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0. Introduction

Let E1, E2 and E3 be elliptic curves defined over a global field,.Xl. In this paper, 1
give a construction of a genus-three curve C on the product X = E1 x E2 x E3,
defined over K. If i is the inverse map for the group law on X, then the cycle
C - iC is homologically equivalent to zero over Jf, and (with certain restrictions
on the Ei) 1 give an easily computible sufficient condition for C - iC to have
infinite order modulo algebraic equivalence. Moreover, 1 show that the

condition is satisfied for an infinite class of examples. If 3i is a number field,
however, the result hinges on the Purity Conjecture for etale cohomology.
The interest in these examples stems from a conjecture of Bloch [4] and

Beilinson [2], which is similar to the Birch/Swinnerton-Dyer conjecture for
curves. Let X be a complete smooth variety over a number field 5i, and let

Griff2(X/K), the Griffiths group, be the group of cycles defined over Yt,
homologically trivial (over C, for example), modulo cycles algebraically equiva-
lent to zero over Jf. Then the conjecture is that Griff2(X/K) has finite rank
equal to the order of vanishing of a certain Irfunction. The evidence for this
conjecture is rather sparse, largely because of the difficulty in producing
examples of nontrivial cycles.

Results of Griffiths [10], Ceresa [5], B. Harris [11] and Clemens [6] show
that the Griffiths group for cycles defined over C, rather than K, is often
nonzero, and may not be finitely generated, even modulo torsion. However there
are only a few examples where the Griffiths group of cycles defined over a
number field is known to contain elements of infinite order. One source of

examples is the following: Given an abelian variety X, let r X ~ X be the inverse
for the group law. If C is a curve on X, then C and i(C) are homologically
equivalent. Harris and Ceresa proved independently that for C a sufficiently
general curve of genus  3 over C, and X its jacobian, the cycle C - i C has
infinite order modulo algebraic equivalence. The first example over a number
field was the case g = 3, C the Fermat quartic. Using transcendental techniques,
Harris [12] proved that C - i C is not algebraically equivalent to zero (over C).
Using arithmetic methods, Bloch [3] showed further that C - iC has infinite
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order in the Griffiths group. In fact, the jacobian of C is isogenous to a product
E x E x E, where E is an elliptic curve with complex multiplication, and Bloch
showed that the image of C - iC gives a class of infinite order in the Griffiths

group of E x E x E. More recently, Top [17] has applied Bloch’s method to
some other elliptic curves with complex multiplication. For some additional

examples related to the Bloch-Beilinson conjecture, and some further re-

ferences, see a recent paper by Schoen [15].
The criterion established here concerns a product of elliptic curves

El x E2 x E3 defined over a global field 5i, and applies only to the case where
for some prime p of 3i, E 1 has good reduction and E2 and E3 both have order 2
multiplicative reduction (their j-invariants have poles of order 2 at p). This
assumption is made for ease of computation and is not crucial to the method.
What is needed is that at least 2 of the elliptic curves have some kind of bad
reduction at p.
To study cycles modulo algebraic equivalence, we need to use the Purity

Conjecture for etale cohomology, which says that the local cohomology of a
regular scheme with supports in a regular Cartier divisor is generated by the
fundamental class of the divisor. The conjecture is known for schemes of equal
characteristics, and for schemes of unequal characteristics and dimension at
most 2, and for schemes of higher dimension which are smooth over a discrete
valuation ring. Thus, the conjecture is valid in our case, if the global field 5i is a
function field. For the case of a number field, however, we need to apply it to an
arithmetic scheme of dimension 4, with bad reduction, a case for which the

conjecture is not known. We take the point of view, suggested by Bloch in [4],
that the Purity Conjecture is much less in doubt than the conjectures about
cycles and L-functions, so it makes sense to accept Purity as a tool for

investigating the other conjectures.
Let 5i be a global field, with ring of integers R, and let p e spec R be a prime

with residue characteristic different from 2. Let n e K n àt, be a uniformizing
parameter for Rp, and let a, fi, y e Jf be p-adic units which are all distinct mod p.
Define elliptic curves over 3i by their affine equations:

1 (normalize at ~)

Think of these as double covers of pl by projecting onto the x-axis. Then the
normalization of C:= E 1 x p1 E2 is a curve of genus three, defined over K,
which embeds in El x E2 x E3.

