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Introduction

Let g be a complex classical simple Lie algebra and let U(g) be its universal
enveloping algebra. If M is a simple U(g)-module and 7 = Ann(M) is the

annihilator of M in U(g), then I is called a primitive ideal. In the case where g is of
type A", the classification of primitive ideals is due to Joseph, [5, 6]. To each
element w E W of the Weyl group there can be attached a primitive ideal 1w (of
fixed infinitesimal character, see below for more detail). The classification has
been reduced by Duflo [2] to the problem of determining when I., = Iw, for w,
w’ E W. In this case we have W = Sn+1 the symmetric group on n + 1 letters.
Joseph answered this question using the Robinson-Schensted algorithm and
obtained a complete invariant of Iw, the Young tableau produced by the
Robinson-Schensted algorithm, which we may call T(w), i.e. Iw~Iw, if and only if
T(w) ~ T(w’). In [10], Vogan introduced the notion of the generalized T-

invariant of a primitive ideal, and showed that in case An it was a complete
invariant (see also Jantzen, [4]). The aim of this paper, of which these six sections
constitute Part I, is to prove analogous results to those of [5, 6] and [10] about
the classification of primitive ideals for g of types Bn, Cn, and Dn, and about the
generalized 03C4-invariant of a primitive ideal.
The two main results of Part 1 are the following. We will prove the existence of

an algorithm A for Weyl groups of types Bn, Cn, and Dn, with properties that
make it the appropriate generalization of the Robinson-Schensted algorithm
used by Joseph in [5, 6]. To an element w ~ W, A associates a pair of standard
domino tableaux (cf. 1.1.9i) A(w) = (L(w), R(w)). We will define another algorithm
S which, given any standard domino tableau T, produces one, S(T), of special
shape (i.e. the corresponding representation of the Weyl group is special in the
sense of Lusztig, [8]).
Although this will not be discussed in Part I, these algorithms yield the same

* Partially supported by N.S.F. Grant DMS 8503781.
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parameters as used by Barbasch-Vogan in [1] to classify the primitive ideals for

types Bn, Cn, and Dn, the domino tableaux of special shape. Let b be a Cartan
subalgebra of g. Known results imply that it suffices to classify the primitive ideals
with infinitesimal character 03BB E b* for 03BB anti-dominant, regular and integral. Let
p be half the sum of the positive roots for some choice of positive system of the
roots of  in g. Let Iw be the annihilator of the irreducible highest weight module
of highest weight w03BB - p. Duflo [2] has shown that every primitive ideal with
infinitesimal character 03BB is of the form Iw for some w E W. In [1], Barbasch-Vogan
construct (L(w), R(w)) by a quite different method from that of this paper. They
embed W in the symmetric group 5’2n, apply the (ordinary) Robinson-Schensted
algorithm which produces two Young tableaux (T(w), T(w-1)) and then use
a shuffling procedure to produce the domino tableaux (L(w), R(w)) from these.
Now L(w) does not depend only on Iw. Barbasch-Vogan showed that for every
w E W there exists a unique standard domino tableau U with special shape such
that there exists v E W with U = L(v) and Iv = Iw.

Using the results of Part 1 of this paper, in Part II we will prove Vogan’s
conjecture [10] in cases Bn and Cn, that the generalized r-invariant (together with
the infinitesimal character) is a complete invariant. We will show that for
w, w’ E W, Iw = 1 w. if and only if S(L(w)) = S(L(w’ )), thus giving a new proof of the
classification in cases Bn and Cn, the first part of which is essentially the same as in
[1], and the second part of which replaces their use of asymptotic support and
induction from and restriction to Weyl subgroups of smaller rank with the use of
the generalized r-invariant. It will follow from this that, given, w, v E W as above,
we have U = L(v) = S(L(w)). We show in Part 1 that S and A can be run in reverse,
so there is a determinate procedure, given w, to find {w’ ~ W: IW- = Iw}. Vogan’s
conjecture is false when g is of type Dn, n  6. In a projected Part III of this paper
we intend to give the definition of a generalization of the generalized 03C4-invariant,
the generalized generalized i-invariant, prove a modification of Vogan’s
conjecture, and deal with the classification of primitive ideals in that case.

