CLAUDE ANANTHARAMAN-DELAROCHE

On relative amenability for von Neumann algebras

Compositio Mathematica, tome 74, no 3 (1990), p. 333-352

<http://www.numdam.org/item?id=CM_1990__74_3_333_0>
On relative amenability for von Neumann algebras

CLAIRE ANANTHARAMAN-DELAROCHE
Université d'Orléans, U.F.R. Faculté des Sciences, Département de Mathématiques et Informatique,
B.P. 6759, F-45067 Orleans CEDEX 2

Received 9 November 1988; accepted 19 September 1989

Introduction

The concept of correspondence between two von Neumann algebras has been introduced by A. Connes ([8], [9]) as a very useful tool for the study of type II₁ factors. Recently, S. Popa has systematically developed this point of view to get some new insight in the domain [21]. Among many interesting results and remarks, he discussed Connes' classical work on the injective II₁ factor in the framework of correspondences, and he defined and studied a natural notion of amenability for a finite von Neumann algebra M relative to a von Neumann subalgebra N. When the Jones' index $[M : N]$ is finite or when M is injective the inclusion $N \subset M$ is amenable, but this situation occurs in many other examples. For instance, if M is the crossed product of a finite von Neumann algebra N by an action of a discrete group G preserving a faithful finite normal trace of N, then $N \subset M$ is amenable if and only if G is an amenable group ([21], Th. 3.2.4).

In [28], Zimmer considered a notion of amenable action in ergodic theory, which was extended in [1] to actions on arbitrary von Neumann algebras. We say that the G-action α on N is amenable if there exists an equivariant norm one projection from $L^\infty(G) \otimes N$ onto N, the G-action on $L^\infty(G) \otimes N$ being the tensor product of the action by left translation on $L^\infty(G)$ and the action α on N. When there exists a G-invariant state on the centre $Z(N)$ of N, the amenability of the action is equivalent to the amenability of the group ([1], Prop. 3.6). Otherwise, it is easy to construct amenable actions of non amenable groups. Since Popa's notion of amenable inclusion makes sense for arbitrary von Neumann algebras, he asked ([21], 3.4.2) whether the amenability of the G-action α was equivalent to the amenability of the inclusion $N \subset M = N \rtimes G$ in the case of a discrete group G acting on any von Neumann algebra N. In this paper we give a positive answer to this question (Prop. 3.4).

As far as we are concerned with non finite von Neumann algebras M and N, it seems more convenient to consider a correspondence between M and N as a self-dual right Hilbert N-module on which M acts to the left, since it avoids the choice of auxiliary weights. This point of view has been already systematically used in [4] for the general study of the index of conditional expectations. In the
first section we recall the needed background on correspondences and Hilbert modules. In particular, to any inclusion \(N \subset M \) is associated a correspondence \(Y_N \) (see 1.8) between \(M \) and \(M \) which gives informations about the embedding \(N \subset M \). Popa has defined the inclusion to be amenable if the identity correspondence of \(M \) is weakly contained in \(Y_N \).

In Section 2 we consider an action \(\alpha \) of a discrete group \(G \) on a von Neumann algebra \(N \), and we denote by \(M \) the crossed product \(N \rtimes_\alpha G \). The classical notions of positive type functions and group representations can respectively be extended in this context of dynamical systems to notions of positive type functions on \(G \) with respect to \((N, G, \alpha) \) and of cocycles (2.4 and 2.1). These two concepts are closely related, as in the usual case. For each cocycle \(T \) relative to \((Z(N), G, \alpha) \) we associate in a natural way a correspondence \(X \) between \(M \) and \(M \) (2.6). A positive type function corresponding to \(T \) gives rise to a normal completely positive map from \(M \) to \(M \), which is a coefficient of the correspondence \(X \) (2.8). The positive type functions relative to \((Z(N), G, \alpha) \), having finite supports, yield coefficients of the correspondence \(Y_N \) associated to the inclusion \(N \subset M \), and the constant positive type function equal to the unit of \(Z(N) \) gives the identity automorphism of \(M \), which is, of course, a coefficient of the identity correspondence of \(M \). We proved in [3] that the \(G \)-action \(\alpha \) on \(N \) is amenable if and only if this constant function is the limit, for the topology of the \(\sigma \)-weak pointwise convergence, of a net of positive type functions relative to \((Z(N), G, \alpha) \) with finite supports. Using this fact, we show in Section 3 the equivalence between the amenability of the action and the amenability of the inclusion \(N \subset M \).

1. Preliminaries on correspondences

We recall here some facts on correspondences and Hilbert modules, mostly coming from [8], [9], [4], [21], [20], [22], [23], [24], [17], where the reader will find more details. For simplicity, in this paper we shall only consider \(\sigma \)-finite von Neumann algebras. Let \(M \) and \(N \) be two von Neumann algebras.

1.1. A correspondence between \(M \) and \(N \) is a Hilbert space \(H \) with a pair of commuting normal representations \(\pi_M \) and \(\pi_N^0 \) of \(M \) and \(N^0 \) (the opposite of \(N \)) respectively [8]. Usually the triple \((H, \pi_M, \pi_N^0) \) will be denoted by \(H \), and for \(x \in M \), \(y \in N \) and \(h \in H \), we shall write \(xhy \) instead of \(\pi_M(x)\pi_N^0(y^0)h \).

Note that \(H \) gives rise to a representation of the binormal tensor product \(M \otimes_{\text{bin}} N^0 \) (see [11] for the definition of bin). Two correspondences \(H \) and \(H' \) are equivalent if they are (unitarily) equivalent when considered as representations of \(M \otimes_{\text{bin}} N^0 \).

We denote by \(\text{Corr}(M, N) \) the set of equivalence classes of correspondences between \(M \) and \(N \), and we shall use the same notation \(H \) for a correspondence
and its class. We shall write $\text{Corr}(M)$ for $\text{Corr}(M, M)$. The standard form [13] of M yields an element $L^2(M)$ of $\text{Corr}(M)$ called the identity correspondence of M. We shall sometimes write $L^2(M, \varphi)$ instead of $L^2(M)$, with a fixed faithful normal positive form φ on M.

1.2. Let us recall now another useful equivalent way of defining correspondences, which has been developed in [4]. Let X be a self-dual (right) Hilbert N-module (see [20]). We denote by \langle, \rangle (or \langle, \rangle_N in case of ambiguity) the N-valued inner product, and we suppose that it is conjugate linear in the first variable. The von Neumann algebra of all N-linear continuous operators from X to X will be denoted by $\mathcal{L}_N(X)$ (or $\mathcal{L}(X)$ when $N = \mathbb{C}$). Following ([4], Def. 2.1), by a $M-N$ correspondence we mean a pair (X, π) where X is as above, and π is a unital normal homomorphism from M into $\mathcal{L}_N(X)$. More briefly, such a correspondence will be denoted by X, and we shall often write $x \xi$ instead of $\pi(x)\xi$ for $x \in M$ and $\xi \in X$. Let us remark that $M-N$ correspondences are what Rieffel has called normal N-rigged M-modules in ([23], Def. 5.1). Two $M-N$ correspondences X and X' are said to be equivalent if there exists a $M-N$ linear isomorphism from X onto X' preserving the scalar products.

1.3. Let X be a self-dual Hilbert N-module. We call s-topology the topology defined on X by the family of semi-norms q_φ, where φ is any normal positive form on N and

$$q_\varphi(\eta) = \varphi(\langle \eta, \eta \rangle)^{1/2}, \quad \text{for } \eta \in X.$$

We say that a vector ξ in a $M-N$ correspondence X is cyclic if the set $M\xi N = \{x\xi y, x \in M, y \in N\}$ is s-total in X.

The set of equivalence classes of $M-N$ correspondences will be denoted by $C(M, N)$, and we shall not make any distinction between a correspondence and its class. We shall write $C(M)$ instead of $C(M, M)$. There is a natural bijection \wedge between $C(M, N)$ and $\text{Corr}(M, N)$, that will be described now.