Let CH2alg(E1 x E2 x E3) be the subgroup of CH2(E1 x E2 x E3) consisting of
cycles algebraically equivalent to zero. Let CHt2trans(E1 x E2 x E3) be the sub-
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group of CH;lg(E1 x E2 x E3) generated by cycles Z’ - Z where Z is one of the
axes" E1 x 0 x 0, 0 x E2 x 0, 0 x 0 x E3 (0 could be any Xp-point of Ei), and Z’ is
a translate (hence the notation "trans") of Z by a -if,,-point of El x E2 x E3.
For a prime q ~ spec R, let k(q) denote the residue field R/q, and N(q) the

number of elements in k(q). The main results are the following:

THEOREM 1. Let e + ~ E1(k(p)) be one of the two points with x = 0. If 16e + ~ 0
in E1(k(p)) (with the point at infinity as origin), then

C - iC ~ CH2trans(E1 x E2 x E3).
THEOREM 2. Assume that the Purity Conjecture for étale cohomology holds for
a regular model, X, of E1 x E2 x E3 over Rp. Suppose the order of e+ ~ E1(k(p)) is
divisible by an odd prime 1 with p t 1. Suppose further that there exist primes
q, r c- spec R satisfying :

(i) q 11 and r  l;
(ii) El, E2, E3 all have good reduction at q and r;

(iii) For all eigenvalues Ài of the geometric Frobenius map on H1(Eik(q), 01), the
products À1 À2À3 are not divisible by N(q) in the ring of algebraic integers;

(iv) If f is the geometric Frobenius map on H3(E1 x E2 x E3k(r), Q) then
1 t det(N(r)2 - f).

Then C - le has infinite order modulo algebraic equivalence.

Theorem 1 is proved in Sections 1-3. The proof uses intersection theory on a
regular model, X, of El x E2 x E3 over Rp. In particular, X has bad reduction,
with special fiber a union of components Yl, ..., Y8, and there is a specialization
map

where E is a certain quotient of ~ 8i=1 CH2(Yi). We show that if 4e+ ~ 0, then
03C3(C - iC) ~ 03C3(CH2trans(XKq)).
The proof of Theorem 2 uses a map:

which is a sort of arithmetic analog of the Abel-Jacobi map into the

intermediate jacobian. Here CHhom is the group of cycles homologically
equivalent to zero, in the sense of l-adic cohomology. Condition (iii) of the
theorem ensures that the images of CH2trans(XKp) and CH2alg(XKp) under ~ are
the same. This is proved in Section 4. 
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The Purity Conjecture is used to compare the specialization map 6 with a
similar map on étale cohomology, with the upshot being that Theorem 1 implies
~(C - iC) ~ ~(CH2trans(XKp)), and so C - i C is not algebraically equivalent to
zero. This is the content of Section 5.

In Section 6, we discuss the condition for C - i C to have infinite order. For

cycles defined over 9 factors through H1(K, H3(X;R, Z,(2»), and condition
(iv) above ensures that this group is torsion-free. It then follows that no multiple
of ~(C - iC) is in ~(CH2trans(XKp)), and hence C - iC has infinite order.

Since the conditions in Theorem 2 depend only on the reductions of the Ei
modulo three primes p, q, r, any example that satisfies these conditions give rise
to an infinite family of examples, by adding elements of Jf which are zero
modulo pqr to the coefficients a, 03B2, y, n. One such family is exhibited in Section 7.

This work comprised my doctoral thesis at the University of Chicago. 1 would
like to thank my advisor, Spencer Bloch, who suggested the problem, and
contributed many crucial insights, as well as encouragement, toward the

solution.

1. Regular models

With notation as above, let K := Kp, R:= Wp and k := k(p). Let E1, É2 and É3
be the closed subschemes of Pi given by the equations above. Then El is smooth
over R. Let E2 and E3 be the minimal regular models of E2 and É3. Each has
special fiber of Kodaira type 12, and is obtained by blowing up the node at
x=y=03C0=0.

REMARK 1.1. It will be convenient to have the components of the special
fibers of E2 and E3 defined over k. Since we are primarily interested in rational
and algebraic equivalence over -f, we may as well replace Jf by a finite
extension K’. If we take Jf’tobe unramified over p, then the type of reduction

of E1, E2 and E3 will also be unaffected. We will henceforth tacitly assume this
replacement whenever necessary. Thus any particular polynomial can be
assumed to split over k. D

Take 03C0i:Ei~P1R, for i =1, 2, 3, to be projection onto the x-axis. Define

C:= E 1 xP1E2. The affine part of C is given by the two equations:

Note that this is singular along x = oc and x = fi. Let C be the blow-up of C
along the closed subschemes (over R) given by (x=03B1,y1=y2=0) and

(x=03B2, y1=y2=0).
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PROPOSITION 1.2.

