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1. Introduction and main results

The purpose of this paper is to prove a new complement theorem for compact
subsets of a manifold. Consider two compacta embedded in the interior of a

piecewise linear manifold M of dimension greater than four. We show that the
compacta have homeomorphic complements in M provided that they satisfy the
inessential loops condition, have fundamental codimension three, and are shape
concordant in M x [0, 1].

Let us begin with some definitions. Throughout this note M denotes a closed
manifold of dimension n  5, and 7 the unit interval [0,1]. If X is a subset of
M x 7 and t ~ I, then X r denotes the t-level X ~ {M  {t}) and X a denotes
X0 ~ X1. We will often identify M with M x {0} or M  {1} and thus consider
Xo and X to be subsets of M. A compact subset X of M x I is said to be a shape
concordance from X o to X 1 if the inclusion Xi  X is a shape equivalence for
each i = 0, 1. We say that a compact subset Y of a space Z satisfies the

inessential loops condition (abbreviated ILC) if for every neighborhood U of Y in
Z there exists a neighborhood of Y in U such that each loop in V - Y which is
null-homotopic in V is also null-homotopic in U - Y. A subset X of M x I
satisfies the proper inessential loops condition if X o, X1 and X satisfy the ILC in
Mo, M 1 and M x 7 respectively. We use ’~’ to denote ’is homotopic to’ and ’~’
to denote ‘is homeomorphic to’. The statement Sh(X) = Sh(Y) means that X and
Y have the same shape. The fundamental dimension of X is defined by
Fd(X) = min{dim Y| Sh(X) = Sh(Y)}. We refer to [ 10] for other definitions
related to shape theory.
The first complement theorem was proved by Chapman [1]. Let X o and X1 be

two compacta with Sh(Xo) = Sh(X1). If X o and X1 are nicely embedded (as Z-
sets) in the Hilbert cube, then their complements are homeomorphic [1]. In
[15], a similar complement theorem is shown to hold if Xo and X 1 are ILC
embedded in n-dimensional Euclidean space, n  5 and 2 Fd(Xo) + 2  n. There
are also complement theorems for compacta in manifolds; in a manifold it is
necessary to add the additional assumption that the embeddings are homotopic.
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Beyond the trivial range, complements of shape equivalent ILC compacta in
Euclidean space need not be homeomorphic. For example, if Xo is the disjoint
union of two copies of the 3-sphere and X1 ~ Xo, it is possible to embed X o and
Xl into the 7-sphere in such a way that their complements do not even have the
same homotopy type. Therefore additional conditions on the embeddings of Xo
and X1 are needed in order to guarantee the existence of a homeomorphism of
their complements. The main result of this paper supplies such conditions. It can
be viewed as a version of Stallings’ Neighborhood Isotopy Theorem for shape
theory.

THEOREM. Let X o and X, be two compact ILC subsets of the interior of the PL
n-manifold M, n  5. If X o and X1 are shape concordant in M x 1 and

Fd(Xo) 6 n - 3, then M - X0 ~ M - X1.
REMARK 1. Partial results for n = 4 have been given in [17] and [9], but the
general theorem is not known to hold in dimension 4.

REMARK 2. The theorem is a generalization of the complement theorems in
[11] and [8]. In those theorems additional hypotheses are imposed on the
compacta: in [11] it is assumed that the compacta have the shape of a finite
complex and in [8] restrictions are placed on the homotopy pro-groups. We
emphasize that neither 1-movability of Xo nor the Mittag-Leffler condition on
pro-n*(X 0) is required here. Our theorem supplies a positive answer to

[12, Question 2(a)].

REMARK 3. The theorem is also (indirectly) a generalization of the comple-
ment theorems of [6] and [7]. That is so because [5] can be used to supply the
shape concordance needed in the hypothesis of our theorem. In order to see this,
note that if pro-03C0i(X0) is stable for i  r and Mittag-Leffler for i = r, then X o is
pointed r-movable (for example, refer to [2, Theorem 4] and [10, Theorem 6, p.
203]). Thus two compacta X o and X1 which satisfy the hypotheses of [6,
Theorem 3] are actually shape concordant by [5, Theorem 1].
One way in which the proof given here differs from that in [8] is that we do

not appeal to the theorem in [6], but give a new, independent proof of the
complement theorem which uses only the Concordance Implies Isotopy
Theorem of Hudson. The main Theorem is a direct consequence of the following
Propositions. They spell out two technical facts about shape concordances
which may be of independent interest: If ILC compacta are concordant at all
then they are concordant via a proper ILC concordance and if the concordance
satisfies the proper ILC, then the complement of the concordance is a product.