This paper arose out of the project of using the classification of [1] for the
problem of determining the annihilators of irreducible admissible Harish-

Chandra modules of real Lie groups of classical type, generalizing the results for
U(p, q) and GL(n, R) of [3], which used the results of Joseph [5,6] and Vogan
[10] in the case of type An. The properties we prove of the generalized s-invariant,
as well as the better formulation of the algorithm A, and even more, the supplying
of the algorithm S are crucial to the determination of the annihilators of
irreducible admissible Harish-Chandra modules. This has already been ac-
complished in certain cases, and we intend to discuss this in a separate paper.

Furthermore, Part 1 of this paper is written in such a way that it will apply, as
will be shown in Part II, to the theory of cells in classical Weyl groups [7], [8]. Shi
[9] has generalized the Robinson-Schensted algorithm to the affine Weyl groups
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of type Ãn, and one can expect that the results of Part 1 of this paper can be used in
the same way for work on the affine Weyl groups of types Bn, C,,, and J5,,.

In more detail, this paper (that is, Part I) is organized as follows: there are six
sections. In Section 1 we define various parameter sets which will be in constant
use. We define domino tableaux in 1.1.8. Then we introduce some preliminaries
for the definition of the domino analogue of the Robinson-Schensted algorithm
(and its inverse). In Section 2 we define this algorithm as a map A defined on the
parameter set J(M1, M2) (which is isomorphic to the Weyl group when
M1 = M2 = {1,..., n}). We give two definitions of A, (1.2.1) and (1.2.7). The first
definition is useful in showing the relation between L and R: L(w) = R(w -1 )
(1.2.3). The second definition is defined by means of an important map a (1.2.5).
This definition will be used in all later proofs, and is most convenient for

describing A as an algorithm, as will be illustrated in Sections 3 and 4. In (1.2.8) we
prove the two definitions are equivalent. We show that A has an inverse B, and so
is a bijection between W and a set of pairs of domino tableaux. In the third section
we prove certain properties of the maps a and p which are useful for computing
A and B. In Section 4 we illustrate these properties with examples which show in
practice how to calculate A and B. The second definition of the algorithm A can
be thought of as building up domino tableaux from the parameter of w starting
from scratch and adjoining dominoes one by one. As in the (ordinary)
Robinson-Schensted algorithm, the adjoining of each new domino is accom-
panied by an alteration in the positions of some of the preceding dominoes. This
combined step is called oc. It is repeated until standard domino tableaux of the
right order are obtained.

In Section 5 we recall (a reformulation of) Lusztig’s notion of special: we define
the notion of a domino tableau’s having special shape. We then give the algorithm
S, which transforms a domino tableau T to a domino tableau with special shape.
In order to do this, we define the concept of a cycle of a domino tableau. Then T is
transformed into S(T) by means of operations which we call "moving T through
a cycle." Note that this is a quite different sort than the operations which define
A (or B). The last, sixth, section illustrates S by examples.

Please note that the symbol B denotes set-theoretic difference.

Section 1

In this section we introduce the definitions of the parameter sets we will be using,
preliminaries for the definition of the algorithm A (defined as a map on W) and its
inverse, B.

(1.1.1) NOTATION. Let Wn be the Weyl group of a complex simple Lie algebra
g of type Cn. Let b be a Cartan subalgebra of g, and let {e1, ..., en} be a basis off)*
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such that if a = 2e1, ai = ei - ei - 1 for 2  i  n then 03C0={03B11,..., 03B1n} are the
simple roots for a choice of positive roots 0394+(g, b). With respect to this basis an
element we Wn satisfies w(ei) = 03B5ie03C3(i) for some o-e Sn, 03B5i~ f ± 1}.

Let W’n ~ Wn be defined as follows: if we Wn, w(ei) = Biea(i) then we W’n ~
|{i|03B5i| = -1}|is even. Wn is the Weyl group of a complex simple Lie algebra of
type D,.

(1.1.2) DEFINITION. Let Mi, M2 c N* be finite subsets with |M1| = lM 21. We
define J(M1, M2) as follows: let ql, q2 be the projections of Ml x M2 x (± 1}
onto the first and second factors. Then J(M1, M2) is the set of all w c

Mi x M2  {±1} such that q1|w and Q21w are bijections onto Mi and M2,
respectively. If n E N* we write Y(n, n) for J({1,... n},{1,..., ni).
EXAMPLE. Let Mi = {1,3,5}, M2 = {2, 3, 71. Let w = {(1, 3, -1),(3,7,1),
(5,2,-1)}. Then w E J(M1, M 2)’

(1.1.3) DEFINITION. Let N = {1,..., nl. We define 03B4: Wn ~ //(n, n) by 03B4(w) =
{(k, 03C3(k), gk)l where w(ek) = Bkea(k)’ Then 03B4 is a bijection.