(i) C is regular, and C ~ spec(R) is smooth in a neighborhood of the

exceptional divisor.
(ii) CK is a curve of genus 3.

(iii) The map:

extends to a morphism ~3 : C-+E3

Proof. Part (i) is a straightforward but tedious exercise in blowing up
arithmetic schemes; we omit the details. Part (ii) follows from the Riemann-
Hurwitz formula, applied to the degree-two map ~1 : CK-+E1K. The singular
points on C are nodes, from which it follows that 9 1 is ramified only at the four
points of C where x = 0 and x = n. For (iii), note that the subscheme where qJ3 is
not defined is precisely the center of the blow-up from C to C, and z := yl /y2 is a
local parameter near the exceptional divisor. Then

REMARK 1.3. This proposition implies that the exceptional divisor in C meets
the special fiber, Ck, in a finite set of points. Since the cycle class of C in
(El x E2 x E3)k will be determined by intersecting with certain "test" divisors,
which can be chosen to avoid any finite set of points, these points can be ignored,
and we can work with C instead of C, when the time comes. D

COROLLARY 1.4. There is a proper map qJ: C ~ El XR E2 XR E3 which is an
embedding of the generic fiber. D

We need a regular model of E 1 XR E2 XR E3 on which to do intersection
theory. Since El is smooth, if we find a regular model E23 of E2 xR E3, then
E 1 xR E23 will be regular.

Introduce the following notation for the special fiber of either E2 or E3:

A := identity component ( = strict transform of (E.)k)
B := other component ( = exceptional divisor of blow-up)

Note that A ~ B zé Pl and A n B consists of two points which we label +
and - : 
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These two points correspond to the two choices of sign for the coordinate ylx in
the blow-up, which satisfies (y/x)2 = 03B1/03B2 on E2 and (y/x)2 = - y on E3. Hence the
notation + and -.

The geometry of E2 and E3 is illustrated in the following diagram:

Now consider the scheme E2 XR E3 Since E2 and E3 are regular, and one of
them is always smooth over R away from the four points {+, -} x {+, -},
these four points are the only singularities of E2 XR E3. The components of the
special fiber, (E2 XR E3)k, and their intersections are illustrated by the following
incidence graph (edges represent intersection):

Let E23 be the blow-up of E2 xR E3 at the four points { ± 1 x {± }. The special
fiber now has 8 components, which will be denoted as follows:

: = strict transform of A x A, etc.

~ P1k x P§ with 4 points blown up

Also introduce the following notation:
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Note that L1112 are the exceptional Pl’s in Z1Z2=blow-up of Zl XZ2 at
{±}x{±}.
The incidence graph of the components of (E23)k then consists of the

combination of four of the following type, one for each of the exceptional
components Q ± ± :

PROPOSITION 1.5.

(1) E23 is regular.
(2) The closed fiber is the divisor:

(3) Each Q.. is isomorphic to Pl x P’. Moreover, the L’s are generators of
Pic(P1k x Pl), with LAA.. and LBB in one ruling, and LAB.. and LBA in the other.

Proof. All statements are local on E2 XR E3, so we can replace both É2 and E3
by the R-scheme E given by:

Blowing-up at the ideal (x, y, n) gives a scheme:

Here A is given by p = 0 and B by x = 0. Then E2 XR E3 is locally isomorphic to:

The singular locus, {+, -} x {+, -} = (A n B) x (A n B), is the subscheme

corresponding to the ideal (x2, P2, x3, P3). Then E23 corresponds to the blow-up
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at this ideal. Introduce homogeneous coordinates X 2, P2, X3, P3 on the blow-

up, satisfying X2/P2=x2/p2, X3/P2=x3/p2 and P3/P2=p3/p2. These then
satisfy X2P2 = X3P3
The exceptional divisor, Q, is given by X2=p2=x3=P3=03C0=0:

Since this is smooth, and it is a Cartier divisor on E xR E, (1) is proved. To see

(3), note that the components of (E23)k, other than Q, are given by:

which are equations of the desired rulings on the quadric (*).
In (2), the only point that is not obvious is the multiplicity of the Q’s. To check

this, we may localize to the open set where P 2 :f= 0. Then X2 = (X2lP2)P2,
P3 = (P3lP2)P2 and x3 = (X3/P2)P2, SO P2 = 0 is the local defining equation for
Q. Moreover, we have:

