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1. Introduction and main results

The purpose of this paper is to prove a new complement theorem for compact
subsets of a manifold. Consider two compacta embedded in the interior of a
piecewise linear manifold M of dimension greater than four. We show that the
compacta have homeomorphic complements in M provided that they satisfy the
inessential loops condition, have fundamental codimension three, and are shape
concordant in M x [0, 1].

Let us begin with some definitions. Throughout this note M denotes a closed
manifold of dimension n > 5, and I the unit interval [0, 1]. If X is a subset of
M x I and tel, then X, denotes the t-level X n(M x {t}) and X, denotes
Xou X,;. We will often identify M with M x {0} or M x {1} and thus consider
X, and X, to be subsets of M. A compact subset X of M x I is said to be a shape
concordance from X, to X, if the inclusion X; ¢ X is a shape equivalence for
each i =0,1. We say that a compact subset Y of a space Z satisfies the
inessential loops condition (abbreviated ILC) if for every neighborhood U of Y in
Z there exists a neighborhood V of Y in U such that each loop in V' — Y which is
null-homotopic in V is also null-homotopic in U — Y. A subset X of M x I
satisfies the proper inessential loops condition if X ,, X | and X satisfy the ILC in
M,, M, and M X I respectively. We use ‘~’ to denote ‘is homotopic to’ and ‘=’
to denote ‘is homeomorphic to’. The statement Sh(X) = Sh(Y) means that X and
Y have the same shape. The fundamental dimension of X is defined by
Fd(X) = min{dim Y |Sh(X) = Sh(Y)}. We refer to [10] for other definitions
related to shape theory.

The first complement theorem was proved by Chapman [1]. Let X, and X, be
two compacta with Sh(X,) = Sh(X,). If X, and X, are nicely embedded (as Z-
sets) in the Hilbert cube, then their complements are homeomorphic [1]. In
[15], a similar complement theorem is shown to hold if X, and X, are ILC
embedded in n-dimensional Euclidean space,n > 5and 2Fd(X,) + 2 < n. There
are also complement theorems for compacta in manifolds; in a manifold it is
necessary to add the additional assumption that the embeddings are homotopic.
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Beyond the trivial range, complements of shape equivalent ILC compacta in
Euclidean space need not be homeomorphic. For example, if X, is the disjoint
union of two copies of the 3-sphere and X, =~ X, it is possible to embed X, and
X, into the 7-sphere in such a way that their complements do not even have the
same homotopy type. Therefore additional conditions on the embeddings of X,
and X, are needed in order to guarantee the existence of a homeomorphism of
their complements. The main result of this paper supplies such conditions. It can
be viewed as a version of Stallings’ Neighborhood Isotopy Theorem for shape
theory.

THEOREM. Let X, and X, be two compact ILC subsets of the interior of the PL
n-manifold M, n>5. If X, and X, are shape concordant in M xI and
REMARK 1. Partial results for n = 4 have been given in [17] and [9], but the
general theorem is not known to hold in dimension 4.

REMARK 2. The theorem is a generalization of the complement theorems in
[11] and [8]. In those theorems additional hypotheses are imposed on the
compacta: in [11] it is assumed that the compacta have the shape of a finite
complex and in [8] restrictions are placed on the homotopy pro-groups. We
emphasize that neither 1-movability of X, nor the Mittag-Leffler condition on
pro-n(X,) is required here. Our theorem supplies a positive answer to
[12, Question 2(a)].

REMARK 3. The theorem is also (indirectly) a generalization of the comple-
ment theorems of [6] and [7]. That is so because [5] can be used to supply the
shape concordance needed in the hypothesis of our theorem. In order to see this,
note that if pro-n;(X,) is stable for i < r and Mittag-Leffler for i = r, then X, is
pointed r-movable (for example, refer to [2, Theorem 4] and [10, Theorem 6, p.
203]). Thus two compacta X, and X, which satisfy the hypotheses of [6,
Theorem 3] are actually shape concordant by [5, Theorem 1].

