
COMPOSITIO MATHEMATICA

MORIHIKO SAITO
Extension of mixed Hodge modules
Compositio Mathematica, tome 74, no 2 (1990), p. 209-234
<http://www.numdam.org/item?id=CM_1990__74_2_209_0>

© Foundation Compositio Mathematica, 1990, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1990__74_2_209_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


209

Extension of mixed Hodge Modules

MORIHIKO SAITO*

Compositio Mathematica 74: 209-234, 1990.
(Ç) 1990 Kluwer Academic Publishers. Printed in the Netherlands.

RIMS Kyoto University, Kyoto 606, Japan, and Institute for Advanced Study, Princeton, NJ 08540, USA

Introduction

In [S1-2] we introduced the notion of mixed Hodge Modules on complex
algebraic varieties X which corresponds philosophically to that of mixed perverse
sheaves [BBD], and proved the stability of its bounded derived categories
DbMHM(X) by the standard functors f., f,, f!, 03C8g, ~g, 1, B, &#x3E; M, &#x3E; Q9, Rom so
that these functors are compatible with the corresponding functors on the
underlying 0-complexes. Here we applied simply the well-known formula

for the last two functors, where ô: X ~ X x X is the diagonal immersion. But
these definitions are justified if we have the following

(0.2) THEOREM. For M, N E Db MHM(X), we have canonical isomorphisms

where Hom is taken in the bounded derived category DbMHM(X).

Here DHX = DQHX = a!XQH, QHX = a*XQH with aX : X ~ pt and 0’ E MHM(pt) the
trivial mixed Hodge structure of rank 1 and type (0, ). The aim of this paper is to

give the proof of this theorem. By duality it is enough to show the first assertion.
Using the vanishing cycle functors we can construct the natural morphism from
the left to the right for M, N mixed Hodge Modules by induction on the
dimension of their supports (cf. 1). Then we get the assertion by calculating the
effaceability (cf. 2). As a corollary we get a short exact sequence

*Supported by NFS Grant DMS 8610730.
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for mixed Hodge Modules M, N on X, where the middle Ext is taken in the
abelian category of mixed Hodge Modules, and the first Ext and the last Hom in
polarizable mixed Hodge structures, cf. 2.10. For M, N admissible variations of
mixed Hodge structures in the sense of Steenbrink-Zucker [SZ] and Kashiwara
[K] on a smooth variety X, this implies

where M* = Rom(M, QHX) = (DM)(-dim X)[-2 dim X] is the dual variation

of M, and the middle Ext is taken in the abelian category of admissible variations.
We apply this to the extension class defined by the short exact sequence
0 ~ Jfi - 1M ~ WiM ~ Grt’M - 0 inductively so that the admissible variations
(whose definition is given locally on a compactification of X) can be understood
globally on X by induction on the length of the weight filtration of M, where the
polarizable variations of Hodge structures are considered to be well understood.
In 3 we prove directly the second exact sequence for admissible variation of mixed
Z-Hodge structure in the case M is torsion-free without using the results in 1 and
2, see 3.6. (This argument can be applied to the analytic case if we use [KK].)
The idea of proof of Theorem (0.2) was inspired by the correspondence with

Durfee during the preparation of the joint paper (see the remark after the proof of
3.4 in [DS]). 1 would like to thank him for a good question, and Institut des
Hautes Etudes Scientifiques and Institute for Advanced Study for hospitality.

In this note variety means a reduced and separated algebraic variety over C.
For the underlying filtered *Modules of mixed Hodge Modules we use the
analytic *Modules rather than the algebraic ones to simplify the calculation of
Hodge filtration. This is allowed by GAGA and the extendability of mixed Hodge
Modules to any compactification.

1. Vanishing cycle functors

In this section we construct the canonical morphism Hom(M Q9 N, DHX) ~
Hom(M, DN) for M, N E MHM(X).