1.4. Let $X \in C(M, N)$ and let $H_X = X \otimes_N L^2(N)$ be the Hilbert space obtained by inducing the standard representation of N up to M via X ([22], Th. 5.1). The induced representation of M in H_X and the right action of N on H_X defined by

$$(\xi \otimes h)y = \xi \otimes (hy), \quad \text{for } \xi \in X, \quad h \in L^2(N), \quad y \in N,$$

give rise to an element $\wedge(X) = H_X$ of $\text{Corr}(M, N)$.

Conversely, given $H \in \text{Corr}(M, N)$, let X_H be the space $\text{Hom}_{\varphi_0}(L^2(N), H)$ of continuous N^0-linear operators from $L^2(N)$ into H. Let N acts on the right of X_H by composition of operators and define on X_H a N-valued inner product by $\langle r, s \rangle = r^*s$ for $r, s \in X_H$. Then X_H is a self-dual Hilbert N-module ([23], Th. 6.5).
Moreover, M acts on the left of X_H by composition of operators and we obtain in this way a $M-N$ correspondence.

The maps $X \mapsto H_X$ and $H \mapsto X_H$ are inverse from each other ([4], Th. 2.2 and [23], Prop. 6.10). In fact, there is a natural isomorphism between the $M-N$ correspondences X and $\text{Hom}_{N^0}(L^2(N), X \otimes_N L^2(N))$, given by assigning to any $\xi \in X$ the element $\Theta_\xi: h \mapsto \xi \otimes h$ of $\text{Hom}_{N^0}(L^2(N), X \otimes_N L^2(N))$.

1.5. Let M, N, P be von Neumann algebras, $X \in C(M, N)$ and $Y \in C(N, P)$. We denote by $X \otimes_N Y$ the self-dual completion (see [20], Th. 3.2) of the algebraic tensor product $X \otimes Y$ endowed with the obvious right action of P and the P-valued inner product

$$\langle \xi \otimes \eta, \xi_1 \otimes \eta_1 \rangle = \langle \eta, \langle \xi, \xi_1 \rangle_N \eta_1 \rangle_p, \quad \text{for } \xi, \xi_1 \in X, \quad \eta, \eta_1 \in Y.$$

LEMMA. (i) For $x \in \mathcal{L}_N(X)$, there is an element $\rho(x)$ in $\mathcal{L}_P(X \otimes_N Y)$ well defined by

$$\rho(x)(\xi \otimes \eta) = (x \xi) \otimes \eta, \quad \text{for } \xi \in X, \eta \in Y.$$

We get in this way a normal homomorphism from $\mathcal{L}_N(X)$ into $\mathcal{L}_P(X \otimes_N Y)$.

(ii) If the representation of N into $\mathcal{L}_P(Y)$ is faithful, then ρ is faithful.

(iii) If we take $Y = L^2(N)$, viewed as an element of $C(N, \mathbb{C})$, then ρ is an isomorphism of the von Neumann algebra $\mathcal{L}_N(X)$ onto the commutant $\text{Hom}_{N^0}(H_X, H_X)$ of the right action of N on $H_X = X \otimes_N L^2(N)$.

Proof. For the proof of (i) see ([22], Th. 5.9 and [4], Prop. 2.9). Let us show that ρ is isometric under the assumption of (ii). If $\xi \in X$ we define a continuous P-linear operator Θ_ξ from Y into $X \otimes_N Y$ by $\Theta_\xi(\eta) = \xi \otimes \eta$ for $\eta \in Y$. It is easily checked that $$(\Theta_\xi)^*(\xi' \otimes \eta) = \langle \xi, \xi' \rangle_N \eta$$ for $\xi' \in X$ and $\eta \in Y$, so that $\|\Theta_\xi\|^2 = \|\Theta_\xi^* \Theta_\xi\| = \|\langle \xi, \xi \rangle_N\| = \|\xi\|^2$.

Let $x \in \mathcal{L}_N(X)$ and $\varepsilon > 0$, and take $\xi \in X$ with $\|\xi\| = 1$ and $\|x \xi\| \geq \|x\| - \varepsilon$. Now choose $\eta \in Y$ with $\|\eta\| = 1$ and $\|\Theta_{x \xi}(\eta)\| \geq \|x \xi\| - \varepsilon$. Then we have

$$\|\rho(x)(\xi \otimes \eta)\| = \|x \xi \otimes \eta\| \geq \|x \xi\| - \varepsilon \geq \|x\| - 2\varepsilon$$

and

$$\|\xi \otimes \eta\| = \|\Theta_\xi(\eta)\| \leq \|\xi\| \|\eta\| = 1,$$

from which it follows that $\|\rho(x)\| = \|x\|$.

Let us prove (iii) now. Obviously the range of ρ is contained in $\text{Hom}_{N^0}(H_X, H_X)$. Conversely, let $r \in \text{Hom}_{N^0}(H_X, H_X)$ and consider the element \tilde{r} of $\mathcal{L}_N(X)$ such that
\[\Theta_{r\xi} = r \circ \Theta_{\xi} \] for \(\xi \in X \). Then for \(\zeta \in X \) and \(h \in L^2(N) \) we have
\[\rho(\tilde{r})(\zeta \otimes h) = \tilde{r}(\zeta) \otimes h = \Theta_{r\xi}(h) = r \circ \Theta_{\xi}(h) = r(\zeta \otimes h), \]
and thus \(\rho(\tilde{r}) = r \).

1.6. Keeping the notations of 1.5, we say that the self-dual Hilbert \(P \)-module \(X \otimes_N Y \) provided with the homomorphism of \(M \) into \(\mathcal{L}_p(X \otimes_N Y) \) given by restricting \(\rho \) is the\textit{ composition correspondence of \(X \) by \(Y \)}. It is the version in the setting of Hilbert modules of the composition of correspondences defined in ([8], §II).

There are other classical operations on correspondences. We shall need the following ones. Let \(H \in \text{Corr}(M, N) \) be a correspondence between \(M \) and \(N \). Let \(\overline{H} \) be the conjugate Hilbert space. If \(h \in H \), we denote by \(\overline{h} \) the vector \(h \) when viewed as an element of \(\overline{H} \). Then \(\overline{H} \) has a natural structure of correspondence from \(N \) to \(M \) by
\[y \overline{h} x = x^* \overline{h} y^*, \quad \text{for } x \in M, \quad y \in N, \quad h \in H. \]
(see [21], 1.3.7). We call it the\textit{ adjoint correspondence of \(H \)}.

Thanks to the bijection \(\wedge \) between \(C(M, N) \) and \(\text{Corr}(M, N) \), we see that to each \(X \in C(M, N) \) we can associate an element \(\overline{X} \in C(N, M) \), also called the\textit{ adjoint correspondence of \(X \)}. In general we haven’t an explicit description of \(\overline{X} \) (see however 1.8 below).

A\textit{ subcorrespondence} of \(X \in C(M, N) \) is a submodule \(Y \) of \(X \) closed for the\(s \)-topology and stable by the left action of \(M \). There is a natural bijection between the set of subcorrespondences of \(X \) and the set of projections in \(\mathcal{L}_N(X) \) which commute with the range of \(M \) in \(\mathcal{L}_N(X) \) by the left action. If \(X \) and \(Y \) are two \(M \)–\(N \) correspondences, we say that \(Y \) is\textit{ contained in \(X \)} and we write \(Y \subseteq X \) if \(Y \) is equivalent to a subcorrespondence of \(X \).