PROPOSITION 1. Suppose X o, X1 c M", n  5, are ILC compacta which are
shape concordant via a compactum X in M x I. If Fd(X0)  n - 3, then there is a
concordance Y from Xo to X 1 such that Y satisfies the proper inessential loops
condition.
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PROPOSITION 2. Suppose Xo, X1 ~ Mn, n  5, are compacta which are shape
concordant via a compactum X in M x I. If Fd(X0)  n - 3 and X satisfies the
proper inessential loops condition, then (M x I) - X ~ (M - Xo) x l.

REMARK 4. Proposition 2 is reminiscent of Hudson’s Concordance Implies
Isotopy Theorem [3].

2. Construction of proper ILC concordances

In this section we will show how to replace a concordance whose ends are ILC
embedded in M with a proper ILC one. Observe that without loss of generality
we may assume in all the aforementioned statements that

(a) X n (M x [0, 1 3]) = Xo x [0, 1 3], and
(b) X n (M x [2 3, 1]) = X1 x [2 3, 1].

In the following, if A is a subset of B, IA will denote the inclusion map i : A - B.

LEMMA 1. Let X c M x I be a shape concordance between Xo and X1 and let U
be a given neighborhood of X. Then there is a smaller neighborhood Vof X and a
homotopy ht: V- U such that

(1) ho = ’v,
(2) h1(V) c Uo, and
(3) ht j ho =.lyo for every t ~ I.

Proof Since lX0 : X0 ~ X is a shape equivalence, there is a neighborhood W
of X in U, a neighborhood W’0 of X o in Wo and a homotopy f,: W ~ U such that

(1.1) fo = ’W,
(1.2) f,(W) c U 0, and
(1.3) f, 1 W’0 ~ lW’0 in Uo.

We must now improve the homotopy to achieve condition (3). Choose V to be
a PL manifold neighborhood of X such that V c (W - Wo) u W’0. By use of (1.3)
and the homotopy extension property we can assume that

(1.3)’ f, 1 Vo = lV0.

We then use the technique in the proof of [14, Theorem 1.4.11J to find the
homotopy ht that we need.

LEMMA 2. Let X c M x I be a shape concordance from X o to X1 and let U be a
neighborhood of X. If X a satisfies ILC in (M x I)~, then there exists a polyhedron
Q in Ul, a PL map g: Q x I ~ U and a homotopy 03B2t: X ~ U such that

(1) Q is a spine of a neighborhood of X1 in U1 ~ M1 with dim Q  Fd(X1),
(2) g(x, 1) = x for all x E Q,
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(3) g(x, 0) ~ U0 for all x~Q,
(4) 03B20=lX:X~U,
(5) 03B21(X) c g(Q  I) ~ P, where P is a spine of a neighborhood of Xo in V 0’ and
(6) 03B2(X~ I)~U~.

Proof Let k denote Fd(X0) = Fd(X1)  n - 3. Let No be a neighborhood of
Xo in U0 such that No  P where P is a polyhedron of dimension k from [16,
Theorem 4.1]. Let V be a neighborhood of X in U’ = (U - V 0) u (Int N°) given
by Lemma 1 such that lV: V~ U’ is homotopic (rel V0) to a map

f: V~ U’0 = Int No. Following this homotopy by the collapse N0  P gives us a
homotopy (Xt: V~ U’ c U with ao = iY and 03B11(V) ~ P.
From [16, Theorem 4.1], there is a neighborhood N1 of XI such that

N1  [2 3, 1] c Vand N1  Q, where Q is a subpolyhedron of dimension k. Let rt
denote a strong deformation retraction of N1 to Q. Let ~: [2 3, 1] - [0, 1] be a PL
map with ~([5 6, 1]) = 1 and ~(2 3) = 0. Define a homotopy ,ut: X - V by Ilt = 1 on
X n (M x [0, 2 3]), and 03BCt(x, s) = (rt.~(s)(x), s) if x ~ X1 and 3 2  s  1. Notice that
03BC1(X) ~ (M [5 6, 1]) ~ Q [5 7, 1].