1.1. Let S denote the one-dimensional affine space Spec C[t] with the coordinate
t. Let Ek be the standard unipotent variation of 0-mixed Hodge structures on
S* = SB{0} of rank k + 1 such that its monodromy has one Jordan block and its
stalk at 1 E S splits naturally over Q and has weights 0, 2,..., 2k. Here standard
means that the Hodge filtration is given like nilpotent orbits, i.e. the Hodge
bundles are generated over (9s. by the global sections annihilated by (tOt)k+ 1, and
GrW2i(Ek)1 the graduation of the stalk at 1 is given an isomorphism with Q( - i) in
a compatible way with the action of N the logarithm of the unipotent part of the



211

monodromy tensored by (203C0i)-1. We have natural inclusions Ek-Ek+l 1
compatible with the trivialization of (Ek)1 so that Ek becomes an inductive
system. Clearly Ek are admissible variations of Q-mixed Hodge structures and
Eklll E MHM(S*), cf. [S2]. By definition we have a natural isomorphism of
mixed Hodge structures:

Here note that t/J,1Jl on mixed Hodge Modules correspond to p03C8 = 03C8 [-1],
p~1 = ~1[-1], cf. [Sl -2]. For a subfield A of C, let Et and E’ denote the
underlying A-local system and (analytic) -9s.-Module of Ek so that E’ -
Os* ~A EAk. By the trivialization we have a canonical multivalued section ej of
EAk(j) (0  j  k) compatible with the scalar extension of A and the inclusions
Ek ~ Ek+1 such that ej/j! E Gr2 03C8tEAk(j) corresponds to 1 E A by (1.1.1) and the
trivialization of GrW2j(Ek)1, and eo,..., ek give the canonical splitting of (Ek ) 1 as
a mixed Hodge structure. Then Nei = jej-1 where e-1 := 0. We denote by èj the
corresponding section of ED, i.e.

so that t~tj = jj-1 and FpEDk = ~jp Os*j, where F is the Hodge filtration.
Here we take a universal covering 03C0: * ~ S* with coordinate z of S* such that
7r*t = exp(27rfz), and put log t = 27dz, where we choose i = -1. We have
a natural inclusion

so that by the natural isomorphism

ej corresponds to {(203C0i)j ~ nj}n~Z, and êj to (-203C0iz)j = (-log t)j E r(s*,
03C0*O*) = 0393(*, O*), cf. [S3,2.3]. We have a natural multiplication Ej ~ Ek ~
Ej+k compatible with the natural multiplication of n*As* (and the stalk wise
multiplication of 03A0n~ZA{n}) by (1.1.3) (and (1.1.4)) so that ej ~ ek goes to ej+k.
1.2. LEMMA. Let f : X ~ S be a function on a variety X, and put X0 =

f-1(0), X* = XBX0 with i : X0 ~ X, j : X* -+ X the natural inclusions. Then for
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M E MHM(X) we have a natural isomorphism

compatible with that for underlying perverse sheaves.
Proof. The assertion is local and we may assume X smooth and X = X o x S

using the graph of f. Then the underlying filtered -9x-Module of j*(j* M ~ f * Ek)
is naturally isomorphic to ~0jk(M’, F[-j]) ~ j, where (M’, F) denotes
the underlying filtered *Module of j* j*M, and P(m ~ èj) = (Pm 0 j),
~t(m ~ j) = ~tm ~ j - t-1m ~ jj-1 for P ~ DX0, m ~ M’. This implies the

isomorphism (1.2.1) for the underlying filtered D-Modules, and following the
definition of the isomorphism 03C8DR ~ DR03C8 in [S 1, 3.4], we can check the
compatibility with that for perverse sheaves using the inverse of (1.1.2):
ej = 03A3(j!/i!(j - i)!)(log t)ièj-i. The compatibility of the isomorphism with the
weight filtration W follows from the definition of the relative monodromy
filtration, because the induced filtration on the left hand side of (1.2.1) by the
weight filtration of (j* M ~ f*Ek) is the convolution of the induced filtration on
03C8f,1 M and the weight filtration of t/1tEk[lJ, and its relative monodromy filtration
is given by the convolution of the relative monodromy filtration of t/1 J,lM and the
weight filtration of 03C8tEk[1].