Therefore vanishes to order 2 along Q. This proves (2). D

2. Specialization map

If V is any scheme over spec R such that the components of Vk are regularly
embedded in E we let Vie denote the disjoint union of the components of Yk. Let
i : k ~ V be the natural map (projection onto Vk followed by inclusion in V). Let
j : VK  V be the inclusion. Since the components of Vk are regularly embedded in
E there is a pull-back map i* on Chow groups. Let p := i*i*. Then, for any
q  1, we get the following diagram, with exact row:
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Thus we get a specialization map:

induced by the pull-back i*.
Now let X : = E 1 X R E2 3 . Then X is a regular scheme whose special fiber Xk,

with its reduced structure, is a divisor with normal crossings. Therefore the
preceding paragraph applies to X. X k has eight components:

These are all of the form E1k x S, with S a rational surface over k. Standard
computations of the Chow ring of a blow-up show that

It then follows easily that

In particular,

For cycles homologous to zero, the interesting part of this is the first direct
summand. To compute this, we use the following description of the Chow
groups of the components of E23k:

(here * denotes any point of 0:»1) with rulings chosen so that:

and:
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where CH1(P1 x P’) is identified with its image under pulling back along the
blow-down map: Bl{±}x{±}(P1 x P1) ~ P1 x P1. Recall that on the component
AA = Bl{±}x{±}(A x A), we denote by A + the strict transform of A x {+}, etc.
Then we have the following relations, for each Z2, Z3 = A or B and each a = +
or - :

With these conventions, the map i*i*: CH0(23k)~CH1(E23k) is given by
Table 1. Specifically, each row and column of Table 1 corresponds to a
component of (E23)k. The entry in row R and column C is the class of R n C as a
divisor on the component C. The self-intersections are computed using Propo-
sition 1.5 and the fact that each component has zero intersection with the divisor

(n). Then 03A31(E23) is the quotient of CH1(23k) by the row vectors of Table 1.
For computation, it is convenient to use a certain quotient of SI(E23): The

action of E2(K) x E3(K) on (E2 x E3). by translation can be extended to an
action on E23, which therefore induces an action on 1:1(E23)’ and we take the
coinvariants. The action is discussed in [7]. However, since we will not need to
use this geometric description, we just describe the quotient of E’(E23) directly.

First take 03A0 ~ Z8 with basis {u1, U2, v1, V2, l+ +, l+-, 1- +, 1- - ), and define a
surjective map CH1(23k)~03A0 by:

Here the notation [U]V means the class of the divisor U on the component V of
E23k-



Table 1. Intersection of components of E 23k



326

We denote by 03A3(E23) the push-out in the diagram:

Thus £(E23) has generators ul, u2, Vl, v2, 1+ +, 1+ -, 1- +, 1- -, with relations
obtained by projecting the rows of Table 1 by the map given in (2.1). This is
easily seen to give just the one relation:

We write £:= CH1(E1k) Q 03A3(E23). By composing with the specialization map 0",
we obtain the following:

PROPOSITION 2.1. There is a specialization map

Taking generators u1, U2, v1, V2, l+ +, l+-, l- +, l-- for 7L7, with the relation:

then Q is given by taking closure in XR and intersecting with components of Xk,
followed by the map (2.1) tensored with the identity on CH1(E1k). D

Let i be the involution on EiK given by (x, y) ~ (x, - y), and let 1: = l1 X l 2 X l3
on XK . This is the inverse for the group law, for a suitable choice of origin on the
Ei.

PROPOSITION 2.2. There is an automorphism i* of 2 such that the following
diagram commutes:
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Moreover, i* = ii if 23, where Z!3: 03A3(E23) -+ 03A3(E23) fixes u1, U2, Vl, V2, inter-
changes 1 + + and 1- -, and interchanges 1 + - and 1- + (notation as in Proposition
2.1).

