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Introduction

In [S1-2] we introduced the notion of mixed Hodge Modules on complex
algebraic varieties X which corresponds philosophically to that of mixed perverse
sheaves [BBD], and proved the stability of its bounded derived categories
DbMHM(X) by the standard functors f., f,, f!, 03C8g, ~g, 1, B, &#x3E; M, &#x3E; Q9, Rom so
that these functors are compatible with the corresponding functors on the
underlying 0-complexes. Here we applied simply the well-known formula

for the last two functors, where ô: X ~ X x X is the diagonal immersion. But
these definitions are justified if we have the following

(0.2) THEOREM. For M, N E Db MHM(X), we have canonical isomorphisms

where Hom is taken in the bounded derived category DbMHM(X).

Here DHX = DQHX = a!XQH, QHX = a*XQH with aX : X ~ pt and 0’ E MHM(pt) the
trivial mixed Hodge structure of rank 1 and type (0, ). The aim of this paper is to

give the proof of this theorem. By duality it is enough to show the first assertion.
Using the vanishing cycle functors we can construct the natural morphism from
the left to the right for M, N mixed Hodge Modules by induction on the
dimension of their supports (cf. 1). Then we get the assertion by calculating the
effaceability (cf. 2). As a corollary we get a short exact sequence

*Supported by NFS Grant DMS 8610730.
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for mixed Hodge Modules M, N on X, where the middle Ext is taken in the
abelian category of mixed Hodge Modules, and the first Ext and the last Hom in
polarizable mixed Hodge structures, cf. 2.10. For M, N admissible variations of
mixed Hodge structures in the sense of Steenbrink-Zucker [SZ] and Kashiwara
[K] on a smooth variety X, this implies

where M* = Rom(M, QHX) = (DM)(-dim X)[-2 dim X] is the dual variation

of M, and the middle Ext is taken in the abelian category of admissible variations.
We apply this to the extension class defined by the short exact sequence
0 ~ Jfi - 1M ~ WiM ~ Grt’M - 0 inductively so that the admissible variations
(whose definition is given locally on a compactification of X) can be understood
globally on X by induction on the length of the weight filtration of M, where the
polarizable variations of Hodge structures are considered to be well understood.
In 3 we prove directly the second exact sequence for admissible variation of mixed
Z-Hodge structure in the case M is torsion-free without using the results in 1 and
2, see 3.6. (This argument can be applied to the analytic case if we use [KK].)
The idea of proof of Theorem (0.2) was inspired by the correspondence with

Durfee during the preparation of the joint paper (see the remark after the proof of
3.4 in [DS]). 1 would like to thank him for a good question, and Institut des
Hautes Etudes Scientifiques and Institute for Advanced Study for hospitality.

In this note variety means a reduced and separated algebraic variety over C.
For the underlying filtered *Modules of mixed Hodge Modules we use the
analytic *Modules rather than the algebraic ones to simplify the calculation of
Hodge filtration. This is allowed by GAGA and the extendability of mixed Hodge
Modules to any compactification.

1. Vanishing cycle functors

In this section we construct the canonical morphism Hom(M Q9 N, DHX) ~
Hom(M, DN) for M, N E MHM(X).

1.1. Let S denote the one-dimensional affine space Spec C[t] with the coordinate
t. Let Ek be the standard unipotent variation of 0-mixed Hodge structures on
S* = SB{0} of rank k + 1 such that its monodromy has one Jordan block and its
stalk at 1 E S splits naturally over Q and has weights 0, 2,..., 2k. Here standard
means that the Hodge filtration is given like nilpotent orbits, i.e. the Hodge
bundles are generated over (9s. by the global sections annihilated by (tOt)k+ 1, and
GrW2i(Ek)1 the graduation of the stalk at 1 is given an isomorphism with Q( - i) in
a compatible way with the action of N the logarithm of the unipotent part of the
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monodromy tensored by (203C0i)-1. We have natural inclusions Ek-Ek+l 1
compatible with the trivialization of (Ek)1 so that Ek becomes an inductive
system. Clearly Ek are admissible variations of Q-mixed Hodge structures and
Eklll E MHM(S*), cf. [S2]. By definition we have a natural isomorphism of
mixed Hodge structures:

