for all integers $n \geq 0$. Hence $\mathcal{M} \cap R^{(n)}[[X]] = (\pi, X)$ for all $n \geq 0$, and this implies $\mathcal{M} = (\pi, X)$. On the other hand, if \mathcal{P} is a prime ideal of $A^{(\infty)}$ of height one, $\mathcal{P} \cap R^{(n)}[[X]]$ is (π) or $(X^m + a_1X^{m-1} + \cdots + a_m)$ (m is a positive integer and a_i are elements of the maximal ideal of $R^{(n)}$ for $1 \leq i \leq r$) for all integers $n \geq 0$. When $\mathcal{P} \cap R[[X]] = (\pi)$, $\mathcal{P} \cap R^{(n)}[[X]] = (\pi)$ also. This implies $\mathcal{P} = (\pi)$. When $\mathcal{P} \cap R[[X]] \neq (\pi)$, the degree m of the above polynomial becomes stable for sufficiently large integers n. So \mathcal{P} is generated by an element which generates $\mathcal{P} \cap R^{(n)}[[X]]$ for integers $n > 0$. Thus $A^{(\infty)}$ is Noetherian.

Secondly, recall that, a Noetherian local ring S is excellent, if and only if, S is a G-ring and universally catenary (cf. [9] Ch. 13, 34).

It is easily deduced that $A^{(\infty)}$ is universally catenary from the fact that $A^{(\infty)}$ is the union of subrings which are finite over the excellent ring A. And $A^{(\infty)}$ is a G-ring when $\hat{A}^{(\infty)} \otimes_{A^{(\infty)}} L$ is regular for any prime ideal \mathcal{P} of $A^{(\infty)}$ and any finite extension L of $k(\mathcal{P})$. The regularity is easy and we omit the proof.

We have shown that $\text{cd}_p(K) = r + 2$ or $r + 3$. To prove that $\text{cd}_p(K) = r + 2$, it is sufficient to show that the Galois cohomology groups $H^{r+3}(L, \mathbb{Z}/p\mathbb{Z})$ vanish for all finite extension fields L over K.

LEMMA 2. The cohomology symbol map (cf. [6]II)

$$h_{K/p}^{r+3}; K_{r+3}(K)/p \rightarrow H^{r+3}(K, \mathbb{Z}/p\mathbb{Z})$$

is surjective.

Proof. In the first place, we consider the fact (\ast).

(\ast) Let k be a field, S a Galois extension of k of infinite degree, p a prime number which is invertible in k, and $q \geq 0$ an integer. Suppose that $\text{cd}_p(\text{Gal}(S/k)) \leq q$ and $\text{cd}_p(S) \leq 2$, and that for any open subgroup J of $\text{Gal}(S/k)$, the cup product

$$\otimes^q H^1(J, \mathbb{Z}/p\mathbb{Z}) \rightarrow H^q(J, \mathbb{Z}/p\mathbb{Z})$$

is surjective. Then, $h_{K/p}^{r+2}$ is surjective.

Using the fact that h_k^2 is surjective for any field k ([10]), the arguments in the proof of Proposition 3 of [6]II, §1.3 can be used to prove (\ast) (we replace $\text{cd}_p(S) \leq 1$ (resp. h_k^{r+1}) by $\text{cd}_p(S) \leq 2$ (resp. $h_{K/p}^{r+2}$)).

We apply (\ast) to $k = K$, $S = K^{(\infty)}(\zeta_p^e)$ and $q = r + 1$. From the proof of Proposition 2, $\text{cd}_p(K^{(\infty)}(\zeta_p^e)) \leq 2$, $\text{cd}_p(\text{Gal}(K^{(\infty)}(\zeta_p^e)/K)) = r + 1$ and $\text{Gal}(K^{(\infty)}(\zeta_p^e)/K) \cong \mathbb{Z}_p^{r+1}$. Any open subgroup of \mathbb{Z}_p^{r+1} is isomorphic to \mathbb{Z}_p^{r+1} and the cup product

$$\otimes^{r+1} H^1(\mathbb{Z}_p^{r+1}, \mathbb{Z}/p\mathbb{Z}) \rightarrow H^{r+1}(\mathbb{Z}_p^{r+1}, \mathbb{Z}/p\mathbb{Z})$$
is surjective. Hence the assumption of (\(\ast\)) is satisfied. This lemma is proved.