Proof. Each i; acts on the smooth (over R) points of Ei, because that is the
Neron model. For i = 1, this is all of E1 For i = 2 or 3, ii acts by -1 on the group
of components Ei/EOi, which in our case is Z/2Z, so the components are fixed.
Each component is isomorphic to Pl, and the map is t H 1/t. It is straightfor-
ward to show that this map extends to all of Ei. It is then clear that the singular
points + and - of the fiber are interchanged. It follows that Z2 x 13 on E2 x E3
lifts to the blow-up E23, since the center of the blow-up is its own scheme-
theoretic inverse image under 12 x l3 The lifted map stabilizes the components
AA, AB, BA, BB and interchanges Q + + with Q - - and Q + - with Q-+. Thus for
Y one of the components AA, AB, BA, BB, i * acts on

CH1(Y) = CH1(b14pts(P1 x P1)) as the identity on CH1(P1 x P1) and by permut-
ing the exceptional lines. Specifically, [L++] and [L - - ] are switched, as are
[L+-] and [L-+]. The action on CH1(Q++) = CH1(P1 x P1) is to take

[LAA] = P1 x *]Q++ to [LAA] = [P1 x *]Q--, and [LAB] = [* x P1]Q++ to [LAB
= [* x P1]Q--. Referring to (2.1), this gives the proposition. 0

3. Specialization of C - iC

Recall that C = E1 xl?i E2 and C is its normalization. There is a

map cp:C-+E1xRE2 xRE30 Let 03C0i : Ei ~ P1 be the degree 2 maps given by
projecting onto the x-axis. Notice that 9: C ~ E1 x E2 x E3 is compatible with
all the ni, so ç factors through El Xpl E2 Xpl E3. In fact C is one of the two

components of the scheme E 1 x Pi E 2 x Pi E.
The following is straightforward.

PROPOSITION 3.1. The special fiber Ck has 3 components, E, B+, and B_,
with:

E = normalization of E1k Xpi A

where A and B are the components of E2k. All three components have multiplicity 1
in Ck. E is an elliptic curve isogenous to E1k, and B+ ~ B- ~ P1k. They intersect
as in the following diagram:
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To avoid confusion in what follows, I will denote the components of E2k by
A2, B2, and those of E3k by A3, B3.

PROPOSITION 3.2. ~: Ck -+ Elk X E2k X E3k is determined by the following:

Proof. The only thing left to check is the information about ~3. Since

03C03 ° ~3 = nl 0 91, the finiteness and ramification data for qJ31E are clear. In

particular, 03C03 ° ~3|E finite implies that ~3|E maps into A 3 .
Similarly, n3 0 ~3|B± = nl 0 ~1|B+ = {0} (constant map) implies that ~3|B±
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maps into B3. To see that these are isomorphisms, recall that qJ3 is induced by
the (rational) map El XP1RE2 ~ É3, given by the algebra homomorphism:

After blowing up the ideal (x, y, 03C0) in É3 and (x, Y2, n) in El X Pl Ê2, and
restricting to exceptional divisors, the map becomes (writing X, Y, P for x, y, 03C0 as
elements of S’(I), where I is the ideal):

where y’ = -cxpy, the two choices of yi corresponding to B+ and B -. This map
is clearly an isomorphism. Q

CONVENTION 3.3. Recall that 03C0-11(0) = {e+, e-} and that we are writing
{+, -} for both A2 n B2 and A3 n B3. Proposition 3.2 implies that

~3({e+} x {+, -}) = {+, -} Fix the labeling of the points + and - so that:

From (3.1) it then follows that ~3(e03B51, 82)=8182 for 03B51, 03B52 = + or -. D

Notice that

Therefore ~ lifts to a map ~’:B1{e±}x{±}(C)~X.
LEMMA 3.4. Let C03B51,03B52 be the exceptional divisor over (eEl, E2) in
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and qJ’(Cel,e2) does not meet Elk x A2B3 or E1k x B2A3, but meets E1k x A2A3 and
E lk x B2B3 transversall y in one point each.

Proof. The first statement is clear from Convention 3.3. The rest is easily
checked from the equations of the pertinent schemes. D

This lemma, together with Proposition 3.2, implies that each component of
~’(C’k) is contained in exactly one component of Xk. Thus qJ’ induces a map
fjJ: ’k ~ k of the normalizations (= disjoint union of the components). Then
03C3([CK]) can be computed using the following commutative diagram:

and computing the image of *[C’k].
Let E, B + and B- denote also the strict transforms of the components of Ck,

in Ck.

PROPOSITION 3.5. The map *:CH0(’k)~CH2(k) is given by:

Proof. ip*([E]) is the strict transform of ~*([E])~CH2(E1k x A2 x A3)-
Clearly, CPIE has degree 1 since already C ~ E1 xP1 E2 has degree 1. Therefore

(p.([E]) = lw(E)1.
Suppose