Here note that t/J,1Jl on mixed Hodge Modules correspond to p03C8 = 03C8 [-1],
p~1 = ~1[-1], cf. [Sl -2]. For a subfield A of C, let Et and E’ denote the
underlying A-local system and (analytic) -9s.-Module of Ek so that E’ -
Os* ~A EAk. By the trivialization we have a canonical multivalued section ej of
EAk(j) (0  j  k) compatible with the scalar extension of A and the inclusions
Ek ~ Ek+1 such that ej/j! E Gr2 03C8tEAk(j) corresponds to 1 E A by (1.1.1) and the
trivialization of GrW2j(Ek)1, and eo,..., ek give the canonical splitting of (Ek ) 1 as
a mixed Hodge structure. Then Nei = jej-1 where e-1 := 0. We denote by èj the
corresponding section of ED, i.e.

so that t~tj = jj-1 and FpEDk = ~jp Os*j, where F is the Hodge filtration.
Here we take a universal covering 03C0: * ~ S* with coordinate z of S* such that
7r*t = exp(27rfz), and put log t = 27dz, where we choose i = -1. We have
a natural inclusion

so that by the natural isomorphism

ej corresponds to {(203C0i)j ~ nj}n~Z, and êj to (-203C0iz)j = (-log t)j E r(s*,
03C0*O*) = 0393(*, O*), cf. [S3,2.3]. We have a natural multiplication Ej ~ Ek ~
Ej+k compatible with the natural multiplication of n*As* (and the stalk wise
multiplication of 03A0n~ZA{n}) by (1.1.3) (and (1.1.4)) so that ej ~ ek goes to ej+k.
1.2. LEMMA. Let f : X ~ S be a function on a variety X, and put X0 =

f-1(0), X* = XBX0 with i : X0 ~ X, j : X* -+ X the natural inclusions. Then for



212

M E MHM(X) we have a natural isomorphism

compatible with that for underlying perverse sheaves.
Proof. The assertion is local and we may assume X smooth and X = X o x S

using the graph of f. Then the underlying filtered -9x-Module of j*(j* M ~ f * Ek)
is naturally isomorphic to ~0jk(M’, F[-j]) ~ j, where (M’, F) denotes
the underlying filtered *Module of j* j*M, and P(m ~ èj) = (Pm 0 j),
~t(m ~ j) = ~tm ~ j - t-1m ~ jj-1 for P ~ DX0, m ~ M’. This implies the

isomorphism (1.2.1) for the underlying filtered D-Modules, and following the
definition of the isomorphism 03C8DR ~ DR03C8 in [S 1, 3.4], we can check the
compatibility with that for perverse sheaves using the inverse of (1.1.2):
ej = 03A3(j!/i!(j - i)!)(log t)ièj-i. The compatibility of the isomorphism with the
weight filtration W follows from the definition of the relative monodromy
filtration, because the induced filtration on the left hand side of (1.2.1) by the
weight filtration of (j* M ~ f*Ek) is the convolution of the induced filtration on
03C8f,1 M and the weight filtration of t/1tEk[lJ, and its relative monodromy filtration
is given by the convolution of the relative monodromy filtration of t/1 J,lM and the
weight filtration of 03C8tEk[1].

1.3. PROPOSITION. With the above notation, let M E MHM(X) and k’ E N, and
assume Nk’+103C8f,1M = 0. Then H-1i*j*(j*M ~ f*Ek) is independent of k  k’
by Ek ~ Ek+1, and we have a natural isomorphism

compatible with the definition of 03C8f,1 on the underlying perverse sheaf by the
inclusion (1.1.3), cf. [SI, 3.4.14] [S3, 2.3].