1.3. PROPOSITION. With the above notation, let M E MHM(X) and k’ E N, and
assume Nk’+103C8f,1M = 0. Then H-1i*j*(j*M ~ f*Ek) is independent of k  k’
by Ek ~ Ek+1, and we have a natural isomorphism

compatible with the definition of 03C8f,1 on the underlying perverse sheaf by the
inclusion (1.1.3), cf. [SI, 3.4.14] [S3, 2.3].

Proof. By the above lemma and [S2, 2.24] (using id ~ 03BEf ~ ~f,1 in [S2, 2.23])
we have a canonical isomorphism

where N in the last term is defined by N 0 id + id 0 N. Let L be a filtration of
M’ := 03C8f,1M such that N(LiM’) c Li+1M’(-1), L0M’ = M’. Put
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Then we can check inductively the surjectivity of Ki,k ~ Ki,k + 1 and Ki+ 1,k+ 1 ~

Ki,k+ 1 for k  i using the short exact sequences:

and the functoriality of the snake lemma (for the morphisms Ek ~ Ek+1), because
Ek ~ Ek+1 induces the zero morphism on the cokernel of N on GrL M’ 0 03C8tEk[1]
and an isomorphism on its kernel for k  0. Therefore we get the first assertion,
because Ki,k - Ki,k+1 are always injective. We have a natural morphism from the
last term of (1.3.2) to 03C8f,1M induced by 03C8tEk[1] ~ GrW003C8tEk[1] = QH, and we
can check that it is an isomorphism if Nk+103C8f,1M = 0 by a similar argument. For
the compatibility with the definition of 03C8f,1 on the underlying perverse sheaf, the
compatibility of (1.3.2) is reduced to the Lemma 1.4 below, because 03BEf, p~f,1 (cf.
the remark after (1.1.1)) induce the identity on the perverse sheaves supported in
Xo, cf. [loc. cit]. Here it is enough to show the compatibility up to sign, because
we can change the sign of the isomorphism for mixed Hodge Modules. Put
S’ - *, S" = S’  S*S’ with n;, n2 : S" - S’ the first and second projection and
: S’ S" the diagonal, i.e. S" = {(z1, z2) ~ C2: Zl - Z2 E Z} and 03C0’a(z1, z2)=
za(a = 1, 2), 1(z) = (z, z). Put 7r" : = 7r 03C0’2 = n2 nÍ with nl = 03C02 = 03C0: S’ S* cf.
1.1. We denote by the same symbols the base change of 03C0, na, 03C0’a,  by X - S. Let
K’ be the underlying perverse sheaf of j*M represented by an injective complex.
We have natural isomorphisms

where Ta is the monodromy induced by the automorphism of S" defined by
za H z. + 1 using the pull-back. We check that the composition is the identity on

03C8fK’, and compatible with the above isomorphism by the natural morphisms

Here the last composition is induced by the product of the pull-back of 03C8fK’ by
03C0’1 and 03C8t(03C01)* Os, = i*j* 03C0"* Os,,, and b* in (1.3.3) corresponds to the projection of
the last term of (1.3.2) to 03C8f,1M, because ei = 0 on lm e for j &#x3E; 0 by definition, cf.
(1.1.4).

1.4. LEMMA. With the above notation, let K be a perverse sheaf on X*
represented by an injective complex. Then we have the natural isomorphism
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p~f,1 C(j!K ~ j*K) = C(N : p03C8f,1K ~ p03C8f,1K(-1)) induced by can: p03C8f,1K 
p~f,1j!K, Var: p~f,1j*K  p03C8f,1K(-1) so that p~f,1 of the isomorphism

coincides with the identity on C(N : p03C8f,1 K -+ p03C8f,1 K(-1)) in the derived category
up to sign, where p03C8f,1 = 03C8f,1 [-1] (same for ~) and the last isomorphism is

induced by the natural inclusion i*j*K ~ 03C8f,1 K (cf. [S 1, 3.4.14] for the definition of
03C8f,1).