Set X1 = 03BC1(X) n (M x [0, 5 6]). Define a homotopy Ât: 03BC1(X) ~ U by
Ât 1 Xl = at |X1, and Ât |Q  [5 6, 1] stretches out the fibers so that Ât maps
Q x ri, 1] onto (Q x ri, 1]) u 03B1((Q x {5 6}) x [0, t]). Define g in such a way that
g(Q x [0, 1]) = Q x [5 6, 1] u 03B1((Q x {5 6}) x [0, 1]) and, finally, define 03B2 to be the
homotopy Il followed by Â.

DEFINITION. If A c K x I, we define the shadow of A by

03A3(A) = {(x, t)| (x, s) E A for some s  t}.

LEMMA 3. Let X c M" x I, n  5, be a shape concordance from X0 to XI and
let U be a neighborhood of X. If Xa is ILC in (M x I)~ and Fd(Xo) = k 
n - 3, then there is a subpolyhedron L of U such that

(1) dim La = k and dim L = k + 1,
(2) L1 is a spine of a neighborhood of XI in VI,
(3) L 1 Lo, and
(4) there is a homotopy 03B2t: X ~ U such that 03B20 = ’x, 03B21(X) c L and 03B2t(X~)~U~

for all t~I.

Proof. The proof is essentially the same as that of [8, Lemma 3], but for the
sake of completeness we include an outline here. Let r = 2k + 2 - n and let
V(0) = U. Define inductively a sequence of neighborhoods of X:

V(0) ~ V(1) ~ ··· ~ V(r) such that each inclusion satisfies the conclusions of

Lemma 1, above.
Let g1: K  I~ v(r) be a map given by Lemma 2, where K is a spine of a

neighborhood of Xl in V(r)1. Assume that g 1 is in general position with singular
set S(1) of dimension  r - 1. We propose to construct L by attaching ’fins’ to
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g 1 (K x 7) along the shadow of the singular set. Let 03A3(1) c K  I be the shadow of

S(1); then S(1) c L(1), dim 03A3(1)  r and g1(K  1)  g1(03A3(1) ~ (K {0})). Let

where - is defined by x~(x,0))
for every x~g1(03A3(1)). By the choice of y(r), we can extend l:L(1)~V(r)
to a map g2: L(1),* --+ V(r-1) such that g2(L(1),*)~M1 = K {1} and

g2(L(1),*)~M0 = g2[g1(K {0})~(g1
Assume that g2 is in general position, with singular set S(2) of dimension

 r-2 and shadow 03A3(2). Define L(2)=g2(L(1),*) ~V(r-1) and L(2),* =

L(2)~(g2(03A3(2) I)/~. Continue to define L(3) = g3(L(2),*) ~ V(r-2), and so on.
Finally, L = gr+1(L(r),*) ~ y(O) and L B Lo.

From now on, whenever i is an integer, we will define l to be 0 if i is even and 1
otherwise. If P is a subpolyhedron of a PL manifold, N(P) denotes a regular
neighborhood of P (refer to [4]).

Proof of Proposition 1. Since M x 1 is an ANR, the homotopy of X given by
Lemma 3 may be extended to a neighborhood of X in M x 1. Applying Lemma 3
repeatedly gives a sequence of neighborhoods U(j) of X and polyhedra L(j) c UU)
with X=~~j=0U(j) such that for each j there is a homotopy 03B2(j+1):
U(j+1) I~U(j) such that 03B2(j+1)0=lU(j+1), 03B2(j+1)1:U(j+1)~ L(j), 03B2(j+1)(U(j+1)~ &#x3E;

 I) c U(j)~, and L(j)  L(j)j. Let r = 2 Fd(Xo) + 2 - n. For each j &#x3E; r and k &#x3E; j, we
claim that there is an isotopy ht of M x 1 rel((M  I) - UU-r») u (M x I)~ such
that ho = idM I, and h1(L(k)) c N(L(j) ~ U(j-r) j).