(1.1.4) DEFINITION. For w~J(M1,M2), m = IM, 1, let e = sup M1, u =

sup M2. Then {(e, f, 03B5e)} E w and {(v, u, 03B5v)} E w for some f E M2, V E M1, ’6e, gv E
{±1}. We define mw = wB{(e,f,03B5e)} and wn = wB(v, u, 03B5v)}. We will write, for
example, Wm,m-l,m-2 for ((wm)m-1)m-2.

EXAMPLE. Let w be as in the example in (1.1.2). Then 3w = {(1, 3, -1),
(3,7,1)}, W3 = {(1, 3, -1),(5,2,-1)}, W3,2 = {(5,2, -1)}, and 2(W3) = 2W3 =

{(1.3,-1)}.

(1.1.5) DEFINITION. For w~J(M1,M2), w = {(li,ri,03B5i)}, we define w-1 E
J(M2,M1) by w = {(ri,li,03B5i)}. Note that y~Wn,03B4(y-1) = 03B4(y)-1.

(1.1.6) REMARK. Let si be the simple reflection corresponding to the simple
root ai. Let we Wn, d(w) = {(i, U(i), 03B5i)}1in· Then

(a) b(ws 1) (resp. 03B4(s1 w)) is obtained from 03B4(w) by multiplying 03B51 (resp. ek where
k=03C3-1(1)) by -1.

(b) For i  2, 03B4(wsi) (resp. 03B4(siw)) is obtained from 03B4(w) by interchanging i and
i - 1 in the first (resp. second) position of the triples.

(c) Let wo be the long element of Wn. Then 03B4(ww0) = 03B4(w0w) = ((i,03C3(1), -03B5i)}.

EXAMPLE. Consider 03B4:W3~J(3,3). (Let e~W3 be the identity element.)
Then

and
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(1.1.7) DEFINITION. (1) Let F = {Sij}i1,j1, where the Si j are symbols and
Sij = Skl p i = k and j = 1. Similarly let F0 = {Sij}i0,j0; note that 3v ~ F0.
The elements of F (but not of F0BF) are called squares.

(2) Let J c-- 9. We say J satisfies condition Y if J is a finite subset and if for

every Sij~F such that Sij ~ J we have Si,j+1 ~ J and Si+1,j~ J.
(3) If J ~ F satisfies condition Y let pi(J) = 0 if Si1 ~ J, otherwise 03C1i(J) =

sup{j| Sij~ J}; similarly, let Kj(J) = 0 if Sljrt J, otherwise Kj(J) = sup{i| Sij ~ JI.

(1.1.8) DEFINITION. Let M c N* be a finite subset. We define two sets, 9-(M)
and J0(M), whose elements are called domino tableaux, as follows: let pl and P2
be the projections from N  F onto the first and second factors.

Y(M) is the set of all T c M  F satisfying:
(1) p2|T is injective and p2(T) satisfies condition Y.
(2) p 1 ( T is two to one.

(3) If k E M then for some Si j E F we have either (k, Sij) E T and (k, Si,j + 1 ) E T or
(k, Sij) ~ T and (k, Si+1,j) ~ T.

(4) Suppose (k, Sij) E T. If (kl, Si,j+ 1) E T (resp. (k2, Si+ l,j) E T) then ki a k
(resp. k2  k).
J0(M) is the set of all T ~ (M u {0}) x 97 satisfying (1), (3), (4) as above, and

(2’) (0, S11) ~ T, (0, Sij)e T’ if Sij ~ S 11, and p1 T~(M F) iS two to one.

EXAMPLE. See (1.4.1).

(1.1.9). NOTATION (a) For T a domino tableau let Shape(T) = p2(T).
(b) For T a domino tableau, set pi(T) = p;(Shape(T)), ki(T) = xi(Shape(T)).
(c) For T a domino tableau and S E F we say S is filled in T if S E Shape(T),

otherwise S is empty in T.

(d) For T a domino tableau define X(T) c N * by %(T) = M ~ T E J(M) or
J0(M).