We consider the condition.

\(\ast\ast\) A is regular and there exist two elements \(u\) and \(v\) of \(A\) which generate the maximal ideal of \(A\), such that \(p\) is invertible in \(A[1/uv]\).

For \(w = u\) or \(v\), let \(\mu_w = (w)\), \(\bar{A}_w = A/\mu_w\) and

\[
 f_w = \begin{cases}
 (p/p - 1)\ord_w(p) & \text{if } \ker(\mu_w) = p \\
 0 & \text{if } \ker(\mu_w) = 0.
\end{cases}
\]

We distinguish two cases;

- case (I) \(\ker(\mu_u) = \ker(\mu_v) = p\)
- case (II) \(\ker(\mu_u) = 0, \ker(\mu_v) = p\).

Lemma 3. Assume \(\ast\ast\). Let

\[
\Delta = \left\langle \left\{a, b_1, \ldots, b_{r+2}; \begin{array}{l}
 b_s \in A[1/uv]^* \text{ for } 1 \leq s \leq r + 2 \\
 a \in 1 + uvA \text{ in the case (I)} \\
 (\text{resp. } a \in 1 + vA \text{ in the case (II)})
\end{array} \right\} \right\rangle \text{ in } K_{r+3}(K)/p.
\]

Then \(\Delta = 0\).

Proof. For integers \(i \geq 0\) and \(j > 0\), we define

\[
\Delta_{i,j} = \left\langle \left\{1 + au^i v^j, b_1, \ldots, b_r, c, d; \begin{array}{l}
 a \in A, b_s \in A^* \text{ for } 1 \leq s \leq r \text{ and } c, d \in A[1/uv]^*
\end{array} \right\} \right\rangle \text{ in } K_{r+3}(K)/p.
\]

In the case (I) (resp. (II)), we deduce \(\Delta = 0\) from the following facts,

1. \(\Delta = \Delta_{1,1}\) (resp. \(\Delta = \Delta_{0,1}\))
2. if \(0 \leq i \leq f_u, 0 < j < f_v\) and either \(p \nmid i\) or \(p \mid j\), we have \(\Delta_{i,j} = \Delta_{i,j+1}\)
3. \(\Delta_{f_u, f_v} = 0\).

Proof of (1). This is easy and we omit the proof.

Proof of (2). We can define the homomorphism

\[
\chi_1; \Omega_{\lambda}^{r+2} \rightarrow \Delta_{i,j}/\Delta_{i,j+1}
\]

by

\[
\frac{\alpha \cdot d\alpha_1}{\alpha_1} \wedge \cdots \wedge \frac{d\alpha_{r+2}}{\alpha_{r+1}} \mapsto \{1 + au^i v^j, a_1, \ldots, a_{r+2}\}.
\]
If \(p \nmid j \), by the following calculation in \(K_2(K) \), the map \(\chi_1 \) is surjective.

\[
j \{ 1 + au^h v^j, v \} = \{ 1 + au^h v^j, -au^h \}
\]
\[
\{ 1 + au^h v^j, 1 + bv \} = \{ 1 + au^h v^j, 1 - abu^h v^{j+1} \} - \{ 1 + bv, 1 - abu^h v^{j+1} \}
\]
for \(a \in A^* \), \(b \in A \) and \(h \geq i \).