Proof. Put K’ = 03C8f,1 K. We have a natural isomorphism

induced by the natural inclusion i*j*K ~ 03C8f,1K so that the natural inclusion
corresponds to the natural projection [K’ ~ K’(-1)] ~ K’. Here N:K’ ~
K’(-1) is surjective as a morphism of complex by assumption on K. By definition
p~f,1 = [i* - 03C8f,1], and we get the isomorphism

because i*j!K = 0, where the morphism in the last term is defined by (x, y) H
(x + y, Ny). Then p~f,1 of (1.4.1) is expressed by

where the morphism is given by (x, y; z, w) H (y, w), because p~f,1 is the identity
on i* j* K and the first isomorphism of (1.4.1) corresponds to the natural

projection of p~f,1j*K = [i*j*K ~ 03C8f,1K] onto i* j* K. On the other hand the
isomorphism can: p03C8f,1K ~ p~f,1j!K corresponds to the identity on K’, and
Var: p~f,1 j*K ~ p03C8f,1K(-1) to the quasi isomorphism

defined by (y ; z, w) - (Nz - w), because its restriction to [Ker N ~ K’] coincides
with Var by definition. These morphisms are compatible with the morphism of
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p~f,1j!K to p~f,1j*K, and induce a quasi isomorphism

defined by (x, y; z, w) H (x, Nz - w). The sum of (1.4.4) and (1.4.6) is (x, y; z, w) H
(x + y, Nz) and homotopic to zero, where the homotopy is given by (x, y; z, w) H
(z, 0).

1.5. PROPOSITION. With the notation and assumption of 1.3 we have a natural
morphism M ~ j*(j*M Q9 f *Ek) induced by E0 ~ Ek, and a natural isomorphism

compatible with the definition of p~f,1 on the underlying perverse sheaf.
Proof. By i* = C(j,j* -+id) = C(can: 03C8f,1 ~ ~f,1) in [S2, 2.23-24],

HO[i* M -+ i*j*(j*M ~ f * Ek)] is isomorphic to HO of

if Nk+103C8f,1M = 0, where the first morphism induces an isomorphism of H° by
1.3. Then we can check that the isomorphism is compatible with the definition of
p~f,1 on the underlying perverse sheaf up to sign by essentially the same
argument as in 1.3-4 using the isomorphism i* K = [03C8f,1K can ~f,1K] such
that the natural morphism i*K ~ 03C8f,1 K is identified with the projection. The
detail is left to the reader.

1.6. PROPOSITION. With the notation of 1.2, let M, M’ be mixed Hodge
Modules on X, and S: M Q9 M’ ~ DHX a morphism in DbMHM(X). Then we have
canonical morphisms

compatible with p03C8f,1SQ, p~f,1SQ on the underlying 0-complexes, where 50
denotes the underlying morphism of 5 on 0-complexes.
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Proof. Let Ñ: Ek ~ Ek-1(-1) be a morphism of variations of mixed

Hodge structures such that ej is sent to -jej- 1. Then by the isomorphism
(1.3.1) the action of lV on 03C8f,1M corresponds to id&#x26;N, cf. [S3, 2.3]. Put
i*M = C(j!j* M ~ M), Mk = j*M ~ f*Ek,k03C81M = C(j!Mk ~ j*Mk),
kY’iM = k03C81M[-1], k~’1 M = [i*M ~ k03C81M] and

where 1*M - k03C81M and N : k03C81M ~ k -103C81M(-1) are induced by E0 ~ Ek and
: Ek ~ Ek-1(-1). We have a natural morphism k-103C81M(-1)[-2] ~ ki!M
induced by the natural inclusion and its mapping cone is naturally isomorphic
to k~’1M. By 1.5 we have a natural morphism

for k &#x3E; 0, because H-1 [i*M ~ k03C81M] = 0 by the injectivity of 03C8f,1M ~ 03C8f,1Mk
in (1.5.2). We take a represent ouf 5 : M Q9 M’ - DHX and choose a represent of the
functor 03B4* by choosing an affine open covering, cf. [S2, (4.4.1)], so that we have
a commutative diagram in CbMHM(X):

by adjunction for j*,j*. It induces also

compatible with the natural morphisms j!j*M ~ M - j*j*M, j!DHX* ~ g)H
j*DHX*, etc., bccause j!j*(M ~ M’) represents j!j*M ~ M’ by £5*(j x id), = j,£5’* =
j!b"*(id x j)*, cf. [S2, (4.4.3)], where