Proof. By the above lemma and [S2, 2.24] (using id ~ 03BEf ~ ~f,1 in [S2, 2.23])
we have a canonical isomorphism

where N in the last term is defined by N 0 id + id 0 N. Let L be a filtration of
M’ := 03C8f,1M such that N(LiM’) c Li+1M’(-1), L0M’ = M’. Put
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Then we can check inductively the surjectivity of Ki,k ~ Ki,k + 1 and Ki+ 1,k+ 1 ~

Ki,k+ 1 for k  i using the short exact sequences:

and the functoriality of the snake lemma (for the morphisms Ek ~ Ek+1), because
Ek ~ Ek+1 induces the zero morphism on the cokernel of N on GrL M’ 0 03C8tEk[1]
and an isomorphism on its kernel for k  0. Therefore we get the first assertion,
because Ki,k - Ki,k+1 are always injective. We have a natural morphism from the
last term of (1.3.2) to 03C8f,1M induced by 03C8tEk[1] ~ GrW003C8tEk[1] = QH, and we
can check that it is an isomorphism if Nk+103C8f,1M = 0 by a similar argument. For
the compatibility with the definition of 03C8f,1 on the underlying perverse sheaf, the
compatibility of (1.3.2) is reduced to the Lemma 1.4 below, because 03BEf, p~f,1 (cf.
the remark after (1.1.1)) induce the identity on the perverse sheaves supported in
Xo, cf. [loc. cit]. Here it is enough to show the compatibility up to sign, because
we can change the sign of the isomorphism for mixed Hodge Modules. Put
S’ - *, S" = S’  S*S’ with n;, n2 : S" - S’ the first and second projection and
: S’ S" the diagonal, i.e. S" = {(z1, z2) ~ C2: Zl - Z2 E Z} and 03C0’a(z1, z2)=
za(a = 1, 2), 1(z) = (z, z). Put 7r" : = 7r 03C0’2 = n2 nÍ with nl = 03C02 = 03C0: S’ S* cf.
1.1. We denote by the same symbols the base change of 03C0, na, 03C0’a,  by X - S. Let
K’ be the underlying perverse sheaf of j*M represented by an injective complex.
We have natural isomorphisms

where Ta is the monodromy induced by the automorphism of S" defined by
za H z. + 1 using the pull-back. We check that the composition is the identity on

03C8fK’, and compatible with the above isomorphism by the natural morphisms

Here the last composition is induced by the product of the pull-back of 03C8fK’ by
03C0’1 and 03C8t(03C01)* Os, = i*j* 03C0"* Os,,, and b* in (1.3.3) corresponds to the projection of
the last term of (1.3.2) to 03C8f,1M, because ei = 0 on lm e for j &#x3E; 0 by definition, cf.
(1.1.4).

1.4. LEMMA. With the above notation, let K be a perverse sheaf on X*
represented by an injective complex. Then we have the natural isomorphism
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p~f,1 C(j!K ~ j*K) = C(N : p03C8f,1K ~ p03C8f,1K(-1)) induced by can: p03C8f,1K 
p~f,1j!K, Var: p~f,1j*K  p03C8f,1K(-1) so that p~f,1 of the isomorphism

coincides with the identity on C(N : p03C8f,1 K -+ p03C8f,1 K(-1)) in the derived category
up to sign, where p03C8f,1 = 03C8f,1 [-1] (same for ~) and the last isomorphism is

induced by the natural inclusion i*j*K ~ 03C8f,1 K (cf. [S 1, 3.4.14] for the definition of
03C8f,1).

Proof. Put K’ = 03C8f,1 K. We have a natural isomorphism

induced by the natural inclusion i*j*K ~ 03C8f,1K so that the natural inclusion
corresponds to the natural projection [K’ ~ K’(-1)] ~ K’. Here N:K’ ~
K’(-1) is surjective as a morphism of complex by assumption on K. By definition
p~f,1 = [i* - 03C8f,1], and we get the isomorphism

because i*j!K = 0, where the morphism in the last term is defined by (x, y) H
(x + y, Ny). Then p~f,1 of (1.4.1) is expressed by

where the morphism is given by (x, y; z, w) H (y, w), because p~f,1 is the identity
on i* j* K and the first isomorphism of (1.4.1) corresponds to the natural