1.7. We shall have to consider the following special case of composition of correspondences. Let \(H \) be a Hilbert space and \(N \) a von Neumann algebra. Then, in an obvious way, \(H \) is an element of \(C(\mathcal{L}(H), \mathbb{C}) \) and \(N \) is an element of \(C(\mathbb{C}, N) \). Thus we may define the composition correspondence \(H \otimes_c N \), written \(H \otimes N \) afterwards. The\(N \)-valued scalar product in \(H \otimes N \) is given by
\[\langle h \otimes y, h_1 \otimes y_1 \rangle = \langle h, h_1 \rangle y^* y_1 \quad \text{for } h, h_1 \in H \quad \text{and} \quad y, y_1 \in N. \]
Take an orthonormal basis \((e_i)_{i \in I} \) in \(H \). Denote by \(l^*_w(I, N) \) the right\(N \)-module of
nets \((y_i)_{i \in I}\) of elements of \(N\) such that \(\sum_{i \in I} y_i^* y_i\) is \(\sigma\)-weakly convergent. Provided with the \(N\)-module inner product \(\langle (x_i)_{i \in I}, (y_i)_{i \in I} \rangle = \sum_{i \in I} x_i^* y_i\), it is a self-dual Hilbert \(N\)-module, and the map which sends \((y_i)_{i \in I}\) on \(\sum_{i \in I} y_i \otimes y_i\) is an isomorphism of Hilbert \(N\)-modules from \(l^2(I, N)\) onto \(H \otimes N\). (See \([20]\), p. 457–459). We shall identify \(l^2(I, N)\) and \(l^2(I) \otimes N\). Remark that \(L^2_N(H \otimes N)\) may be identified to the von Neumann tensor product \(L^2(H) \otimes N\) in a natural way.

1.8. Next, we shall give fundamental examples of correspondences, related to completely positive maps. Let \(X \in C(M, N)\) and \(\xi \in X\). Then \(\Phi: x \mapsto \langle \xi, x\xi \rangle\) is a completely positive normal map from \(M\) into \(N\). We shall say that \(\Phi\) is a coefficient of \(X\), or is associated to \(X\).

Conversely, given a completely positive normal map \(\Phi\) from \(M\) into \(N\), by the Stinespring construction we get a \(M-N\) correspondence \(X_\Phi\). The self-dual Hilbert \(N\)-module is obtained by separation and self-dual completion of the right \(N\)-module \(M \otimes N\) (algebraic tensor product) gifted with the \(N\)-module inner product

\[
\langle m \otimes n, m_1 \otimes n_1 \rangle = n^* \Phi(m^* m_1) n_1, \quad \text{for } m, m_1 \in M, \quad n, n_1 \in N.
\]

The normal representation \(\pi_\Phi\) of \(M\) into \(L^2_N(X_\Phi)\) is given by

\[
\pi_\Phi(x)(m \otimes n) = x m \otimes n \quad \text{for } x, m \in M, \quad n \in N.
\]

If \(\xi_\Phi\) denotes the class of \(1 \otimes 1\) in \(X_\Phi\), we have \(\Phi(x) = \langle \xi_\Phi, x\xi_\Phi \rangle\) for each \(x \in M\), and \(\xi_\Phi\) is a cyclic vector for the correspondence \(X_\Phi\). We shall say that \(X_\Phi\) is the correspondence associated to \(\Phi\).

If \(X\) is a \(M-N\) correspondence and \(\xi\) is a cyclic vector in \(X\), then it is easily seen that \(X\) is equivalent to the correspondence \(X_\Phi\), where \(\Phi\) is the coefficient of \(X\) given by \(\xi\). Furthermore, every \(M-N\) correspondence is a direct sum of cyclic correspondences, so that, as pointed out by A. Connes in \([8]\), the notions of completely positive maps and correspondences are closely related.

When \(\Phi\) is a normal conditional expectation from \(M\) onto a von Neumann subalgebra \(N\), it is easily checked that \(X_\Phi\) is equivalent to the separated, self-dual completion of the right \(N\)-module \(M\) with \(N\)-valued inner product \((m, m_1) \mapsto \Phi(m^* m_1)\), endowed with the obvious left action of \(M\). More generally, to every semi-finite normal operator valued weight \(\Phi\) from \(M\) to \(N\) (see \([14]\), Def. 2.1), one can associate a \(M-N\) correspondence \(X_\Phi\) which extends the classical Gelfand-Segal construction for usual normal semi-finite weights (see \([4]\), Prop. 2.8).

The right \(M\)-module \(M\) endowed with its inner product \(\langle m, m_1 \rangle = m^* m_1\) is self-dual. Gifted with its natural left \(M\)-module structure, it is the \(M-M\) correspondence associated to the identity homomorphism of \(M\). It will be called
the identity $M-M$ correspondence, and denoted by X_M or M; of course
$\Lambda(X_M) = L^2(M)$.

Let now ρ be a normal homomorphism from M into a von Neumann algebra N. It is straightforward to show that X_ρ is equivalent to the Hilbert N-subspace $\rho(1)N$ of the right Hilbert N-module N, with left action of M given by

$$x.n = \rho(x)n, \quad \text{for} \; x \in M, \; n \in \rho(1)N.$$

Suppose next that N is a von Neumann subalgebra of M. The $N-M$ correspondence associated to the inclusion $i: N \to M$ will be denoted by X_N. Note that X_N is obtained from $X_M = M$ by restricting to N the left action of M. Remark also that $\Lambda(X_N)$ is $L^2(M)$ where we restrict to N the standard representation of M and keep the right action of M. Let E be a faithful normal conditional expectation from M onto N. It has been noticed in [4] that the (equivalence class of the) $M-N$ correspondence X_E is the adjoint correspondence \overline{X}_N of X_N. Indeed, it is shown in ([4], Corol. 2.14) that $\Lambda(X_E)$ is equivalent to $L^2(M)$ considered as a $M-N$ bimodule by restricting to N the right action of M, and this correspondence is easily seen to be equivalent to the adjoint of $\Lambda(X_N)$, thanks to the antilinear involutive isometry J of $L^2(M)$. (In fact, this remark remains true when E is any faithful normal semi-finite operator valued weight from M to N).

Even if there doesn't exist any conditional expectation from M onto N, we may consider \overline{X}_N. Note that by Lemma 1.5(iii), $\mathcal{L}_N(\overline{X}_N)$ is isomorphic to the commutant of the right action of N on $L^2(M)$, since $\Lambda(\overline{X}_N) = L^2(M)$ viewed as $M-N$ bimodule. It follows that the normal homomorphism from M into $\mathcal{L}_N(\overline{X}_N)$ which appears in the definition of the $M-N$ correspondence \overline{X}_N is injective, because it comes from the standard representation of M.

The $M-M$ correspondence $\overline{X}_N \otimes_M X_N$ will be denoted by Y_N. It has been introduced by Popa ([21], 1.2.4) in the finite case, as a very useful tool for the study of the inclusion $N \subset M$. When there exists a normal faithful conditional expectation E from M onto N, then $Y_N = X_E \otimes_N X_N$ and Y_N is also the $M-M$ correspondence associated to E viewed as a completely positive map from M to M (see [4], Th. 2.12).

Let us remark that $Y_M = X_M = M$. For $N = \mathbb{C}$, the $\mathbb{C}-M$ correspondence $X_\mathbb{C}$ is the Hilbert M-module M with obvious action of \mathbb{C}, and $\overline{X}_\mathbb{C}$ is the Hilbert space $L^2(M)$ with the standard representation of M. Thus $Y_\mathbb{C} = \overline{X}_\mathbb{C} \otimes_\mathbb{C} X_\mathbb{C} = L^2(M) \otimes M$ is the coarse $M-M$ correspondence (see [8], Def. 3).

1.9. For later use, we prove the following result (see [21], Prop. 1.2.5.(ii)).

LEMMA. Let M be a von Neumann algebra and N a finite dimensional von Neumann subalgebra of M. Then we have $Y_N \subset Y_\mathbb{C}$.
Proof. Let z_1, \ldots, z_k be the minimal projections of the centre $Z(N)$, and $(e^i_{pq})_{1 \leq p,q \leq n_j}$ a matrix units system for Nz_j where $j = 1, \ldots, k$. Let $u^i_p = e^i_{pj}$ for $p = 1, \ldots, n_j$ and $j = 1, \ldots, k$. We choose a normal faithful state φ on M and we put $\alpha_j = \varphi(e^i_{11})$ for $j = 1, \ldots, k$. Then one easily checks that the map E on M defined by

$$E(x) = \sum_{1 \leq p,q \leq n_j} \sum_{j=1}^k \alpha_j \frac{1}{\alpha_j} u^i_p \varphi(u^i_p \star xu_q^i)u_q^i$$

is a normal faithful conditional expectation from M onto N.