Then using Ma ~ Mb = j*(M Q9 M’) Q9f*(Ea Q9 Eb) and the multiplication Ea Q9
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Eb -+ Ek (a + b  k), cf. 1.1, we get the morphisms

and

as in [S 1, 5.2.3] (cf. also [S3, 2.1]), and this gives the desired 03C8f,1 S by the natural
morphism 03C8f,1 M ~ a03C8’1 M for a » 0, etc. (cf. 1.3), because

by Ker(Ñ : Ek ~ Ek-1(-1)) = E0. The argument is similar for 0. We have
a pairing i*M ~ k+1i!M’ ~ k+1i!DHX compatible with the above pairing by the
natural morphisms i*M ~ a03C81M, b03C81M’(-1) ~ k+1i!M’[2] so that ~f,1 S is

obtained by the same argument as in [loc. cit].

1.7. THEOREM. Let M, M’ be mixed Hodge Modules on X, and K, K’ their
underlying perverse sheaves. Then we have a commutative diagram

where the vertical morphisms are induced by the forgetful functor DbMHM(X) ~
DbPerv(QX)  Dbc(QX), and the last horizontal morphism by Hom(A Q9 B, C) =
Hom(A, Rom(B, C)).

Proof. The assertion means that the last horizontal isomorphism preserves the
subgroups of the morphisms of DbMHM(X). Here the injectivity of the right
vertical morphism is clear by definition (and the commutativity of the forgetful
functor with the dual D), and that of the left follows from the compatibility of the
adjunction for a!X, (aX)! with the forgetful functor, because

by the adjunction

where the ith extensions of perverse sheaves are zero for i  0, cf. [BBD]. In



218

particular the assertion is local on X, and we proceed by induction on dim X. The
assertion is trivial if X is a point by the definition of the dual, cf. [B1] [C]. In
general we may assume that there is a function f such that the restrictions of
M, M’ to X*:= f -1(S* ) are variations of mixed Hodge structures, where the
assertion holds on Xo := f-1(0) by inductive hypothesis. Then for u E Hom(M Q9
M’, DHX) the corresponding morphism va E Hom(K, DK’) induces a morphism of
mixed Hodge Modules j*M ~ j*DM’ on X*, and it is enough to show that

p~f,1vQ : p~f,1 K ~ p~f,1 1 DK’ underlies a morphism of mixed Hodge Modules
~f,1 M ~ ~f,1 DM’ by [S2, 2.28]. By inductive hypothesis it is reduced to that
p~f,1uQ : p~f,1 K ~ p~f,1K’ ~ DXo underlies a morphism of DbMHM(X0):
~f,1 M ~ ~f,1M’ ~ DHXo, and follows from 1.6. (Here the isomorphism D~f,1 =
~f,1 D and its compatibility with the forgetful functor are also used, see [S2, 2.6]
and [S3].)

REMARKS. (i) The forgetful functor MHM(X) - Perv(QX) is faithful, but
DbMHM(X) -+ D§(Qx) is not (for example, consider Extl of mixed Hodge
structures, see also 3.5).

(ii) The bijectivity of the first horizontal morphism of (1.7.1) will be proved in
the next section by using the effaceability condition.

2. Effaceability

In this section we prove Theorem (0.2).