One way in which the proof given here differs from that in [8] is that we do
not appeal to the theorem in [6], but give a new, independent proof of the
complement theorem which uses only the Concordance Implies Isotopy
Theorem of Hudson. The main Theorem is a direct consequence of the following
Propositions. They spell out two technical facts about shape concordances
which may be of independent interest: If ILC compacta are concordant at all
then they are concordant via a proper ILC concordance and if the concordance
satisfies the proper ILC, then the complement of the concordance is a product.

PROPOSITION 1. Suppose X, X, < M", n = 5, are ILC compacta which are
shape concordant via a compactum X in M x I. If FA(X,) < n — 3, then there is a
concordance Y from X, to X such that Y satisfies the proper inessential loops
condition.
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PROPOSITION 2. Suppose Xy, X; =« M", n = 5, are compacta which are shape
concordant via a compactum X in M x 1. If Fd(X,) < n — 3 and X satisfies the
proper inessential loops condition, then M xI) — X =~ (M — X) x I.

REMARK 4. Proposition 2 is reminiscent of Hudson’s Concordance Implies
Isotopy Theorem [3].

2. Construction of proper ILC concordances

In this section we will show how to replace a concordance whose ends are ILC
embedded in M with a proper ILC one. Observe that without loss of generality
we may assume in all the aforementioned statements that

(@ X n(Mx[0,1]) = X,x[0, 3], and
(b) Xn(Mx[3 1) =X, x[3 11

In the following, if 4 is a subset of B, 1, will denote the inclusion map 1: 4 — B.

LEMMA 1. Let X = M x I be a shape concordance between X , and X | and let U
be a given neighborhood of X. Then there is a smaller neighborhood V of X and a
homotopy h,: V— U such that

(1) ho =1y,

2) hy (V)< Uy, and

(3) h | Vo =1y, for every tel.

Proof. Since 1x,: X, — X is a shape equivalence, there is a neighborhood W
of X in U, a neighborhood Wy, of X, in W, and a homotopy f,: W— U such that

(L) fo=1w,
(1.2) fi(W)c Uy, and
(13) fl I Wé) >~ lwz) in UO’

‘We must now improve the homotopy to achieve condition (3). Choose V to be
a PL manifold neighborhood of X such that V< (W — W) u Wy, By use of (1.3)
and the homotopy extension property we can assume that

A3) filVe = ly,-

We then use the technique in the proof of [14, Theorem 1.4.11] to find the
homotopy h, that we need.

LEMMA 2. Let X < M x I be a shape concordance from X o to X, and let U be a
neighborhood of X. If X, satisfies ILC in (M x I);, then there exists a polyhedron
Qin Uy, aPL map g: Q xI — U and a homotopy B,: X — U such that

(1) Q is a spine of a neighborhood of X, in U, = M, with dim Q < Fd(X,),
(2) g(x, 1) = x for all xeQ,
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(3) g(x, 0)eU, for all xeQ,

@ Bo=1x: XU,

(5) B1(X) = g(Q xI)u P, where P is a spine of a neighborhood of X in U,, and
6) B(Xzx1) < U,

Proof. Let k denote Fd(X ) = Fd(X,;) < n — 3. Let N, be a neighborhood of
X, in U, such that N, \ P where P is a polyhedron of dimension k from [16,
Theorem 4.1]. Let V be a neighborhood of X in U’ = (U — U,) u (Int N,) given
by Lemma 1 such that i1,: V- U’ is homotopic (relV,) to a map
f: V- Uy = Int N,. Following this homotopy by the collapse N, \ P gives us a
homotopy a,: V- U’ = U with aq = 1, and a,(V) = P.