(e) For T ~ J(M), or TE J0(M), k ~ M, let D(k, T) = T n ({k}  F).
(f) For T E J(M) or Te J0(M), k E M, let P(k, T) = {Sij|(k, Sij) ~ T}.
(g) Let T be a domino tableau. Define NT : F0 ~ N ~ {~} by

(h) For M1, M2 c N* finite subsets with IM1 = |M2| let J(M1, M2) =
{(T1, T2 ) j Ti E J(Mi) for i = 1, 2 and Shape(T1) = Shape(T2)}. Similarly define
J°(M1, M2).

(i) A domino tableau T is called standard, of order n, if N(T)={1,..., nl.
(j) If n E N * we write J(n) for J({1,...,n}); similarly J0(n),J(n, n), and

J0(n, n).
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(1.1.10) PROPOSITION. Let T E J(M) (resp. T E J0(M)), and let e = sup M.
Then TBD(e, T) E J(MB{e}) (resp. T BD(e, T) E J0(MB{e})), and Shape(TBD(e,
T)) = Shape(T)BP(e, T).

We now introduce some preliminaries for the definition of A.

(1.1.11) DEFINITION. Let J c 9’ satisfy condition Y. Let P = {Sij,Si,j+1}
(resp. {Sij, Si+1,j}). We say P is an extremal position in J if pi(J) = j + 1 and
Pi + 1 (J)  j - 1 (resp. Kj(J) = i + 1 and Kj + 1 (J)  i - 1). If T is a domino tableau
we say P is an extremal position in T if P is an extremal position in Shape(T).

REMARK. If T E J(M) or T E J0(M) and e = sup M then P(e, T) is an extremal
position in T. Note, however, that P an extremal position in T does not imply that
P = P(k, T) for some k E M. For example, if T is as in (1.4.1) then {S31, S32} is an
extremal position in T.

(1.1.12) DEFINITION. Let T ~ J(M) or T ~ J0(M), e ~ N, and P = {Sij,
Si,j + 1} or P = {Sij, Si+ 1,j} for some (i,j). We say the pair (e, P) is adjoinable to
T whenever the following hold:
(1) e &#x3E; sup M
(2) Shape(T) n P 0 and Shape(T) u P satisfies condition Y.
Then P is an extremal position in Shape(T)~ P.

(1.1.13) DEFINITION. Let T’ be a domino tableau and suppose (e, P) is

adjoinable to T’. Then let Adj(T’, P, e) = T’~ {(e, Sij)| 1 SijE P}.

(1.1.14) PROPOSITION. Let T’, e, P be as in Definition (1.1.13). Then

Adj(T’, P, e) is a domino tableau with Shape(T) = Shape(T’) u P.

REMARK. (1) If T = Adj(T’, P, e) then TBD(e, T) = T’ and P = P(e, T).
(2) If T ~ J(M) or J0(M) with e = sup M then (e, P(e, T)) is adjoinable to

TBD(e, T) and Adj(TBD(e, T), P(e, T), e) = T.

(1.1.15) DEFINITION. Let J c 57 satisfy condition Y, and let P 1, P2 ~ F. We
say (P1, P2) is an adjoinable pair to J if for i = 1, 2, Pi n J = ~, Pi ~ J satisfies
condition Y, and Pi is an extremal position in Pi u J.

(1.1.16) PROPOSITION. Let (P1, P2) be an adjoinable pair to J. Then either
(i) P 1 n P2 = ~,

(ii) P1 n P2 = {Sij} where j = pi(J) + 1, i = Kj(J) + 1, or
(iii) P 1 = P2 .

(1.1.17) DEFINITION. Let (P1, P2) be an adjoinable pair to J. We define

P 1’(J, Pl, P2) and PA2(J, P1, P2) according to the three cases of Proposition
(1.1.16), as follows.

In case (i), let PA1(J, P1, P2) = P1, PA2(J, P1, P2) = P2.
In case (ii) let PAk(J, P1, P2) = (P, u {Si+j+1})B{Sij} for k = 1, 2.
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In case (iii), suppose Pi = P2 = {Sij, Si,j+1} (resp. {Sij,Si+1,j}.) Then let

where

We then define

all unions being disjoint.