2.1. We first review the elementary theory of cohomological functor. Let A,
£3 be abelian categories, and Kb d, Db d as in [V]. An additive functor H : DbA ~ B
is called a cohomological functor if for a distinguished triangle ~ M’ -+ M ~
M" +1 of Db d, HM’ ~ HM ~ HM" is exact. We put H’M = H(M[i]) for i E Z
so that we have a long exact sequence

for a triangle as above. The definition is similar for the contravariant functor
where the definition of Hi is replaced by H iM = H-iM = H(M[-i]). A coho-
mological functor H is called left (resp. right) exact, if HiM = 0 for M E A and
i  0 (resp. i &#x3E; 0). The restriction F of H to A is left (resp. right) exact in the usual
sense, if H is a left (resp. right) exact cohomological functor. From now on we
assume B to be the category of (sheaf of) abelian groups or modules. A covariant
(resp. contravariant) functor F: d -+ -4 is called effaceable if for any M E d and
eE F(M), there exists an injection M -+ M’ (resp. a surjection M’ ~ M) such that
the image of e in F(M’) is zero. Sometimes we shall call a cohomological functor
effaceable if so is its restriction to A.
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2.2. With the above notation and assumption, let Fi: A ~ B be additive

covariant (resp. contravariant) functors of abelian categories with functor
morphisms d : P ~ Fi+1 such that d2 = 0. We have an additive functor F: KbA ~
K-4 such that F(M) is the single complex associated with the double complex
whose (p, q)-components are F"(MP) (resp. IFq(M-P». For M E Kb d, let K(M/)
(resp. K(/M)) be the category of quasi isomorphisms u of Kb dsuch that S(u) = M
(resp. T(u) = M) where S(u) and T(u) are the source and the target of u, and the
morphisms of K(M/) and K(/M) are the obvious ones, cf. [V]. We define

so that R’FM = R0F(M[i]) (resp. R0[F(M[- i]), where Hi: KbB ~ PA is the natural
cohomological functor. Then H := R°F defines a cohomological functor. In fact
the well-definedness of H(u) for the morphisms u of Db dis standard, and we may
assume M’ = C(M - M")[ -1 ] for the exactness of HM’ ~ HM ~ HM". Note
that RiF: D’sl -+ -4 is left exact if Fi = 0 for j  i by the canonical truncation r of
Kb d, and effaceable if Fi = 0 for j a i by the triangle ~ 03C31 M’ ~ M’ - M’° ~,
where M ~ M’ is a quasi isomorphism such that M" = 0 for i  0 and M E A, cf.

[D2] [V] for the definition of r, a (the argument is similar in the contravariant
case). In particular, if F = F °, i.e. F’ = 0 for i ~ 0, R°F is left exact and R’F
are effaceable for i &#x3E; 0. In this case the restriction of R0F to A coincides with
F iff F is left exact.

2.3. LEMMA. With the above notation and assumption, let H: D’,W-+ -4 be a left
exact cohomological functor, and F its restriction to si. Then we have canonical
functor morphisms RiF ~ Hi, and they are isomorphisms iff the restrictions oflHli to
A are effaceable for any i &#x3E; 0.

Proof. We assume H covariant. The argument is similar in the contravariant
case. For M E KbA we have a spectral sequence

by Verdier, cf. also [S1, 5.2.18]. The left exactness means that E iq = 0 for q  0

and the differential d1 is induced by that of M. By the edge morphism we get the
functorial morphism Hp(F(M°)) = Ep02 ~ HP(M), and passing to the limit we get
the desired morphism. For M E A, R0F(M) = F(M) = H0(M) is clear by the left
exactness, and the remaining assertion follows from the next:

2.4. LEMMA. Let H ~ H’ be a morphism of cohomological functors, and assume
the effaceability of Hi and the bijectivity of Hi-1(M) ~ H’i-1(M) for any M E si.
Then Hi(M) ~ H’i(M) is injective for M E A, and the bijectivity is equivalent to the
effaceability of 0-p ".
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Proof. By the effaceability of e ~ H’(M) we have a short exact sequence
0 ~ M - M’ ~ M" ~ 0 such that the image of e in H!(M’) is zero. Then e = 0 if
the image of e in Hi(M) is zero by the commutative diagram

The argument is similar for the bijectivity.