projection of p~f,1j*K = [i*j*K ~ 03C8f,1K] onto i* j* K. On the other hand the
isomorphism can: p03C8f,1K ~ p~f,1j!K corresponds to the identity on K’, and
Var: p~f,1 j*K ~ p03C8f,1K(-1) to the quasi isomorphism

defined by (y ; z, w) - (Nz - w), because its restriction to [Ker N ~ K’] coincides
with Var by definition. These morphisms are compatible with the morphism of
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p~f,1j!K to p~f,1j*K, and induce a quasi isomorphism

defined by (x, y; z, w) H (x, Nz - w). The sum of (1.4.4) and (1.4.6) is (x, y; z, w) H
(x + y, Nz) and homotopic to zero, where the homotopy is given by (x, y; z, w) H
(z, 0).

1.5. PROPOSITION. With the notation and assumption of 1.3 we have a natural
morphism M ~ j*(j*M Q9 f *Ek) induced by E0 ~ Ek, and a natural isomorphism

compatible with the definition of p~f,1 on the underlying perverse sheaf.
Proof. By i* = C(j,j* -+id) = C(can: 03C8f,1 ~ ~f,1) in [S2, 2.23-24],

HO[i* M -+ i*j*(j*M ~ f * Ek)] is isomorphic to HO of

if Nk+103C8f,1M = 0, where the first morphism induces an isomorphism of H° by
1.3. Then we can check that the isomorphism is compatible with the definition of
p~f,1 on the underlying perverse sheaf up to sign by essentially the same
argument as in 1.3-4 using the isomorphism i* K = [03C8f,1K can ~f,1K] such
that the natural morphism i*K ~ 03C8f,1 K is identified with the projection. The
detail is left to the reader.

1.6. PROPOSITION. With the notation of 1.2, let M, M’ be mixed Hodge
Modules on X, and S: M Q9 M’ ~ DHX a morphism in DbMHM(X). Then we have
canonical morphisms

compatible with p03C8f,1SQ, p~f,1SQ on the underlying 0-complexes, where 50
denotes the underlying morphism of 5 on 0-complexes.
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Proof. Let Ñ: Ek ~ Ek-1(-1) be a morphism of variations of mixed

Hodge structures such that ej is sent to -jej- 1. Then by the isomorphism
(1.3.1) the action of lV on 03C8f,1M corresponds to id&#x26;N, cf. [S3, 2.3]. Put
i*M = C(j!j* M ~ M), Mk = j*M ~ f*Ek,k03C81M = C(j!Mk ~ j*Mk),
kY’iM = k03C81M[-1], k~’1 M = [i*M ~ k03C81M] and

where 1*M - k03C81M and N : k03C81M ~ k -103C81M(-1) are induced by E0 ~ Ek and
: Ek ~ Ek-1(-1). We have a natural morphism k-103C81M(-1)[-2] ~ ki!M
induced by the natural inclusion and its mapping cone is naturally isomorphic
to k~’1M. By 1.5 we have a natural morphism

for k &#x3E; 0, because H-1 [i*M ~ k03C81M] = 0 by the injectivity of 03C8f,1M ~ 03C8f,1Mk
in (1.5.2). We take a represent ouf 5 : M Q9 M’ - DHX and choose a represent of the
functor 03B4* by choosing an affine open covering, cf. [S2, (4.4.1)], so that we have
a commutative diagram in CbMHM(X):

by adjunction for j*,j*. It induces also

compatible with the natural morphisms j!j*M ~ M - j*j*M, j!DHX* ~ g)H
j*DHX*, etc., bccause j!j*(M ~ M’) represents j!j*M ~ M’ by £5*(j x id), = j,£5’* =
j!b"*(id x j)*, cf. [S2, (4.4.3)], where

Then using Ma ~ Mb = j*(M Q9 M’) Q9f*(Ea Q9 Eb) and the multiplication Ea Q9
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Eb -+ Ek (a + b  k), cf. 1.1, we get the morphisms

and

as in [S 1, 5.2.3] (cf. also [S3, 2.1]), and this gives the desired 03C8f,1 S by the natural
morphism 03C8f,1 M ~ a03C8’1 M for a » 0, etc. (cf. 1.3), because

by Ker(Ñ : Ek ~ Ek-1(-1)) = E0. The argument is similar for 0. We have
a pairing i*M ~ k+1i!M’ ~ k+1i!DHX compatible with the above pairing by the
natural morphisms i*M ~ a03C81M, b03C81M’(-1) ~ k+1i!M’[2] so that ~f,1 S is

obtained by the same argument as in [loc. cit].