We take for $L^2(M)$ the standard form $L^2(M, \varphi)$ of the identity correspondence given by φ, and we identify M to a subspace of $L^2(M, \varphi)$. Let

$$\xi = \sum_{1 \leq p \leq n_j} \sum_{j=1}^k \alpha_j \frac{1}{\alpha_j} u^i_p \otimes u^i_p \in Y_C = L^2(M, \varphi) \otimes M.$$

We have, for $x \in M,$

$$\langle \xi, x\xi \rangle = \sum_{p,q} \sum_{i,j} (1/\alpha_j^{1/2} \alpha_i^{1/2}) \langle u_p^i \otimes u_p^i, xu_p^i \otimes u_p^i \rangle$$

$$= \sum_{p,q} \sum_{i,j} (1/\alpha_j^{1/2} \alpha_i^{1/2}) u_p^i \varphi(u_p^i \star xu_q^i)u_q^i$$

$$= E(x) = \langle \xi, x\xi \rangle,$$

where Φ is E considered as a completely positive map from M to M. Thus, $x\xi y \mapsto x\Phi(y)$, with $x, y \in M$, induces an equivalence between the subcorrespondence of $L^2(M, \varphi) \otimes M$ having ξ as cyclic vector and Y_N which is the M-M correspondence associated to Φ.

Notice that Φ appears as a completely positive map which is a finite sum of completely positive maps factored by φ in the sense of ([19], Def. 1).

1.10. LEMMA. A correspondence X contains the identity correspondence M if and only if there exists a non zero central and separating vector ξ in X (i.e. $\xi x = x\xi$ for all $x \in M$ and if $\xi x = 0$ then $x = 0$).

Proof. The necessity of the existence of ξ is obvious. Conversely suppose that there is a non zero separating central vector ξ in X. Then $\langle \xi, \xi \rangle$ belongs to $Z(M)$ and its support is 1. Consider the polar decomposition $\xi = \eta \langle \xi, \xi \rangle^{1/2}$ of ξ (see [20], Prop. 3.11). Then η is central and since $\langle \eta, \eta \rangle$ is the support of $\langle \xi, \xi \rangle$, we have $\langle \eta, \eta \rangle = 1$. Now it is easy to prove that ηM defines a subcorrespondence of X equivalent to M. \qed
1.11. REMARK. In ([21], Prop. 1.2.5) Popa has shown that for type II₁ factors $N \subset M$ the properties $[M:N] < \infty$ and $M \subset Y_N$ are closely related, where $[M:N]$ denotes as usually the Jones' index. More generally, let E be a faithful normal conditional expectation from a von Neumann algebra M onto a von Neumann subalgebra N. In [4], the index of E has been defined to be finite if there exists $k > 0$ such that the map $t \mapsto E - t|d_M$ from M to M is completely positive (t being the injection of N into M). This definition is equivalent to the one given by Kosaki [18] when M and N are factors, and extends Jones' definition. It follows easily from ([4] Th. 3.5) and Lemma 1.10 that $M \subset Y_N$ when the index of E is finite, and that, conversely, if $M \subset Y_N$ with $N' \cap M = \mathbb{C}$ then the index of E is finite. Thus, Popa's result remains true in general.

1.12. Recall that in [9] a topology has been defined on $\text{Corr}(M, N)$, described by its neighbourhoods in the following way.

DEFINITION. Let $H_0 \in \text{Corr}(M, N)$, $\epsilon > 0$, $E \subset M$ and $F \subset N$ two finite sets, and $S = \{h_1, \ldots, h_n\}$ a finite subset of H_0. We denote by $U(H_0; \epsilon, E, F, S)$ the set of $H \in \text{Corr}(M, N)$ such that there exist $k_1, \ldots, k_n \in H$ with $|\langle h_i, xk_j y \rangle - \langle h_i, xh_j y \rangle| < \epsilon$ for all $x \in E$, $y \in F$ and $i, j = 1, \ldots, n$. The we consider the well defined topology on $C(M, N)$ for which these sets U are basis of neighbourhoods.

Note that if we consider correspondences as representations of $M \otimes_{\text{bin}} N^0$ (the binormal ones), then it is easily verified that the above topology on $\text{Corr}(M, N)$ is induced by the quotient topology introduced in [11] on the set of (unitary equivalence classes of) representations of $M \otimes_{\text{bin}} N^0$.

We shall now give an equivalent way of defining this topology on $C(M, N)$.

DEFINITION. Let $X_0 \in C(M, N)$, \mathcal{V} a σ-weak neighbourhood of 0 in N, E a finite subset of M and $S = \{\xi_1, \ldots, \xi_n\}$ a finite subset of X_0. We denote by $V(X_0; \mathcal{V}, E, S)$ the set of $X \in C(M, N)$ such that there exist $\eta_1, \ldots, \eta_n \in X$ with $\langle \eta_i, x\xi_j \rangle - \langle \xi_i, x\eta_j \rangle \in \mathcal{V}$ for all $x \in E$ and $i, j = 1, \ldots, n$. We provide $C(M, N)$ with the topology having such sets as basis of neighbourhoods.

PROPOSITION. The bijection $\land : C(M, N) \to \text{Corr}(M, N)$ is an homeomorphism.

Proof. Let $X_0 \in C(M, N)$ and $H_0 = X_0 \otimes_N L^2(N, \varphi)$, where φ is a fixed faithful normal state on N. Denote by h_φ the canonical cyclic vector in $L^2(N, \varphi)$. Consider a neighbourhood $U = U(H_0; \epsilon, E, F, S)$ of H_0. Then we may suppose that $S = \{\xi_1 \otimes h_\varphi, \ldots, \xi_n \otimes h_\varphi\}$ with ξ_1, \ldots, ξ_n in X_0, since the subspace $\{\xi \otimes h_\varphi, \xi \in X_0\}$ is dense in H_0. Let:

$$S' = \{\xi_1, \ldots, \xi_n\} \quad \text{and} \quad \mathcal{V} = \{x \in N, |\langle h_\varphi, xh_\varphi y \rangle| < \epsilon \quad \text{for} \quad y \in F\}.$$

Then we shall prove that the image of $V = V(X_0; \mathcal{V}, E, S')$ by \land is contained in U.

Take $\lambda \in V$ and let $\lambda = \lambda \otimes_{\mathcal{N}} L^2(N, \varphi)$. There exist $\eta_1, \ldots, \eta_n \in \lambda$ with

$$|\langle \eta_i, (\eta_j, \lambda \eta_j) - \langle \zeta_i, \lambda \zeta_j \rangle \rangle \lambda y \rangle | < \varepsilon$$
for $x \in E$, $y \in F$, $1 \leq i, j \leq n$,

so that

$$|\langle \eta_i \otimes \lambda \varphi, \eta_j \otimes \lambda \varphi \rangle \rangle y \rangle - \langle \zeta_i \otimes \lambda \varphi, \zeta_j \otimes \lambda \varphi \rangle | < \varepsilon$$

for $x \in E$, $y \in F$, $1 \leq i, j \leq n$; hence $\lambda \in U$.

Conversely, consider a neighbourhood $V = V(X_0, \mathcal{V}, E, S)$ of X_0, where $S = \{ \xi_1, \ldots, \xi_n \} \subset X_0$ and $\mathcal{V} = \{ x \in N, |\varphi_i(x)| < 1, 1 \leq i \leq p \}$, with $\varphi_1, \ldots, \varphi_p$ given normal positive forms on N. Let ψ be a faithful normal positive form on N with $\varphi_i \leq \psi$ for $1 \leq i \leq p$. By ([10], Prop. 2.5.1) there exist $y_i \in N$ such that

$$\varphi_i(x) = \langle \psi, x \varphi_i y_i \rangle, \quad \text{for } x \in N.$$

We may suppose that $H_0 = X_0 \otimes N L^2(N, \psi)$ and $S' = \{ \xi_1 \otimes \psi, \ldots, \xi_n \otimes \psi \}$, and let us show that the image of $U = U(H_0 ; 1, E, F, S')$ by \mathcal{V}^{-1} is contained in V. Consider $H \in \text{Corr}(M, N)$ such that there exist $h_1, \ldots, h_n \in H$ with

$$|\langle h_i, x h_j y \rangle - \langle \zeta_i \otimes \lambda \varphi, \zeta_j \otimes \lambda \varphi \rangle | < 1$$

for $x \in E$, $y \in F$, $1 \leq i, j \leq n$.