In the case \(p \mid j \) and \(p \mid i \), we can define the homomorphism

\[
\chi_2; \Omega_{A_v}^{r+1} \to \Delta_{i,j}/\Delta_{i,j+1}
\]

by

\[
\tilde{a} \frac{d \tilde{a}_1}{\tilde{a}_1} \wedge \cdots \wedge \frac{d \tilde{a}_{r+1}}{\tilde{a}_{r+1}} \mapsto \{ 1 + au^j v, a_1, \ldots, a_{r+1}, v \}.
\]

Then every element of \(\Delta_{i,j}/\Delta_{i,j+1} \) is a sum of elements of the images of \(\chi_1 \) and \(\chi_2 \).

On the other hand, the equalities \(\text{char}(K(\overline{tv})) = p \) and \([\kappa(\overline{tv}); \kappa(\overline{tv})^p] = p^{r+1} \) imply \(\Omega_{A_v}^{r+2} = 0 \).

\[
\Omega_{A_v}^{r+1} = \left\langle \tilde{a}^p, \frac{d \tilde{a}_1}{\tilde{a}_1} \wedge \cdots \wedge \frac{d \tilde{a}_{r+1}}{\tilde{a}_{r+1}} ; \tilde{a} \in \overline{A}_v, \tilde{a}_j \in \overline{A}_v^*, 1 \leq j \leq r + 1 \right\rangle + d\Omega_{A_v}^r
\]

([7] II). Then we have \(\Delta_{i,j} = \Delta_{i,j+1} \).

Proof of (3). Let \(c \) be the element of \(A^* \) such that \(p = cu^{f(v)(p-1)}/pv^{f(v)(p-1)/p} \). We can take a solution \(x \in A \) of the equation \(X^p + cX - a = 0 \) for any \(a \in A \). Then,

\[
1 + au^{f(u)/p} = (1 + xu^{f(u)/p})^p.
\]

Thus the proof of Lemma 3 is complete.

LEMMA 4. Assume (**). Let

\[
\Delta' = \langle \{ a, b_1, \ldots, b_{r+2} \} ; a \in 1 + m_A \text{ and } b_j \in A[1/uw]^* \text{ for } 1 \leq j \leq r + 2 \rangle
\]

in \(K_{r+3}(K)/p \).

where \(m_A \) is the maximal ideal of \(A \).

Then \(\Delta' = 0 \).

Proof. As is easily seen, \(1 + m_A \) is generated by elements of the form \(1 - aw \) (\(a \in A^* \)) for \(w = u \) or \(v \). From this, we see that \(\Delta' \) is generated by elements of the forms \(\{ 1 - aw, b_1, \ldots, b_r, c, d \} \) with \(a, b_1, \ldots, b_r \) and \(c \in A^* \), \(d \in A[1/uw]^* \) and \(w = u \) or \(v \) such that \(b_1, \ldots, b_{r-1} \) and \(b_r \) form a \(p \)-basis of \(k \).
Hence it suffices to prove
\[\{ 1 - au, b_1, \ldots, b_r, c, d \} \in pK_{r+3}(K) \]
for \(a, b_1, \ldots, b_r, c \) and \(d \) as above. Let
\[B = A[(au)^{1/p}, b_1^{1/p}, \ldots, b_r^{1/p}] \subset \bar{K} \]
and \(L \) be the quotient field of \(B \). Since \(B/vB = (A/vA)^{1/p} \), there exist elements \(c' \in B^* \) and \(c'' \in B \) such that \(c = (c')^p(1 + c''v) \). We apply Lemma 3 to \(B \),
\[\{ 1 - (au)^{1/p}, b_1^{1/p}, \ldots, b_r^{1/p}, 1 + c''v, d \} \in pK_{r+3}(L). \]

With \(N_{L/K} \) denoting the norm map, we have
\[\{ 1 - au, b_1, \ldots, b_r, c, d \} = N_{L/K}(\{ 1 - (au)^{1/p}, b_1^{1/p}, \ldots, b_r^{1/p}, c, d \}) \in N_{L/K}(pK_{r+3}(L)) \subset pK_{r+3}(K). \]

Lemma 5. Assume (**). Let
\[\Delta'' = \langle \{ a_1, a_2, \ldots, a_{r+3} \}; a_j \in A[1/uv]^* \text{ for } 1 \leq j \leq r + 3 \rangle \]
in \(K_{r+3}(K)/p \).