1.7. THEOREM. Let M, M’ be mixed Hodge Modules on X, and K, K’ their
underlying perverse sheaves. Then we have a commutative diagram

where the vertical morphisms are induced by the forgetful functor DbMHM(X) ~
DbPerv(QX)  Dbc(QX), and the last horizontal morphism by Hom(A Q9 B, C) =
Hom(A, Rom(B, C)).

Proof. The assertion means that the last horizontal isomorphism preserves the
subgroups of the morphisms of DbMHM(X). Here the injectivity of the right
vertical morphism is clear by definition (and the commutativity of the forgetful
functor with the dual D), and that of the left follows from the compatibility of the
adjunction for a!X, (aX)! with the forgetful functor, because

by the adjunction

where the ith extensions of perverse sheaves are zero for i  0, cf. [BBD]. In
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particular the assertion is local on X, and we proceed by induction on dim X. The
assertion is trivial if X is a point by the definition of the dual, cf. [B1] [C]. In
general we may assume that there is a function f such that the restrictions of
M, M’ to X*:= f -1(S* ) are variations of mixed Hodge structures, where the
assertion holds on Xo := f-1(0) by inductive hypothesis. Then for u E Hom(M Q9
M’, DHX) the corresponding morphism va E Hom(K, DK’) induces a morphism of
mixed Hodge Modules j*M ~ j*DM’ on X*, and it is enough to show that

p~f,1vQ : p~f,1 K ~ p~f,1 1 DK’ underlies a morphism of mixed Hodge Modules
~f,1 M ~ ~f,1 DM’ by [S2, 2.28]. By inductive hypothesis it is reduced to that
p~f,1uQ : p~f,1 K ~ p~f,1K’ ~ DXo underlies a morphism of DbMHM(X0):
~f,1 M ~ ~f,1M’ ~ DHXo, and follows from 1.6. (Here the isomorphism D~f,1 =
~f,1 D and its compatibility with the forgetful functor are also used, see [S2, 2.6]
and [S3].)

REMARKS. (i) The forgetful functor MHM(X) - Perv(QX) is faithful, but
DbMHM(X) -+ D§(Qx) is not (for example, consider Extl of mixed Hodge
structures, see also 3.5).

(ii) The bijectivity of the first horizontal morphism of (1.7.1) will be proved in
the next section by using the effaceability condition.

2. Effaceability

In this section we prove Theorem (0.2).

2.1. We first review the elementary theory of cohomological functor. Let A,
£3 be abelian categories, and Kb d, Db d as in [V]. An additive functor H : DbA ~ B
is called a cohomological functor if for a distinguished triangle ~ M’ -+ M ~
M" +1 of Db d, HM’ ~ HM ~ HM" is exact. We put H’M = H(M[i]) for i E Z
so that we have a long exact sequence

for a triangle as above. The definition is similar for the contravariant functor
where the definition of Hi is replaced by H iM = H-iM = H(M[-i]). A coho-
mological functor H is called left (resp. right) exact, if HiM = 0 for M E A and
i  0 (resp. i &#x3E; 0). The restriction F of H to A is left (resp. right) exact in the usual
sense, if H is a left (resp. right) exact cohomological functor. From now on we
assume B to be the category of (sheaf of) abelian groups or modules. A covariant
(resp. contravariant) functor F: d -+ -4 is called effaceable if for any M E d and
eE F(M), there exists an injection M -+ M’ (resp. a surjection M’ ~ M) such that
the image of e in F(M’) is zero. Sometimes we shall call a cohomological functor
effaceable if so is its restriction to A.
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2.2. With the above notation and assumption, let Fi: A ~ B be additive