From [16, Theorem 4.1], there is a neighborhood N, of X, such that
N,; x [3,1] = Vand N, \ Q, where Q is a subpolyhedron of dimension k. Let r,
denote a strong deformation retraction of N, to Q. Let ¢: [3, 1] - [0, 1] bea PL
map with ¢([2, 1]) = 1 and ¢(2) = 0. Define a homotopy y,: X = V by u, = 1 on
X N (M x[0,3]), and p,(x, s) = (r,.p(x), 5) if xe X, and % < s < 1. Notice that
w(X) A (M x5 1]) < @ x [ 11,

Set X'=pu,(X)n(Mx[0,2]). Define a homotopy 4,:pu,(X)—U by
Al X' =0a,|X", and A,|Qx[Z, 1] stretches out the fibers so that A, maps
0 x[2, 1] onto (Q x [, 1)) U a((Q x {2}) x [0, t]). Define g in such a way that
g(Q@ x[0,1]) = @ x[2, 1] u (@ x {2}) x [0, 1]) and, finally, define B to be the
homotopy u followed by A.

DEFINITION. If A < K x I, we define the shadow of A by
2(A) = {(x, 1) | (x, s)e A for some s > t}.

LEMMA 3. Let X .c M"x1,n> 5, be a shape concordance from X, to X, and
let U be a neighborhood of X. If X, is ILC in (M x I); and Fd(X,) = k <
n — 3, then there is a subpolyhedron L of U such that

(1) dimL; =k and dimL =k + 1,

(2) L, is a spine of a neighborhood of X, in Uy,

(3) L\ Ly, and

(4) there is a homotopy B,: X — U such that B, = 1y, B1(X) = L and B,(X;) < U,
forall tel.

Proof. The proof is essentially the same as that of [8, Lemma 3], but for the
sake of completeness we include an outline here. Let r = 2k + 2 — n and let
V© = U. Define inductively a sequence of neighborhoods of X:
VO 5y 5. 5 Y0 guch that each inclusion satisfies the conclusions of
Lemma 1, above.

Let g;: K xI - V™ be a map given by Lemma 2, where K is a spine of a
neighborhood of X, in V{). Assume that g, is in general position with singular
set S of dimension <r — 1. We propose to construct L by attaching ‘fins’ to
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g1(K x I') along the shadow of the singular set. Let £ = K x I be the shadow of
SW: then SV <=M, dimE®M <r and g¢,(KxI)}g,E"P (K x{0})). Let
LY =g,(K xI)and LV*=IY0u(g,(EV) x I)/~ where ~ is defined by x~(x,0)
for every xeg,(Z"). By the choice of V", we can extend i1: [} - V®
to a map g,: [V* >V Y such that g,(L""*)n M, =Kx{1} and
GBI AM, = g,[g,(K x {0)U(g,(EVAK x {0}) x I)U(g,(ED) x {1})].
Assume that g, is in general position, with singular set S® of dimension
<r—2 and shadow X@. Define [P=g,(L"*) VY and L[**=
L2 U (g5(E®) x I)/ ~. Continue to define L'> = g5(L'?*) = V2, and so on.
Finally, L= g, (L”*) < V@ and L\ L,

From now on, whenever i is an integer, we will define i to be 0 if i is even and 1
otherwise. If P is a subpolyhedron of a PL manifold, N(P) denotes a regular
neighborhood of P (refer to [4]).

Proof of Proposition 1. Since M x I is an ANR, the homotopy of X given by
Lemma 3 may be extended to a neighborhood of X in M x I. Applying Lemma 3
repeatedly gives a sequence of neighborhoods UY of X and polyhedra [V < UV
with X = (2o, UY such that for each j there is a homotopy pU*":
UU*D %] - UY such that B4+ = yuen, BY+D: UUHD 5 9, ﬂ(1+1)(U(1+1)
xI)c UY, and L‘”&I;‘” Letr = 2Fd(X,) + 2 — n. Foreachj > rand k > j, we
claim that there is an isotopy h, of M x I rel(M xI) — UY™")u (M x I); such
that hy = idy 7, and hy(L®) = N(L? 0 UY 7).