2.5. With the notation of 2.1-2, let A = MHM(X) for an algebraic variety X, and
B = M(Q) the category of Q-modules. For M ~ A we define contravariant
functors MHi, HiM: Db A ~ B by

where M Q9 N = N Q9 M by the involution of X x X inducing the identity on the
diagonal. Then MH °, H0M are left exact cohomological functors by the proof of 1.7,
cf. (1.7.2). Let M F, FM denote the restriction of MH0, H0M to A. We have functor
morphisms RiMF ~ M lHIi, RiFM ~ HiM, and they are functor isomorphisms iff

MHi, HiM are effaceable for any i &#x3E; 0 by 2.2-4. These arguments can be

generalized to the case M ~ KbA by applying 2.2 to Fi = m - F, Fm - i, i.e. Ri MF(N),
R’Fm(N) are the inductive limit of the cohomology of the double complex whose
(p, q)-component is

where lV = S(u) with u running over the elements of K(/N) in the notation of
(2.2.1). For the construction of the morphisms lRi MlF -+ MlHli, etc. we use the iso-
morphism

Ext’(M Q9 N, D5) = Ext’(M 0 N, Ô DHX), etc.

with the filtration of M   N by the total degree, where £5: X ~ X x X is the
diagonal. Then passing to the limit we get a commutative diagram
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where RiF(M, N) is the inductive limit of the cohomology of the double complex
whose (p, q)-component is ExtO(M-P Q9 Ñ-q, DH) for  ~ M,R,N quasi
isomorphisms of Kb d. Here the morphisms to Ext’(M, DN) are induced by 1.7,
and they are isomorphisms if so are they for M, N E MHM(X) and i = 0, i.e. the
first horizontal morphism in (1.7.1) is an isomorphism. Assume Ni = 0 for i &#x3E; 0

and HiN = 0 for i  0. Put N’ = HON(= N in DbA). Then H N = H0N’ is left exact
and we have

by the left exactness of H0Ni, MH0. Therefore R1FN(M) ~ H1N(M) is always
injective for M E d, and RiFN ~ HiN are isomorphisms iff HiN = HiN’ are effaceable
for i &#x3E; 0 by the same argument as in 2.4.

2.6. LEMMA. Let X be a smooth variety, M, N ~ DbMHM(X), and L an
admissible variation of mixed Hodge structure on X so that L[dx ] E MHM(X) and
Q9L: MHM(X) ~ MHM(X) is an exact functor. Then we have a canonical
isomorphism

induced by Q9L and the natural morphism L* ~ L ~ QHX, where L* =

Rom(L, QHX) = (DL)(-dX)[-2dX] is the dual variation of L.
Proof. By definition each side of (2.6.1) is the inductive limit of the cohomology

of the double complexes whose components are Hom(M - p Q9 L, Ñq), etc. where
 ~ M, N ~ N are quasi isomorphisms. Therefore the assertion is reduced to the
case M, N e MHM(X). We have the canonical morphism QHX ~ L Q9 L* by
duality, and this gives the inverse combined with the tensor of L*. In fact the
assertion is reduced to that for perverse sheaves by the faithfulness of the forgetful
functor of the mixed Hodge Modules, and we may assume L trivial. The detail is
left to the reader.

2.7. COROLLARY. With the notation and assumption of 2.6 the morphisms

in (2.5.2) are isomorphisms for M, N E MHM(X) such that the underlying perverse
sheaf of N is a local system up to shift.

Proof. This is essentially the special case of 2.6 where L, N in 2.6 correspond to
N[ - dx], DHX[i - dx] = QHX(dX) [i + dx], and it is enough to check the compa-
tibility of the morphisms (or check (2.8.2-3) below). The detail is left to the reader.

2.8. THEOREM. The morphisms in (2.5.2) are isomorphisms for any M, N E
KbMHM(X), and induces the isomorphisms for M, N E DbMHM(X). In particular