Then \(\Delta'' = 0 \).

Proof.
\[\Delta'' = \langle \{ a_1, \ldots, a_{r+1}, b, c \}; a_j \in A^* \text{ for } 1 \leq j \leq r + 1, b, c \in A[1/uv]^* \rangle \]

Hence it suffices to prove
\[\{ a_1, \ldots, a_{r+1}, b, c \} \in pK_{r+3}(K) \]
for \(a_1, \ldots, a_{r+1}, b \) and \(c \) as above. Since \(\bar{a}_i = a_i \mod m_A (1 \leq i \leq r + 1) \) cannot be \(p \)-independent, there exists \(s \) such that \(1 \leq s \leq r \) and \(\bar{a}_{s+1} \in k^p(a_1, \ldots, a_s) \). Let
\[B = A[a_1^{1/p}, \ldots, a_{s+1}^{1/p}] \subset \bar{K} \]
and \(L \) be the quotient field of \(B \). Since the residue field of \(B \) contains \(\bar{a}_{s+1}^{1/p} \), there exist elements \(a' \in B^* \) and \(a'' \in m_B \) (\(m_B \) is the maximal ideal of \(B \)) such that
$a_{s+1} = (a')r(1 + a')$. By applying Lemma 4 to B, we have

$$\{a_1, \ldots, a_{r+1}, b, c\} = N_{L/K}(\{a_1^{1/p}, \ldots, a_s^{1/p}, a_{s+1}, \ldots, a_{r+1}, b, c\}) \in N_{L/K}(pK_{r+3}(L)) \subset pK_{r+3}(K).$$

We follow the method of [12] §5.

Lemma 6. Let $\mathfrak{X} \to \text{Spec}(A)$ be a proper birational morphism with regular such that $Y = \mathfrak{X} \otimes_A A/m_A$ is a reduced divisor with normal crossing on \mathfrak{X} ([1], [5]). Then,

$$H^{r+3}(K, \mathbb{Z}/p\mathbb{Z}) \cong \bigoplus_{x \in Y_0} H^{r+3}(K_x, \mathbb{Z}/p\mathbb{Z})$$

where Y_0 denotes the set of closed points of Y and for each $x \in Y_0$, K_x denotes the quotient field of the henselization of $\mathcal{O}_{X,x}$.

Proof. Let $\lambda : \text{Spec}(K) \to \mathfrak{X}$ be the inclusion map and put $\mathfrak{Y} = R\lambda_*(\mathbb{Z}/p\mathbb{Z})$. By the proper base change theorem, we have

$$H^q(Y, i^*\mathfrak{Y}) = H^q(\mathfrak{X}, \mathfrak{Y}) = H^q(K, \mathbb{Z}/p\mathbb{Z})$$

where $i : Y \to \mathfrak{X}$ is the inclusion map. From this, we obtain an exact sequence

$$\cdots \to \bigoplus_{x \in Y_0} H^q(Y, i^*\mathfrak{Y}) \to H^q(K, \mathbb{Z}/p\mathbb{Z}) \to \bigoplus_{\eta} H^q(K_{\eta}, \mathbb{Z}/p\mathbb{Z}) \to \bigoplus_{x \in Y_0} H^{q+1}(Y, i^*\mathfrak{Y}) \to \cdots$$

where η ranges over all generic points of Y and K_{η} denotes the quotient field of the henselization of $\mathcal{O}_{X,\eta}$. For each $x \in Y_0$, we have an exact sequence

$$\cdots \to H^q(Y, i^*\mathfrak{Y}) \to H^q(K_x, \mathbb{Z}/p\mathbb{Z}) \to \bigoplus_{\nu} H^q(K_{\nu}, \mathbb{Z}/p\mathbb{Z}) \to H^{q+1}(Y, i^*\mathfrak{Y}) \to \cdots$$

where ν ranges over all generic points of the henselization of $\text{Spec}(\mathcal{O}_{X,x})$, and K_{ν} denotes the quotient field of the henselization of the discrete valuation ring of K_x corresponding to ν.