Proof of the claim. Make 03B2(j+1) a PL map and put the track

03B2(j+ 1)(L(k) x 1) c y(j) of the homotopy 03B2(j+1) in general position with respect to
IJk) u L(j). By piping, we can find a polyhedron E c 03B2(j+1)(L(k) x I) such that L
contains the image of the singular set of 03B2(j+1), dim 03A3  Fd(X0), and

03B2(j+1)(L(k) I)03A3~03B2(j+1)1(L(k)). The collapse L(j)L(j)j gives a homotopy of

03A3~L(j) down to U(j)j. Use Lemma 1 to attach cells to L(j)~03A3~L(j)
U 03B2(j+1)(L(k) x 1) as in the proof of Lemma 3 to obtain a polyhedron P c U(j-r)
with the following properties:

(1) PL(j)~Pj, and
(2) there is an isotopy ht which is rel(M I) - U(j-r) and pushes L(k) into a

regular neighborhood of P.

By using thin collars on (M x I)~ in M x I, we may assume that hj (M x I)~ = id.
On the other hand, observe that P~U(j-r)j)  L(j)~U(j-r)j. Therefore

N(P~ U(j-r)j ~ N(L(j) ~ U(j-r)j) up to PL isotopy. This completes the proof of
the claim.

We now return to the proof of Proposition 1. By the claim (tak-
ing subsequences, if necessary, and replacing N(L(j)~U(j-r)j) with

h-1(N(L(j)~U(j-r)j))), we may assume further that N(L(j+1)~U(j+1)j+1 ~
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N(L(j) u U(j)j) for each j. Let Y =  U(j)j). Then

Note that Y satisfies the proper ILC since any 2-dimensional polyhedron can be
pushed off Y and that X0=Y0Y and X1 = Y, 4 Y are shape equivalences
since N(L(j) ~ U(j)j  U(j)j.

3. Compléments of proper ILC concordances

In this section we will construct a sequence of neighborhoods of a proper ILC
concordance. We will apply Hudson’s Concordance Implies Isotopy Theorem
to gradually straighten out the neighborhoods and eventually prove that the
complement is a product.

DEFINITION. Let P c L be two polyhedra in M x I. A collapse L 1 P is proper
if the collapse induces a strong deformation retraction which keeps Lo in

M  {0} and L1 in M  {1}.

LEMMA 4. Suppose X c M" x I, n  5, is a shape concordance from Xo to X1
which satisfies the proper ILC and Fd(Xo) = k  n - 3. For every neighborhood
U of X there exists a compact PL manifold neighborhood V of X in U and a

proper collapse V  P, where P is a compact polyhedron of dimension  n - 2.
Furthermore, dim Pi = k and Pi is a spine of Vi for i = 0, 1.

Proof. Since X a satisfies ILC in (M x I)a, we can use [16, Theorem 4.1] to
find a PL manifold neighborhood V of X in U such that

(a) V~(M [0, 1 6]) = V0  [0, 6],
(b) V~(M [5 6, 1]) = V1 x [6, 1], and
(c) for each i = 0, 1, g 1 Pi, where Pi is a polyhedron of dimension k.

It is then clear that there is a proper collapse V  P for some n-dimensional
polyhedron P with  triangulation of P determines, in a
natural way, a handle decomposition of V modulo V0 ~ Vl. This handle

decomposition has handles of index  n. We wish to eliminate the handles of
index n and n - 1; a spine of the remaining manifold is the polyhedron P we
seek.

First, consider an n-handle. Its cocore is an arc whose endpoints miss X. Since
Fd(X)  n - 3, we can push the arc off X with an isotopy and thus eliminate the
n-handle. Next, consider an (n - l)-handle. Its cocore is a 2-disk whose

boundary misses X. We claim that it is possible to push this cocore off X with an
ambient isotopy as well and thus eliminate the (n - l)-handle. In order to
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demonstrate this, we must produce a homotopy which pushes the disk off X,
keeping its boundary fixed. Let X’ = X n (M x [1 6, 5 6). Since X’ is in the interior
of Mx7, it is possible to push the cocore off X’ in M I [15, Lemma 1].
Projecting M x 1 onto M x [1 6, iJ gives a homotopy which pushes the cocore
into ((U - X) n (M x [1 6, 5 6]) u U l/6 U U5/6. Now apply [15, Lemma 1] again to
push the cocore off X in Ut for t = 6 and i.