Proof of the claim. Make BY*Y a PL map and put the track
BUTV(P x I) = VD of the homotopy BY* 1 in general position with respect to
L% U [, By piping, we can find a polyhedron £ < BU* (¥ x I) such that £
contains the image of the singular set of YU*1D, dimZX < Fd(X,), and
BUTLP x )\, T U BY+ LY. The collapse L“’\,Lr” gives a homotopy of
LN LY down to U{”. Use Lemma 1 to attach cells to [VUE c [V
U BYT (P x I)asin 'the proof of Lemma 3 to obtain a polyhedron P =« UY™"
with the following properties:

(1) P\L'YL P;, and
(2) there is an isotopy h, which is rel(M x I) — UY™" and pushes I¥ into a
regular neighborhood of P.

By using thin collars on (M x I); in M x I, we may assume that b, | (M x I); = id.
On the other hand, observe that Pu U“ ")\ LD U U“ . Therefore
N(Pu U“ "= NI U(J ™) up to PL 1sotopy This completes the proof of
the clalm

We now return to the proof of Proposition 1. By the claim (tak-
ing subsequences, if necessary, and replacing N(L” v Uj; U=y with
h™ Y (NI 0 U]i.jf')))), we may assume further that N(L(’“) UY:,”)
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N(L9 O U4”) for each j. Let Y = ();2o N(L? U U{”). Then
N NLPuUP) =Y = () NP v U).
j=0 j=1

Note that Y satisfies the proper ILC since any 2-dimensional polyhedron can be
pushed off Y and that X, = Y, ¢, Y and X, = Y, ¢, Y are shape equivalences
since N(L'’u Ui.“))\, Uj(”.

3. Complements of proper ILC concordances

In this section we will construct a sequence of neighborhoods of a proper ILC
concordance. We will apply Hudson’s Concordance Implies Isotopy Theorem
to gradually straighten out the neighborhoods and eventually prove that the
complement is a product.

DEFINITION. Let P = L be two polyhedrain M x I. A collapse L\ P is proper
if the collapse induces a strong deformation retraction which keeps L, in
M x {0} and L, in M x {1}.

LEMMA 4. Suppose X « M"x I, n > 5, is a shape concordance from X, to X
which satisfies the proper ILC and Fd(X,) = k < n — 3. For every neighborhood
U of X there exists a compact PL manifold neighborhood V of X in U and a
proper collapse V'\, P, where P is a compact polyhedron of dimension <n — 2.
Furthermore, dim P, = k and P; is a spine of V, for i =0, 1.

Proof. Since X satisfies ILC in (M x I);, we can use [16, Theorem 4.1] to
find a PL manifold neighborhood V of X in U such that

(a) Vn (M X [0’ %]) = VO X [O’ %]’
(b) V(M x[E 1]) =V x[3, 1], and
(c) for each i =0, 1, V;\ P;, where P; is a polyhedron of dimension k.

It is then clear that there is a proper collapse V \ P for some n-dimensional
polyhedron P with PV, = P, (i = 0, 1). A triangulation of P determines, in a
natural way, a handle decomposition of ¥ modulo V,u V;. This handle
decomposition has handles of index <n. We wish to eliminate the handles of
index n and n — 1; a spine of the remaining manifold is the polyhedron P we
seek.

First, consider an n-handle. Its cocore is an arc whose endpoints miss X. Since
Fd(X) < n — 3, we can push the arc off X with an isotopy and thus eliminate the
n-handle. Next, consider an (n — 1)-handle. Its cocore is a 2-disk whose
boundary misses X. We claim that it is possible to push this cocore off X with an
ambient isotopy as well and thus eliminate the (n — 1)-handle. In order to
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demonstrate this, we must produce a homotopy which pushes the disk off X,
keeping its boundary fixed. Let X' = X n (M x [, £]). Since X" is in the interior
of M x1, it is possible to push the cocore off X' in M x I [15, Lemma 1].
Projecting M x I onto M x [L, 2] gives a homotopy which pushes the cocore
into (U — X)n(M x [§¢])u U, 6 U Usjs. Now apply [15, Lemma 1] again to
push the cocore off X, in U, for t =1 and 2.