REMARK. Suppose (P, Q) is an adjoinable pair to J. Then (Q, P) is an

adjoinable pair to J and PA1(J, Q, P) = P1(J, P, Q).
EXAMPLE. Let T, T’ be as in (1.4.2). Let r  3. Let J = Shape(T(r)) (see 1.3.1),
let Pi = P(r + 1, T’), and let P2 = Shape(r(r))BShape(T’(r)). Then (P 1, P2) is an
adjoinable pair to J. We have p1(J, P 1, P2) = P(r + 1, T),

and

(1.1.18) DEFINITION. Let J c f7 satisfy condition Y, and let P1, P2 ~ F. We
say (P1, P2 ) is a removable pair for J if P1 and P2 are extremal positions in J. If
P1 = P2 = {S1r,S1,r+1} or if P1 = P2 = {Sr1, Sr+1,1} for some r we say (P1, P2)
is a minimal removable pair for J; otherwise (P1, P2 ) is a standard removable pair
for J.

(1.1.19) PROPOSITION. Let (P1,P2) be a removable pair for J. Then either
(i) P1 ~ P2 = ~,

(ii) P1 n P2 = {Sij} where i  2, j  2, and i = Kj(J),j = Pi(J), or
(iii) Pi = P2.

(1.1.20) DEFINITION. Let (P1, P2 ) be a standard removable pair for J. We define
PR1(J, P1, P2) and PR2(J, P1, P2) according to the three cases of Proposition
(1.1.19) as follows.

In case (i), let Pl’(J, P1, P2 ) = P 1, PR2(J, P1, P2) = P2 .
In case (ii), let P’(J, Pl, P2) (Pk ~ {Si-1,j-1})B{Sij} for k = 1, 2.
In case (iii) suppose P1 = P2 = {Sij,Si,j+1} (resp. {Sij,Si+1,j}). Then let
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where

We then define

Here the unions are disjoint and

(1.1.21) PROPOSITION. (a) Let (Ql, Q2) be an adjoinable pair to 1. Let

Then (P1, P2 ) is a standard removable pair for J and

(b) Let (Q1, Q2) be a standard removable pair for I. Let

Then (P1, P2 ) is an adjoinable pair to J and

(1.1.22) PROPOSITION. Let (Q1, Q2) be an adjoinable pair to I, and let

Pi = PAi(I, Q1, Q2), i = 1, 2, and J = JA(I, Q1, Q2). Suppose further that we have

T ~ J(M) or T~J0(M), e~N* with e = sup M, and Shape(T)=I~Q1
(resp. Shape(T) = 1 U Q2). Then (e, P2) (resp. (e, P1)) is adjoinable to T and

Shape(Adj(T, P2, e)) = J (resp. Shape(Adj(T, P1, e)) = J).

Section 2

In this section we will give two definitions of A and show they are equivalent. The
first definition, (1.2.1), is useful for showing the symmetry between left and right,
(1.2.3). The second Definition, (1.2.7), is more useful for computations. We will
show in (1.2.9) that A has an inverse, B.

(1.2.1) DEFINITION. For each M1,M2~ N* with |M1|=|M2|  ~ we

define a map A = A(M1, M2), A:
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we write A(w) = (L(w), R(w) ). If |M1| = 0 we define A(M1, M2 ) to be the unique
map between the one-element sets J(~, ~) = {~} and 
For |M1|  1, to define A(M 1, M2 ) we assume by induction that A(M1, M’2) is
defined whenever |M’1|  |M1|, and that we have available Proposition (1.2.2)
when 1 K ) |M’1|  |M1|. Let m = |M1|, e = sup M 1, u = sup M2 . There are two
cases.

Case 1. wm = mw. Let 8 E {± 1} be such that wBwm = {(e, u, 03B5)}. Then we define
L(w) = Adj(L(m w), P, e) and R(w) = Adj(R(wm), P, u), where P = {S1r,S1,r+1}
with r = 03C11(L(mw)) + 1 when E = 1 and P = {Sr1,Sr+1,1} with r =k1(R(wm)) +
1 when 8 = -1.

Case 2. Wm i=- mw. Let w = m-1(wm) = w),, Note that since mw ~ wm we
have L(wm)~J(M1B{f}) for some f  e and R(mw) ~ J(M2B{v}) for some v  u.

Let Q, = P(e, L(wm)), Q2 = P(u, R(mw)). Let I = Shape(L(w)) = Shape(R(w)). By
Proposition (1.2.2) applied to wm and to m w, (Q1, Q2) is an adjoinable pair to I. We
now define L(w) = Adj(L(mw), PA1(I, Q1,Q2), e) and R(w) = Adj(R(wm), PA2(I, Q 1,
Q2), u). (By Proposition (1.1.22) this is possible, and Shape(L(w)) = Shape(R(w)) =
JA(I, Q1,Q2) so (L(w), R(w))e 9-(M 1, M 2).)