We may suppose that $H = X \otimes N L^2(N, \psi)$ with $X = \mathcal{V}^{-1}(H)$, and since the set $\{ \eta \otimes \lambda \varphi, \eta \in \lambda \}$ is a dense subspace of H, we may take $h_i = \eta_i \otimes \lambda \varphi$ with $\eta_i \in \lambda$, for $i = 1, \ldots, n$. Then we have

$$|\varphi_k(\langle \eta_i, \lambda \eta_j \rangle - \langle \zeta_i, \lambda \zeta_j \rangle | = |\langle h_\psi, (\lambda \eta_j, \psi) - \langle \zeta_i, \lambda \zeta_j \rangle \rangle \lambda y_k \rangle |$$

$$= |\langle \eta_i \otimes \lambda \varphi, \lambda \eta_j \otimes \lambda \varphi \rangle \rangle y_k \rangle - \langle \zeta_i \otimes \lambda \varphi, \lambda \zeta_j \otimes \lambda \varphi \rangle |< 1$$

for $x \in E$, $1 \leq i, j \leq n, k = 1, \ldots, p$, so that $X \in V$.

1.13. REMARKS. (a) Let $X_0 \in C(M, N)$ with a cyclic vector ξ_0. Then it is easy to see that X_0 has a basis of neighbourhoods of the form $V(X_0, \mathcal{V}, E, \{ \xi_0 \})$. In particular, the identity correspondence $Y_M = M$ has $V(M, \mathcal{V}, E)$ as basis of neighbourhoods, where \mathcal{V} is a σ-weak neighbourhood of O in M, E is a finite subset of $M, and V(M, \mathcal{V}, E)$ is the set of $X \in C(M, M)$ such that there exists $\eta \in X$ with $\langle \eta, x \eta \rangle - x \in \mathcal{V}$ for $x \in E$.

(b) $\lambda = \lambda \otimes_{\mathcal{N}} L^2(N, \psi)$.
Φ: M → N be also a normal completely positive map. If Φₙ(x) converges σ-weakly to Φ(x) for all x ∈ M, then obviously Xₙ tends to Xₜ in C(M, N).

1.14. As it has already been pointed out in [19] and [21], the notions of irreducibility, weak containment, type, still apply to M–N correspondences when the latter are regarded as representations of the C*-algebra $M \otimes_{\text{bin}} N^0$.

DEFINITION. We say that a correspondence $X ∈ C(M, N)$ is irreducible if the commutant of M in $L_N(X)$ is reduced to the scalar operators.

Thanks to the Lemma 1.5 (iii), this means that the associated representation of $M \otimes_{\text{bin}} N^0$ is irreducible.

DEFINITION. We say that a correspondence $X ∈ C(M, N)$ is weakly contained in $Y ∈ C(M, N)$ if the associated representation $π_X$ of $M \otimes_{\text{bin}} N^0$ is weakly contained in the representation $π_Y$, that is $\text{Ker } π_X ⊃ \text{Ker } π_Y$.

This means that $π_X$ (resp. X) belongs to the closure of the set of finite direct sums of copies of $π_Y$ (resp. Y) in the set of representations of $M \otimes_{\text{bin}} N^0$ gifted with the quotient topology of Fell (resp. in $C(M, N)$) ([12], Th. 1.1). When X is irreducible, this is equivalent to the fact that $π_X$ belongs to the closure of $\{π_Y\}$, or to the fact that X is in the closure of $\{Y\}$ in $C(M, N)$ (see [12], or ([10], §3.4)).

2. Cocycles, positive type functions and correspondences

In this section we consider a $(W^*−)$ dynamical system (N, G, x) where G is a discrete group and x is an homomorphism from G into the group of automorphisms of N.

2.1. DEFINITION. Let K be a Hilbert space. A map $g → T_g$ from G into the unitary group of $L(K) \otimes N = L_N(K \otimes N)$ such that

$$T_{st} = T_s(I_K \otimes x_s)(T_t), \quad \text{for } s, t ∈ G$$

will be called a unitary cocycle for (N, G, x).

We denote by $Z(N, G, x)$ the set of such cocycles, where of course the Hilbert space K may vary.

To every unitary representation $π$ of G in $H_π$, we can associate the cocycle $T: s → π(s) \otimes 1$, with values in the unitary group of $L(H_π) \otimes N$. When $π$ is the trivial representation of G we obtain the identity cocycle $I: s → 1 ∈ N$. The left regular representation of G is denoted by $λ$ as well as the associated cocycle $s → λ(s) \otimes 1$, with values in the unitary group of $L(l^2(G)) \otimes N$. It is called the (left) regular cocycle for (N, G, x).

Consider now the special case where N is an abelian von Neumann algebra.
344 Claire Anantharaman-Delaroche

Then there exist (in an essentially unique way) a probability space \((X, \mu)\) and a Borel \(G\)-action \((x, s) \mapsto xs\) leaving \(\mu\) quasi-invariant such that

\[(\alpha_s f)(x) = f(xs) \mu\text{-a.e., } \text{ for } f \in L^\infty(X, \mu).\]

Let \(T\) be a cocycle for \((N, G, \alpha)\) with values in the unitary group of \(\mathcal{L}(K) \otimes N = L^\infty(K, \mathcal{L}(K))\). Let \(T_s(x) = \beta(x, s)\mu\text{-a.e. for all } s \in G\). Then the cocycle equality becomes

\[\beta(x, st) = \beta(x, s)\beta(xs, t)\mu\text{-a.e. for all } s, t \in G.\]

Thus the elements of \(Z(N, G, \alpha)\) are the unitary cocycles considered by Zimmer in [27].

2.2. DEFINITION (see [6]). Let \(X\) be a Hilbert \(N\)-module. An homomorphism \(v: s \mapsto v_s\) from \(G\) into the group of \(\mathbb{C}\)-linear, bijective, bicontinuous maps of \(X\) onto itself will be called an action of \(G\) on \(X\). We say that the action is \(\alpha\)-equivariant if

\[\alpha_t(\eta, \xi) = \langle v_t \eta, v_t \xi \rangle, \quad \forall t \in G, \quad \eta, \xi \in X,\]

\[v_t(\xi x) = v_t(\xi)\alpha_t(x), \quad \forall t \in G, \quad \xi \in X, \quad x \in N.\]

2.3. Let \(K\) be a Hilbert space. It is easily checked that we can define an \(\alpha\)-equivariant action \(\hat{\alpha}\) (or more simply \(\hat{\alpha}\)) of \(G\) on \(K \otimes N\) by

\[\hat{\alpha}_s(k \otimes x) = k \otimes \alpha_s(x), \quad \text{for } k \in K, \quad x \in N.\]

Consider now a cocycle \(T\) for \((N, G, \alpha)\), with values in the unitaries of \(\mathcal{L}(K) \otimes N\). Then \(s \mapsto T_s \circ \hat{\alpha}_s\) is an \(\alpha\)-equivariant action of \(G\) on \(K \otimes N\), since we have

\[(I_K \otimes \alpha_s)(S) = \hat{\alpha}_s \circ S \circ \hat{\alpha}_s^{-1}\]

for \(S \in \mathcal{L}(K) \otimes N\) and \(s \in G\). Conversely, if \(v\) is an \(\alpha\)-equivariant action of \(G\) on \(K \otimes N\), then \(s \mapsto T_s = v_s \circ \hat{\alpha}_s^{-1} \in \mathcal{L}'_N(K \otimes N) = \mathcal{L}(K) \otimes N\) is a unitary cocycle. In this way, we obtain a natural bijection between \(Z(N, G, \alpha)\) and the set of \(\alpha\)-equivariant \(G\)-actions on Hilbert \(N\)-modules of the form \(K \otimes N\).