covariant (resp. contravariant) functors of abelian categories with functor
morphisms d : P ~ Fi+1 such that d2 = 0. We have an additive functor F: KbA ~
K-4 such that F(M) is the single complex associated with the double complex
whose (p, q)-components are F"(MP) (resp. IFq(M-P». For M E Kb d, let K(M/)
(resp. K(/M)) be the category of quasi isomorphisms u of Kb dsuch that S(u) = M
(resp. T(u) = M) where S(u) and T(u) are the source and the target of u, and the
morphisms of K(M/) and K(/M) are the obvious ones, cf. [V]. We define

so that R’FM = R0F(M[i]) (resp. R0[F(M[- i]), where Hi: KbB ~ PA is the natural
cohomological functor. Then H := R°F defines a cohomological functor. In fact
the well-definedness of H(u) for the morphisms u of Db dis standard, and we may
assume M’ = C(M - M")[ -1 ] for the exactness of HM’ ~ HM ~ HM". Note
that RiF: D’sl -+ -4 is left exact if Fi = 0 for j  i by the canonical truncation r of
Kb d, and effaceable if Fi = 0 for j a i by the triangle ~ 03C31 M’ ~ M’ - M’° ~,
where M ~ M’ is a quasi isomorphism such that M" = 0 for i  0 and M E A, cf.

[D2] [V] for the definition of r, a (the argument is similar in the contravariant
case). In particular, if F = F °, i.e. F’ = 0 for i ~ 0, R°F is left exact and R’F
are effaceable for i &#x3E; 0. In this case the restriction of R0F to A coincides with
F iff F is left exact.

2.3. LEMMA. With the above notation and assumption, let H: D’,W-+ -4 be a left
exact cohomological functor, and F its restriction to si. Then we have canonical
functor morphisms RiF ~ Hi, and they are isomorphisms iff the restrictions oflHli to
A are effaceable for any i &#x3E; 0.

Proof. We assume H covariant. The argument is similar in the contravariant
case. For M E KbA we have a spectral sequence

by Verdier, cf. also [S1, 5.2.18]. The left exactness means that E iq = 0 for q  0

and the differential d1 is induced by that of M. By the edge morphism we get the
functorial morphism Hp(F(M°)) = Ep02 ~ HP(M), and passing to the limit we get
the desired morphism. For M E A, R0F(M) = F(M) = H0(M) is clear by the left
exactness, and the remaining assertion follows from the next:

2.4. LEMMA. Let H ~ H’ be a morphism of cohomological functors, and assume
the effaceability of Hi and the bijectivity of Hi-1(M) ~ H’i-1(M) for any M E si.
Then Hi(M) ~ H’i(M) is injective for M E A, and the bijectivity is equivalent to the
effaceability of 0-p ".
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Proof. By the effaceability of e ~ H’(M) we have a short exact sequence
0 ~ M - M’ ~ M" ~ 0 such that the image of e in H!(M’) is zero. Then e = 0 if
the image of e in Hi(M) is zero by the commutative diagram

The argument is similar for the bijectivity.

2.5. With the notation of 2.1-2, let A = MHM(X) for an algebraic variety X, and
B = M(Q) the category of Q-modules. For M ~ A we define contravariant
functors MHi, HiM: Db A ~ B by

where M Q9 N = N Q9 M by the involution of X x X inducing the identity on the
diagonal. Then MH °, H0M are left exact cohomological functors by the proof of 1.7,
cf. (1.7.2). Let M F, FM denote the restriction of MH0, H0M to A. We have functor
morphisms RiMF ~ M lHIi, RiFM ~ HiM, and they are functor isomorphisms iff

MHi, HiM are effaceable for any i &#x3E; 0 by 2.2-4. These arguments can be

generalized to the case M ~ KbA by applying 2.2 to Fi = m - F, Fm - i, i.e. Ri MF(N),
R’Fm(N) are the inductive limit of the cohomology of the double complex whose
(p, q)-component is

where lV = S(u) with u running over the elements of K(/N) in the notation of
(2.2.1). For the construction of the morphisms lRi MlF -+ MlHli, etc. we use the iso-
morphism