(1.2.2) PROPOSITION. Let w~J(M1,M2), m = |M1|  1, e = sup M 1, u =

sup M 2 . Then L(m w) = L(w)BD(e, L(w)) and R(wm ) = R(w) B D(u, R(w)).
Proof. This is clear from the definition. Fi

We now prove the relation between L and R.

(1.2.3) PROPOSITION. Let w ~J(M1, M2). Then A(w-1) = (R(w), L(w)).
Proof. We assume by induction that the proposition is true for y E Y(M’, M’2)

whenever |M’1|  |M1|, the case |M1| = 0 being obvious. Let m = lM 11, e =

sup M 1, u = sup M2 .
Note that (wn)-1 = m(w-1) and (mw)-1 = (w-1)m. It follows that w-1 satisfies

the hypothesis of case 1 of Definition (1.2.1) if and only if w satisfies the hypothesis
of case 1 of Definition (1.2.1).
Assume first that w. = mw, that is, w and w-1 satisfy the hypothesis of case 1 of

Definition (1.2.1). Let wBwm = {(e,u,03B5)}. Then w-1B(w-1)m = {(u,e,03B5)} and the
proposition is clearly true in this case.
Assume now that Wm =1= m w, that is w and w -1 satisfy the hypothesis of case 2 of

Definition (1.2.1). Let

Then w-1 = (w)-1. By induction we have
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and

Let

and let

Then I = I’, 6i = Qz, Q2 = Q’1. By Remark (1.1.17) p1(J’, Qi, 62) = PA2(I,Q1. Q2).
Thus

and similarly R(w -1 ) = L(w). 0

We now introduce some preliminaries for the second definition of the

algorithm A. This definition makes use of the map a, defined in (1.2.5), mentioned
in the introduction.

(1.2.4) DEFINITION. Let M c N*, |M|  oo.

(a) Let L(M)={(T,v,03B5)|v ~ M, T~J(MB{v}), 03B5~{±1}}.
(b) Let D(M) = {(T,P)| T~J(M) and P is an extremal position in T}.

(1.2.5) DEFINITION. Let M c N*, |M|  oo. We define a map a = ot(M),
a(M) : L(M) ~ D(M). To define ce, if |M|  2 we assume by induction that a(M’) is
defined for all M’ with 1  1 M’l  1 MI and that we have available Proposition
(1.2.6) for this situation (for |M| = 1 we are in case 1 of this definition, and this
case does not require induction.) Let e = sup M and suppose (T’, v, e) E W(M).
There are two cases.

Case 1. v = e. If 03B5 = 1 let P = {S1,r,S1,r+1} where r = 03C11(T’) + 1, if 03B5 = -1 let
P = {Sr,1,Sr+1,1} where r = k1( T’) + 1. Let T = Adj ( T’, P, e). Then we define
03B1((T’,v,03B5))=(T,P).

Case 2. v =1= e. Let (T", P’) = a((T’BD(e, T’), v, 8»). Let Q1 = P(e, T’), Q2 = P’,
I = Shape(T’BD(e, T’)). Then by Proposition (1.2.6) (Q I , Q2) is an adjoinable pair
for I, so let Pl = PA1(I, Q1, Q2), P2 = PA2(I, Q1, Q2), J = JA(I, Q1, Q2). By Pro-
position (1.2.6) Shape(T") = Shape(T’BD(e, T’)) ~ P’ = lu Q2. Then by Proposi-
tion (1.1.22) (e, Pl) is adjoinable to T". Let T = Adj(T",P1,e), and let P = P2 .
Then we define a((T’, v, 8)) = (T, P). (By Proposition (1.1.22) Shape(T) = J, so by
Proposition (1.1.21) P = P2 is an extremal position in T, so (T, P) E D(M).)



145

(1.2.6) PROPOSITION. Let d(T’,v,03B5)~L(M) and let (T, P) = 03B1((T’,v,03B5)). Then
Shape( T’) n P = 0, Shape(T) = Shape(T’) u P, and P is an extremal position in
T.

Proof. If (T’, v, 8) is in case 1 of Definition (1.2.5) this is clear.In case 2 we have
Shape(T) = J = lu Q 1 U P2, these unions being disjoint. Now Shape(T’) =
l u Q 1 and P = P2, which gives the first two statements of the proposition. The
third statement follows from Proposition (1.1.21(a)).