2.4. Recall from [3] that a map \(s \mapsto f(s)\) from \(G\) into \(N\) is said to be of positive type (with respect to \(\alpha\)) if for every \(s_1, \ldots, s_n \in G\), the matrix \((\alpha_{s_i}(f(s_i^{-1}s_j)))_{i,j} \in M_n(N)\) is positive.

Let \(v\) be an \(\alpha\)-equivariant action of \(G\) on a Hilbert \(N\)-module \(X\), and take \(\xi \in X\). Then \(s \mapsto \langle \xi, v_s \xi \rangle\) is a positive type function with values in \(N\). Conversely, every
positive type function comes in such a way from an α-equivariant action ([3], Prop. 2.3). We may consider only self-dual modules, and even of the type $K \otimes N$:

Lemma. Let f be a positive type map from G into N. There exist an Hilbert space K, an α-equivariant action v of G on $K \otimes N$ and a vector $\xi \in K \otimes N$ such that $f(s) = \langle \xi, v_s \xi \rangle$ for $s \in G$.

Proof. By ([3], Prop. 2.3), there exist a Hilbert N-module E, an α-equivariant action w on E, and a vector $\eta \in E$ such that $f(s) = \langle \eta, w_s \eta \rangle$ for $s \in G$. We denote by X the self-dual completion of E, which can be viewed as the set of N-module bounded maps of E into N (see [20], §3). Then it is easily shown that w may be extended to an α-equivariant action \tilde{w} on X by

$$\tilde{w}_s(\tau)(\xi) = \alpha_s(\tau(w_{s^{-1}} \xi)) \quad \text{for } s \in G, \xi \in E, \tau \in X.$$

By ([20], Th. 3.12) X is isomorphic to a self-dual Hilbert N-submodule of $l^2(I) \otimes N$, where I is a well chosen infinite set of indices, and thus the Hilbert N-modules $X \oplus (l^2(I) \otimes N)$ and $l^2(I) \otimes N$ are isomorphic. Let v be the α-equivariant action on $l^2(I) \otimes N$ transferred by such an isomorphism from the action on $X \oplus (l^2(I) \otimes N)$ which is equal to w on X and to α on $l^2(I) \otimes N$. If ξ is the vector in $l^2(I) \otimes N$ which corresponds to $\eta \in X \oplus (l^2(I) \otimes N)$, then we have $f(s) = \langle \xi, v_s \xi \rangle$ for $s \in G$. \qed

2.5. In the rest of Section 2, we denote by M the crossed product $N \times_\alpha G$. Recall that M is generated by N and by the range of an homomorphism $s \mapsto u_s$ from G into the unitary group of M such that $u_s x u_{s^{-1}} = x_s$ for $x \in N$ and $s \in G$. More precisely, every element of M may be written in a unique way as a σ-weakly convergent sum $\sum_{s \in G} u_s x_s$, where $x_s \in N$ for $s \in G$. We denote by E the faithful normal conditional expectation of M onto N such that $E(\sum_{s \in G} u_s x_s) = x_e$, where e is the neutral element of G. Let $(\xi_s)_{s \in G}$ be the canonical orthonormal basis of $l^2(G)$. It is straightforward to check that the Hilbert N-modules X_E and $l^2(G) \otimes N$ are isomorphic by the map sending $\sum_{s \in G} u_s x_s \in M \subset X_E$ onto $\sum_{s \in G} \xi_s \otimes x_s$. Hence, we may identify $L_H(X_E)$ with $L(\ell^2(G)) \otimes N$, and it is easy to see that when we make this identification, an element $x = \sum_{s \in G} u_s x_s \in M \subset L_H(X_E)$ becomes the matrix $(x_{s,t})$ where $x_{s,t} = x_{s^{-1}}(x_t x_{s^{-1}})$ for $s, t \in G$. In other words, the embedding $M \subset L_H(X_E)$ is the well known embedding of $N \times_\alpha G$ in $L(\ell^2(G)) \otimes N$ (see [25] for instance).

Take a normal faithful state φ on N and let $\psi = \varphi \circ E$. The Hilbert space $L^2(M, \psi)$ is isomorphic to $l^2(G) \otimes L^2(N, \varphi)$ by the map which sends $\sum_{s \in G} u_s x_s \in M \subset L^2(M, \psi)$ onto $\sum_{s \in G} \xi_s \otimes x_s$ (where N is here viewed as a subspace of $L^2(N, \varphi)$). With this identification, $x \in N \subset M \subset L(\ell^2(M, \psi))$ becomes the operator sending $\xi \in \ell^2(G) \otimes L^2(N, \varphi)$ onto $\sum_{s \in G} (x(\xi)) \otimes x_s$ and $u_s \in M$ becomes the operator $\lambda_s \otimes 1$.
2.6. To each cocycle for \((Z(N), G, \alpha)\) we can associate in a natural way a \(M-M\) correspondence. This has already been noticed in ([2], Prop. 4.3), and extends a construction of ([9], proof of Th. 2) where \(N = \mathbb{C}\).

PROPOSITION. Let \(T\) be a cocycle for \((Z(N), G, \alpha)\) with values in the unitary group of \(\mathcal{L}(K) \otimes Z(N)\) and let \(X = K \otimes M\). There exists a normal homomorphism \(\pi\) of \(M\) into \(\mathcal{L}_M(K \otimes M) = \mathcal{L}(K) \otimes M\) such that

\[
\pi(x) = 1_K \otimes x, \forall x \in N,
\]

\[
\pi(u_s) = T_s \cdot (1_K \otimes u_s), \forall s \in G.
\]

Thus \((X, \pi)\) is a \(M-M\) correspondence, which will be said to be associated to \(T\).

Proof. We identify \((K \otimes M) \otimes_M L^2(M)\) to the Hilbert space tensor product \(K \otimes L^2(M)\) in the obvious way, and we denote by \(\rho\) the canonical injective normal homomorphism from \(\mathcal{L}_M(X)\) into \(\mathcal{L}(X \otimes_M L^2(M)) = \mathcal{L}(K \otimes L^2(M))\) (see 1.5). We shall prove that \(\pi\) comes from a normal homomorphism from \(M\) into \(\mathcal{L}(K \otimes L^2(M))\) via \(\rho\). For each \(S \in \mathcal{L}_M(X) = \mathcal{L}(K) \otimes M\) we have \(\rho(S) = S\) considered as acting on \(K \otimes L^2(M)\) in the natural way, since this is clearly true for decomposable elements of \(\mathcal{L}(K) \otimes M\).

We take \(L^2(M) = l^2(G) \otimes L^2(N)\) (see 2.5) and we write the elements \(\xi\) of \(K \otimes l^2(G) \otimes L^2(N)\) as maps from \(G\) into \(K \otimes L^2(N)\). Then we have

\[
(\rho(\pi(x))\xi)(s) = (1_K \otimes \alpha_{x^{-1}}(x))\xi(s) \quad \text{for } x \in N,
\]

\[
(\rho(\pi(u_t))\xi)(s) = (I_K \otimes \alpha_{x^{-1}}(T_t))\xi(t^{-1}s) \quad \text{for } t \in G,
\]

where \(1_K\) is the unit of \(\mathcal{L}(K)\) and \(I_K\) the identity automorphism of \(\mathcal{L}(K)\). Denote by \(w\) the unitary operator on \(K \otimes l^2(G) \otimes L^2(N)\) such that

\[
(w(\pi(x)))\xi(s) = (I_K \otimes \alpha_{x^{-1}}(x))\xi(s) \quad \text{for } s \in G.
\]

Since \((I_K \otimes \alpha_{x^{-1}}(x)) = (I_K \otimes \alpha_{x^{-1}})(1_K \otimes x)\) and \((I_K \otimes \alpha_{x^{-1}})(T_s)\) commute for \(x \in N\) and \(s \in G\), we see that \(w(\pi(x))w = \rho(\pi(x))\). On the other hand, for \(\xi \in K \otimes l^2(G) \otimes L^2(N)\) and \(x \in G\) we have

\[
(w(\pi(x)))\xi(s) = [(I_K \otimes \alpha_{x^{-1}})(T_s^*T_t)](I_K \otimes \alpha_{x^{-1}})(T_{s^{-1}}s)\xi(t^{-1}s) = \xi(t^{-1}s)
\]

by the cocycle property on \(T\). Hence \(\pi\) is the normal homomorphism from \(M\) into \(\mathcal{L}_M(X)\) such that \(\rho(\pi(x)) = w(1_K \otimes x)w^* \in \mathcal{L}(K \otimes L^2(M))\) for each \(x \in M \subset \mathcal{L}(L^2(M))\).

\[\square\]

2.7. **PROPOSITION.** (i) If \(T\) is the identity cocycle for \((Z(N), G, \alpha)\), the associated \(M-M\) correspondence is the identity correspondence.
(ii) \(Y_N \) is the \(M-M \) correspondence associated to the regular cocycle for \((Z(N), G, \alpha)\).