Since $\text{cd}_p(K_{\eta}) = \text{cd}_p(K_{\nu}) = r + 2$ ([8]), we have

$$H^{r+3}(K_{\eta}, \mathbb{Z}/p\mathbb{Z}) = H^{r+3}(K_{\nu}, \mathbb{Z}/p\mathbb{Z}) = 0.$$
On the other hand, from the classical approximation theorem for a finite family of discrete valuation on K^* and K^*_x, the maps

$$K_{r+2}(K) \to \bigoplus_{\eta} K_{r+2}(K\eta)/p \quad \text{and} \quad K_{r+2}(Kx) \to \bigoplus_{v} K_{r+2}(Kv)/p$$

are subjective. By [3] §5, the cohomological symbol maps

$$K_{r+2}(K\eta)/p \to H^{r+2}(K\eta, \mathbb{Z}/p\mathbb{Z})$$

and

$$K_{r+2}(Kx)/p \to H^{r+2}(Kx, \mathbb{Z}/p\mathbb{Z})$$

are subjective. Hence the maps

$$H^{r+2}(K, \mathbb{Z}/p\mathbb{Z}) \to \bigoplus_{\eta} H^{r+2}(K\eta, \mathbb{Z}/p\mathbb{Z})$$

and

$$H^{r+2}(Kx, \mathbb{Z}/p\mathbb{Z}) \to \bigoplus_{v} H^{r+2}(Kv, \mathbb{Z}/p\mathbb{Z})$$

are also subjective.

Putting these things together,

$$\bigoplus_{x\in Y_0} H^{r+3}_x(Y, i^*\mathcal{G}) \xrightarrow{\sim} H^{r+3}(K, \mathbb{Z}/p\mathbb{Z})$$

and

$$H^{r+3}_x(Y, i^*\mathcal{G}) \xrightarrow{\sim} H^{r+3}(Kx, \mathbb{Z}/p\mathbb{Z}).$$

These isomorphisms induce the isomorphism of Lemma 6.

PROPOSITION 3. For $r = \text{dom}_k(\Omega^1_k)$,

$$H^{r+3}(K, \mathbb{Z}/p\mathbb{Z}) = 0.$$

Proof. By Lemma 2 and 6, we have

$$\bigoplus_{x\in Y_0} K_{r+3}(Kx)/p \to \bigoplus_{x\in Y_0} H^{r+3}(Kx, \mathbb{Z}/p\mathbb{Z}) \uparrow$$

$$K_{r+3}(K)/p \to H^{r+3}(K, \mathbb{Z}/p\mathbb{Z}).$$
For any family of fixed elements $a_1, a_2, \ldots, a_{r+2} \in K^*$, we can take X such that the union Z of Y with the supports of the divisor of a_1, \ldots, a_{r+2} and a_{r+3} on X is normally crossing divisor ([5]). Then, by Lemma 5,

$$\{a_1, a_2, \ldots, a_{r+3}\} \in pK_{r+3}(K_X)$$

for any $x \in Y_0$. This shows that

$$H^{r+3}(K, \mathbb{Z}/p\mathbb{Z}) = 0.$$

We are now in the position to complete the proof of our theorem. By Proposition 1 and 2, $\text{cd}_p(K) = r + 2$ or $r + 3$. For any finite extension field K' over K,

$$H^{r+3}(K', \mathbb{Z}/p\mathbb{Z}) = 0$$

by Proposition 3. Hence $\text{cd}_p(K) = r + 2$ ([14]).

Acknowledgements

We wish to express our sincere gratitude to Professor K. Kato for his constant encouragement in the study of the problem and writing of this paper, and thank the referee who showed us the simple proof of excellence in Lemma 1.

References