For convenience we make the following technical definition.

DEFINITION. A collapsible defining sequence for a concordance X in M x 1 is
a sequence of PL manifold neighborhoods N(i) of X in M x 1 such that

(1) each N(i+1) ~ Int N(i),
(2) X = ~~i=0 N(i), and
(3) N(i)N(i)i for each i.
LEMMA 5. Let X c M x 1 be a proper ILC concordance from X0 to X1. If
dim M = n  5 and Fd(X 0) = k  n - 3, then there is a collapsible defining
sequence for X in M x 1.

Proof. Choose a sequence of compact PL manifold neighborhoods
{Ui | 1 = 0, 1, ...} of X such that X = ~i=0 Ui. We will inductively construct
N(i) so that N(0) c U° and N(i) c U n Int N(i-1) for i &#x3E; 0. We will describe the

construction for i even (say i = 0). The case i odd is handled similarly by just
interchanging the subscripts 0 and 1.

Let r = 2 Fd(X0) + 2 - n. Use Lemma 3 to choose a subpolyhedron L of ur
such that L  Lo c UÓ. By Lemma 4 there is a small neighborhood V of X which
has a codimension-3 spine P. Lemma 3 gives a homotopy 03B2t: P ~ ur satisfying
the following properties:

(1) 03B20 = lP,
(2) Pl (P) c L, and
(3) 03B2t(P~) ~ Ur~ for all t~I.

We can therefore engulf P (and thus also V) with a regular neighborhood of
L ~ Ur-r0 = Lu ug (see the proof of Proposition 1). Let N(0) be a small collar of
ug together with the inverse image of a regular neighborhood of L under the
engulfing isotopy. Then X c V c N(0) c U0 and N(0)N(0)0 U00.
To continue, define U(1) to be the neighborhood V n ur of X. From Lemma 3

there is a polyhedron K c U(1) such that K  K1. As above, we can produce a
PL isotopy rel(M  I - U(1))~ (M  ~I) which takes K to K* such that

K*~ U(1)1 has a regular neighborhood N(1) with X c N(1) c U(1) and

N(1)N(1)1 c U(1)1. Continuing this procedure will complete the proof of the
Lemma.
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Proof of Proposition 2. Let N(O) be a neighborhood of X (from Lemma 5) such
that N(0)  N(0)0 and let K(0) be a spine of NBO). Regular neighborhood theory
shows that N(0) ~ NbO) x I. Thus the projection map K(0)  {1} ~ K(0) c N(o)
extends to a PL embedding e: (K(0) x I, K(0) x {0}) ~ (N(0), N(0)0). By [3] there is
an isotopy hl of M x I which pushes e(K(0) x I) to the straight vertical copy
K(0) x I and has compact support. Now use Lemma 5 again to find a smaller
neighborhood N(1) of hl(X) such that N(1)  N(l) and let K(1) be a spine of N(1)0.
Again, N(1) ~ N (11) x I, so there exists a PL embedding of K (’) x I into N(1).
Apply [3] again to get an isotopy which straightens out this embedding of
K(1) x I. The composition of the two isotopies will push X into N(K(0)) x I,
where N(K(0)) is a small regular neighborhood of K(0) in Mo.
Now replace M with N(KbO». Continuing in the fashion described in the

preceding paragraph gives an infinite sequence of isotopies whose composition
converges, on (M  I ) - X, to a homeomorphism between (M  1 ) - X and
(M - Xo) x I.

REMARK 5. Proposition 2 can also be proved by applying the proper h-
cobordism theorem of Siebenmann [13] to the cobordism (M  I - X;
M° - Xo, M1 - X1). First use the fact that X is a proper ILC concordance to
verify conditions (03C01)~ and (H*)~ in [13, Proposition IV] and thus conclude
that the cobordism is a proper h-cobordism. Then use a collapsible defining
sequence for X to prove that both obstructions fI 00 and r’ vanish.
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