Proof. (i) is obvious. Let us prove (ii). The Hilbert \(M \)-module \(Y_N = X_E \otimes_N X_N \) is isomorphic to \((l^2(G) \otimes N) \otimes_N X_N \) (see 2.5) and thus to \(l^2(G) \otimes M \) by the map which sends \((\sum_{s \in G} u_s x_s) \otimes y \in X_E \otimes_N X_N \) onto \(\sum_{s \in G} \xi_s \otimes x_s y \). If we identify \(Y_N \) and \(l^2(G) \otimes M \) thanks to this isomorphism we see that the left action \(\pi' \) of \(M \) on \(Y_N \) becomes the action on \(l^2(G) \otimes M \) given by

\[
\begin{align*}
\pi'(x)(\xi)(s) &= \alpha_{s^{-1}}(x)\xi(s) \\
\pi'(u_s)(\xi)(s) &= \xi(t^{-1}s)
\end{align*}
\]

for \(\xi \in l^2(G) \otimes M, x \in N \) and \(s, t \in G \).

Let \(w \) be the automorphism of \(l^2(G) \otimes M \) such that \((w\xi)(s) = u_s \xi(s) \). Then we have

\[
\begin{align*}
w\pi'(x)w^* &= 1_{l^2(G)} \otimes x, \quad \forall x \in N, \\
w\pi'(u_s)w^* &= \lambda_s \otimes u_s, \quad \forall s \in G.
\end{align*}
\]

Therefore, \(Y_N \) is equivalent to the \(M-M \) correspondence associated to the regular cocycle for \((Z(N), G, \alpha)\).

\[\square\]

2.8. The following proposition extends the construction of completely positive maps carried out by Haagerup in ([15], Lemma 1.1).

PROPOSITION. Let \(f \) be a positive type map from \(G \) into \(Z(N) \) with respect to \(\alpha \). Then there exists a unique normal completely positive map \(\Phi_f \) from \(M \) into \(M \) such that

\[
\Phi_f(u_s x) = f(s)u_s x \quad \text{for } s \in G \quad \text{and } x \in N,
\]

and \(\Phi_f \) is \(N \)-bilinear.

More precisely, suppose that \(f \) is given by \(f(s) = \langle \xi, v_s \xi \rangle \) as in lemma 2.4 but with \(N \) replaced by \(Z(N) \). Then, denoting by \(T \) the cocycle corresponding to \(v \), \(\Phi_f \) is the coefficient of the \(M-M \) correspondence associated to \(T \), which is defined by \(\xi \in K \otimes Z(N) = K \otimes M \).

Proof. The unicity of \(\Phi_f \) is obvious. Let \((K \otimes M, \pi) \) be the \(M-M \) correspondence associated to \(T \). For \(x \in N \) and \(t \in G \), we have

\[
\begin{align*}
\langle \xi, \pi(u_t)x\xi \rangle_M &= \langle \xi, \pi(u_t)\xi x \rangle_M \text{ since } \xi \in K \otimes Z(N) \\
&= \langle \xi, T_t \circ \hat{\alpha}_t(\xi) \rangle u_t x = f(t)u_t x.
\end{align*}
\]
Thus $y \mapsto \langle \xi, \pi(y)\xi \rangle_M$ is a N-bilinear normal completely positive map with the required property.

2.9. REMARK. Suppose that G is freely acting on N in the sense of [16] and let Φ be a N-bilinear normal completely positive map from M to M. For $s \in G$, put $f(s) = \Phi(u_s u_s^*)$. We easily check that $f(s) \in N' \cap M$, which is equal to $Z(N)$ since the action α is free. Now f is a positive type map because we have, for a_1, \ldots, a_n in $Z(N)$ and s_1, \ldots, s_n in G,

$$\sum_{i,j=1}^n a_i^* \alpha_{s_i}(f(s_i^{-1} s_j)) a_j = \sum_{i,j=1}^n a_i^* u_{s_i} \Phi(u_{s_i} u_{s_j}) u_{s_j}^* a_j \geq 0$$

by the complete positivity of Φ.

Thus, when the G-action α is free, every N-bilinear normal completely positive map Φ from M to M comes from a positive type function as indicated in 2.8.

2.10. Of course, if f is the constant map with value equal to the unit of $Z(N)$, the associated completely positive map is the identity automorphism of M.

PROPOSITION. Let f be a positive type map from G to $Z(N)$ with finite support. Then the associated completely positive map Φ_f is a coefficient of the $M-M$ correspondence Y_N.

Proof. Let $\tilde{\alpha}$ be the α-equivariant action of G on $l^2(G) \otimes Z(N)$, associated to the regular cocycle λ, which means that $(\tilde{\alpha}_h)(s) = \alpha_t(h(t^{-1}s))$ for $h \in l^2(G) \otimes Z(N)$ and $s, t \in G$. Since f has a finite support, by ([3], Prop. 2.5) there exists $h \in l^2(G) \otimes Z(N)$ such that $f(s) = \langle h, \tilde{\alpha}_s h \rangle$. Then the result follows from Propositions 2.8 and 2.7(ii).

2.11. We denote by $PT_1(Z(N), G, \alpha)$ the set of positive type maps from G to $Z(N)$ with respect to α, such that $\sup_{s \in G} \|f(s)\| \leq 1$ (or, equivalently $f(e) \leq 1$ ([3], Prop. 2.4)), and we endow this set with the topology of pointwise σ-weak convergence. The space of normal completely positive maps from M to M will be denoted by $CP(M)$ and equipped similarly with the topology of pointwise σ-weak convergence.

PROPOSITION. The map $f \mapsto \Phi_f$ from $PT_1(Z(N), G, \alpha)$ into $CP(M)$ is continuous.

Proof. We show the continuity at $f_0 \in PT_1(Z(N), G, \alpha)$. Let \mathcal{V} be a σ-weak neighbourhood of 0 in M and $\{x^1, \ldots, x^n\}$ a finite subset of M. We write $x^i = \sum_{s \in G} u_s x_s$ for $1 \leq i \leq n$.

We choose a faithful normal state φ on N, and for $a \in N$ and $s \in G$, we denote by $\varphi_{a,s}$ the form $x \mapsto \varphi(E(a u_s x))$ on M. When (a, s) describes $N \times G$, we get a total family of elements in the predual M_*, with respect to the norm. Hence, we may
find a_1, \ldots, a_p in N and s_1, \ldots, s_p in G such that for every $y \in M$ satisfying
\[\|y\| \leq 2 \sup_{1 \leq j \leq n} \|x^j\| \quad \text{and} \quad |\varphi_{a_i,s_i}(y)| < 1, \quad \text{for } i = 1, \ldots, p \]

we have $y \in \mathcal{V}$.