For convenience we make the following technical definition.

DEFINITION. A collapsible defining sequence for a concordance X in M x I is
a sequence of PL manifold neighborhoods N® of X in M x I such that

(1) each N®*V < Int N®,
2 X = ﬂf:ON‘“, and
(3) N\ N¥ for each i.

LEMMA 5. Let X =« M x1 be a proper 1LC concordance from X, to X,. If
dimM =n>5 and Fd(X,) = k < n — 3, then there is a collapsible defining
sequence for X in M x I.

Proof. Choose a sequence of compact PL manifold neighborhoods
{U'li=0,1,...} of X such that X = ()2, U’. We will inductively construct
N®so that N < U%and N® « U nInt N¢~ 1 for i > 0. We will describe the
construction for i even (say i = 0). The case i odd is handled similarly by just
interchanging the subscripts 0 and 1.

Let r = 2Fd(X,) + 2 — n. Use Lemma 3 to choose a subpolyhedron L of U"
such that L \ L, = U¥}. By Lemma 4 there is a small neighborhood V of X which
has a codimension-3 spine P. Lemma 3 gives a homotopy f,: P — U" satisfying
the following properties:

(1) BO = lP&
(2) Bi(P) = L, and
(3) B.(Py) = U5 for all tel.

We can therefore engulf P (and thus also V) with a regular neighborhood of
Lo Uy "= Lu U} (see the proof of Proposition 1). Let N© be a small collar of
U} together with the inverse image of a regular neighborhood of L under the
engulfing isotopy. Then X « V=« N@ < U° and NO\ NP < UJ.

To continue, define U to be the neighborhood V n U” of X. From Lemma 3
there is a polyhedron K = U™ such that K\ K,. As above, we can produce a
PL isotopy relM xI — U®M)u (M x0I) which takes K to K* such that
K*oU{® has a regular neighborhood N with X c N® < U™ and
NO\N® = U, Continuing this procedure will complete the proof of the
Lemma.
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Proof of Proposition 2. Let N be a neighborhood of X (from Lemma 5) such
that N\ N and let K© be a spine of N{®). Regular neighborhood theory
shows that N =~ N{¥ x I. Thus the projection map K x {1} - K©® < N{?
extends to a PL embedding e: (K@ x I, K@ x {0}) - (N‘©, N{). By [3] there is
an isotopy h' of M x I which pushes e(K® x I) to the straight vertical copy
K@ x I and has compact support. Now use Lemma 5 again to find a smaller
neighborhood N of h}(X) such that N\ N{" and let K* be a spine of N V.
Again, N ~ N{U x I, so there exists a PL embedding of K™ x I into NV,
Apply [3] again to get an isotopy which straightens out this embedding of
KM x I. The composition of the two isotopies will push X into N(K®) x I,
where N(K'?) is a small regular neighborhood of K@ in M,,.

Now replace M with N(K{). Continuing in the fashion described in the
preceding paragraph gives an infinite sequence of isotopies whose composition
converges, on (M xI)—X, to a homeomorphism between (M xI) — X and
(M — Xo)x I

REMARK 5. Proposition 2 can also be proved by applying the proper h-
cobordism theorem of Siebenmann [13] to the cobordism (M xI — X;
M, — X,, M| — X,). First use the fact that X is a proper ILC concordance to
verify conditions (r,),, and (H,),, in [13, Proposition IV] and thus conclude
that the cobordism is a proper h-cobordism. Then use a collapsible defining
sequence for X to prove that both obstructions ¢, and ©’ vanish.
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