We now make a second definition of the algorithm, provisionally called A’
instead of A until shown to be equivalent to (1.2.1), in (1.2.8). The map a is the
basic building block. The map A’ is obtained by repeated applications of a,
analogously to the Robinson-Schensted algorithm, as mentioned in the introduc-
tion.

(1.2.7) DEFINITION. For each Ml,M2 c N* with |M1|=|M2|  ~ we
define a map A’ = A’(M 1, M2), A’ : J(M1, M2) ~ J(M1, M2). To define A’ we
assume by induction that we have defined A’(M’1, M’2) whenever |M’1|  M1I
(for |M1| = 0 A’ is the unique map from J(~, ~) to J(~, ~), that is

A’(~) = (0, 0).) Let m = |M1|. For w~J(M1, M2) let {(v,u,03B5)} = wBwm (so
u=sup M2), let (T’1,T’2) = A’(wm)~K and let (T1, P) =
03B1((T’1, v, 03B5)).
Now by Proposition (1.2.6) P is an extremal position in Shape( Tl ) = Shape(T’1) u

P, this union being disjoint. Since Shape(T2) = Shape(Ti), and u &#x3E; sup(M2B{u}),
(u, P) is adjoinable to T’2. Let T2 = Adj(T’2, P, u). We define A’(w) = (Ti , T2).

(1.2.8) PROPOSITION. Let M1,M2~N* with |M1|=|M2|~. Then

A(M1, M2) = A’(M1, M2).

LEMMA. Let w ~ J(M1, M2), m = |M1|, and let {(v,u,03B5)} =wBwm.Let(T, P) =
a((L(wm), v, 8». Then T = L(w).

Proof. Let e = sup M 1. Now e = v if and only if wm = mw so (L(wm), v, 8)
satisfies the hypothesis of case 1 of Definition (1.2.5) if and only if w satisfies the
hypothesis of case 1 of Definition (1.2.1). In this case (that is e = v, case 1 of both
definitions) the lemma is clear from the definitions.
Assume then e ~ v. We will assume by induction that the lemma holds for any

y ~ J(M’1, M’2) with |M’1 || IMll (when |M1| = 1 any w~J(M1, M2) satisfies
the hypothesis of case 1 of Definition (1.2.5), and we have already proved the
lemma in this case). Let w = m-1(wm) = (mw)m-1. Recall from Definition (1.2.5)
that T is obtained as follows: let

then T = Adj(T", P1, e). On the other hand, recall from Definition (1.2.1) that we
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obtain L(w) as follows: let

then L(w) = Adj(L(mw), Pi, e). Then to show that L(w) = T it suffices to show that

By Proposition (1.2.2), L(wm)BD(e, L(wm)) = L(m-1(wm)) = L(w), which gives
(ii). By induction we can apply the lemma to L(m w), to obtain

where P" = Shape(L(mw))BShape(L(w)).This gives (i) and also P" = P’ = 62.
Now (iii) is by definition, so there remains only (iv), that is, we have to show that
P’ = P(u, R(mw)). Now P’ = P" = Shape(L(mw))BShape(L(w)) = Shape(R(mw))B
Shape(R(w)) = P(u, R(mw)), the last equality since R(w) = R(mw)BD(u, R(mw)) by
Proposition (1.2.2). This completes the proof of the lemma.

Proof of Proposition (1.2.8). We will assume by induction that A(M’1, M’2) =
A’(M’1, M’2) whenever |M’1||M1| (when !Mi!=0 both A(Ml,M2) and
A’(M i , M2) are the unique map from J(Ø,Ø to J(Ø,Ø)). For w e J(M1, M2)
let (Ti , T2) = A’(w). We have to show Ti = L(w) and T2 = R(w).

Let (T’1, Tl) = A’(wm ) and let {(v,u,03B5)} = wBwm . By induction (T’1, T’2) =
(L( = 03B1((T’1, v,03B5)) = 03B1((L(wm),v,03B5)) = L(w).
Now T2 = Adj(r2,P,M) and R(w) = Adj(R(wm), P’, u), for some P, P’. Thus to
show T2 = R(w) it suflices to show P = P’. We have

proving the proposition.

REMARK. In light of Proposition (1.2.8) we will use the notationA(M1, M2)
indifferently for A(M1,M2) or A’(M1, M2).

We now begin to define an inverse to A. We first introduce fi, the inverse to
a (1.2.5).