Let \mathcal{W} be the σ-weak neighbourhood of O in $Z(N)$ given by
\[\mathcal{W} = \{x \in Z(N), |\varphi(a_i x_{s_i}(x)x_{s_i}^{-1})| < 1 \text{ for } 1 \leq i \leq p \text{ and } 1 \leq j \leq n\}. \]

We shall show that if $f \in PT_1(Z(N), G, \alpha)$ satisfies
\[f(s_i^{-1}) - f_0(s_i^{-1}) \in \mathcal{W} \quad \text{for } i = 1, \ldots, p, \]
then $\Phi_f(x^j) - \Phi_0(x^j) \in \mathcal{V}$ for $j = 1, \ldots, n$ (where $\Phi_0 = \Phi_{f_0}$), and this will end the proof. We have
\[|\varphi_{a_i,s_i}(\Phi_f(x^j)) - \Phi_0(x^j)| = \left| \sum_{t \in G} \varphi(a_i E(u_s(f(t) - f_0(t))u_s,x^j_s)) \right| \]
\[= |\varphi(a_i x_{s_i}(f(s_i^{-1}) - f_0(s_i^{-1}))x_{s_i}^{-1} x_{s_i}^j)| < 1 \]
for $i = 1, \ldots, p$ and $j = 1, \ldots, n$. As Φ_f and Φ_0 are contractions, we get
\[\|\Phi_f(x^j) - \Phi_0(x^j)\| \leq 2\|x^j\|, \quad \text{and therefore we have } \Phi_f(x^j) - \Phi_0(x^j) \in \mathcal{V}. \quad \square \]

3. Amenability

3.1. DEFINITION (see [21] Def. 3.1). Let $N \subset M$ be von Neumann algebras. We say that M is amenable relative to N (or that the inclusion is amenable) if the identity correspondence $Y_M = M$ is weakly contained in Y_N.

Note that when there exists a faithful normal conditional expectation from M onto N with finite index, the inclusion is amenable since Y_M is then contained in Y_N (see 1.11).

Consider now the case $N = \mathbb{C}$. The representation of $M \otimes_{\text{bin}} M^0$ defined by the identity correspondence is $x \otimes y^0 \mapsto x J y^* J$ acting on $L^2(M)$, where, as usual, J is the antilinear involution on $L^2(M)$ given by the Tomita–Takesaki theory. The representation of $M \otimes_{\text{bin}} M^0$ associated to the coarse correspondence is $x \otimes y^0 \mapsto x \otimes J y^* J$ acting on $L^2(M) \otimes L^2(M)$. Thus the inclusion $\mathbb{C} \subset M$ is amenable if and only if the map $x \otimes y \mapsto xy$ from the algebraic tensor product $M \otimes M'$ into the C*-subalgebra of $\mathcal{L}(L^2(M))$ generated by M and M' is continuous when $M \otimes M'$ is equipped with the minimal C*-norm. It is proved in
([11]), Prop. 4.5) that this property is equivalent to semi-discreteness, and by [11], [7], [5] and [26] it is equivalent to injectivity.

The following result, which extends a part of Popa’s Theorem 3.2.3 in [21], shows that relative amenability implies a relative injectivity property.

3.2. PROPOSITION. Let \(N \subseteq M \) be an amenable inclusion. Then there exists a norm one projection from \(\mathcal{L}_N(\overline{X}_N) \) onto \(M \) (naturally identified to a von Neumann subalgebra of \(\mathcal{L}_N(\overline{X}_N) \)).

Proof. By hypothesis, \(Y_M \) belongs to the closure in \(C(M) \) of the set of finite direct sums of copies of \(Y_N \). Hence there exists a net \((\eta_i)_{i \in I} \), where each \(\eta_i \) is a finite sequence \(\eta^i_1, \ldots, \eta^i_{p_i} \) of elements of \(Y_N \), such that for each \(x \in M \)

\[
\sum_{1 \leq j \leq p_i} \left\langle \eta^i_j, x\eta^i_j \right\rangle \text{ converges } \sigma\text{-weakly to } x.
\]

Choose an ultrafilter \(\mathcal{U} \) finer than the filter obtained from the directed set \(I \). Let \(\varphi \) be a normal positive form on \(M \) and take \(x \in \mathcal{L}_N(\overline{X}_N) \) (identified to the von Neumann subalgebra \(\rho(\mathcal{L}_N(\overline{X}_N)) \) of \(\mathcal{L}_M(Y_N) \) by Lemma 1.5(ii)). We have

\[
\left| \varphi\left(\sum_{1 \leq j \leq p_i} \left\langle \eta^i_j, x\eta^i_j \right\rangle \right) \right| \leq \|x\| \varphi\left(\sum_{1 \leq j \leq p_i} \left\langle \eta^i_j, \eta^i_j \right\rangle \right), \quad \text{for } i \in I.
\]

This allows us to define

\[
S(\varphi, x) = \lim_{\mathcal{U}} \varphi\left(\sum_{1 \leq j \leq p_i} \left\langle \eta^i_j, x\eta^i_j \right\rangle \right)
\]

and we get

\[
|S(\varphi, x)| \leq \|x\| \lim_{\mathcal{U}} \varphi\left(\sum_{1 \leq j \leq p_i} \left\langle \eta^i_j, \eta^i_j \right\rangle \right) = \|x\| \varphi(1) = \|x\| \|\varphi\|.
\]

It follows that \((\varphi, x) \mapsto S(\varphi, x) \) is a bilinear continuous form on \(M_\ast \times \mathcal{L}_N(\overline{X}_N) \). Thus, for each \(x \in \mathcal{L}_N(\overline{X}_N) \) there is an element \(\Phi(x) \) in \(M_\ast \) well defined by

\[
\varphi(\Phi(x)) = S(\varphi, x), \quad \text{for } \varphi \in M_\ast.
\]

Obviously \(\Phi \) is positive with \(\Phi(x) = x \) for all \(x \in M \), and therefore it is a norm one projection from \(\mathcal{L}_N(\overline{X}_N) \) onto \(M \) (see [24] Th. 3.1).

3.3. REMARKS. (1) It follows from Proposition 3.2 that if \(N \subseteq M \) is an amenable inclusion, and if \(N \) is an injective von Neumann algebra, then \(M \) is also injective, since it is the case for \(\mathcal{L}_N(\overline{X}_N) \).
(2) The converse of the above proposition has been proved by Popa in ([21] Th. 3.2.3) when M is a finite factor. When $N = \mathbb{C}$, one has $\mathcal{L}_N(\mathcal{X}_N) = \mathcal{L}(l^2(M))$, and the converse of Proposition 3.2 is the fact that injectivity implies semi-discreteness. The following proposition gives another case where this converse is true.

3.4. Let (N, G, α) be a dynamical system as in Section 2. In [1] we have defined a notion of amenability for the action α, generalizing the corresponding notion introduced by Zimmer [28] in ergodic theory. For G discrete we have shown that the action α is amenable if and only if there exists a norm one projection from $\mathcal{L}(l^2(G)) \otimes N$ onto $N \times G$ (canonically embedded into $\mathcal{L}(l^2(G)) \otimes N$) (see [1], Prop. 3.11).

PROPOSITION. Let (N, G, α) be a dynamical system with G discrete. The following conditions are equivalent:

(i) the inclusion $N \subseteq M = N \times G$ is amenable;

(ii) the action of G on N is amenable;

(iii) there is a norm one projection from $\mathcal{L}_N(\mathcal{X}_N) = \mathcal{L}(l^2(G)) \otimes N$ onto M.

Proof. Remark that the embedding of M into $\mathcal{L}_N(\mathcal{X}_N)$ identified to $\mathcal{L}(l^2(G)) \otimes N$ is the usual embedding in the theory of crossed products (see 2.5). Then the equivalence between (ii) and (iii) follows from ([1] Prop. 3.11). The implication (i) \Rightarrow (iii) has been proved in Proposition 3.2. So it remains to see that (ii) \Rightarrow (i). By ([3], Th. 3.3) there exist a net $(f_i)_{i \in I}$ of elements of $PT_1(Z(N), G, \alpha)$ with finite support such that $f_i(s)$ converges to 1 σ-weakly for every $s \in G$. For $i \in I$, denote by Φ_i the completely positive map associated to f_i, and let $X_i = X_{\Phi_i}$. We have $X_i \subseteq Y_N$ since Φ_i is a coefficient of Y_N by Proposition 2.10. Furthermore, it follows from Proposition 2.11 that $\Phi_i(x)$ tends to x σ-weakly for all $x \in M$, and thus $\lim_i X_i = Y_M$ in $C(M)$. This proves that Y_M belongs to the closure of Y_N in $C(M)$.

References