Ext’(M Q9 N, D5) = Ext’(M 0 N, Ô DHX), etc.

with the filtration of M   N by the total degree, where £5: X ~ X x X is the
diagonal. Then passing to the limit we get a commutative diagram
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where RiF(M, N) is the inductive limit of the cohomology of the double complex
whose (p, q)-component is ExtO(M-P Q9 Ñ-q, DH) for  ~ M,R,N quasi
isomorphisms of Kb d. Here the morphisms to Ext’(M, DN) are induced by 1.7,
and they are isomorphisms if so are they for M, N E MHM(X) and i = 0, i.e. the
first horizontal morphism in (1.7.1) is an isomorphism. Assume Ni = 0 for i &#x3E; 0

and HiN = 0 for i  0. Put N’ = HON(= N in DbA). Then H N = H0N’ is left exact
and we have

by the left exactness of H0Ni, MH0. Therefore R1FN(M) ~ H1N(M) is always
injective for M E d, and RiFN ~ HiN are isomorphisms iff HiN = HiN’ are effaceable
for i &#x3E; 0 by the same argument as in 2.4.

2.6. LEMMA. Let X be a smooth variety, M, N ~ DbMHM(X), and L an
admissible variation of mixed Hodge structure on X so that L[dx ] E MHM(X) and
Q9L: MHM(X) ~ MHM(X) is an exact functor. Then we have a canonical
isomorphism

induced by Q9L and the natural morphism L* ~ L ~ QHX, where L* =

Rom(L, QHX) = (DL)(-dX)[-2dX] is the dual variation of L.
Proof. By definition each side of (2.6.1) is the inductive limit of the cohomology

of the double complexes whose components are Hom(M - p Q9 L, Ñq), etc. where
 ~ M, N ~ N are quasi isomorphisms. Therefore the assertion is reduced to the
case M, N e MHM(X). We have the canonical morphism QHX ~ L Q9 L* by
duality, and this gives the inverse combined with the tensor of L*. In fact the
assertion is reduced to that for perverse sheaves by the faithfulness of the forgetful
functor of the mixed Hodge Modules, and we may assume L trivial. The detail is
left to the reader.

2.7. COROLLARY. With the notation and assumption of 2.6 the morphisms

in (2.5.2) are isomorphisms for M, N E MHM(X) such that the underlying perverse
sheaf of N is a local system up to shift.

Proof. This is essentially the special case of 2.6 where L, N in 2.6 correspond to
N[ - dx], DHX[i - dx] = QHX(dX) [i + dx], and it is enough to check the compa-
tibility of the morphisms (or check (2.8.2-3) below). The detail is left to the reader.

2.8. THEOREM. The morphisms in (2.5.2) are isomorphisms for any M, N E
KbMHM(X), and induces the isomorphisms for M, N E DbMHM(X). In particular
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we get a functorial isomorphism

compatible with the corresponding natural morphism for 0-complexes.
Proof. By 2.5 it is enough to show:

HiN is effaceable for any N E MHM(X) and i &#x3E; 0. (2.8.3)

In fact we may assume N E MHM(X) in the proof of isomorphism for the left
horizontal morphisms of (2.5.2), because (2.8.2) implies that the morphisms to
Ext‘(M, DN) are isomorphisms, and it is enough to show the first horizontal
isomorphism of (2.5.2). As shown in the proof of 1.6 we have the adjunction

for M ~ DbMHM(U), N E Db MHM(X), where j : U -+ X is an affine open
immersion. In fact the case of mixed Hodge Module was shown and the general
case follows from the exactness of j, using the morphism j!j*  ~ M for any quasi
isomorphism  ~ j, M. In paticular the assertions (2.8.2-3) are local. For (2.8.3)
we take an affine open covering X = uUi and use the surjection ~ji!j*iM ~ M
so that (2.8.3) is reduced to that for jt N by (2.8.4), where ji: Ui ~ X. For (2.8.2) we
use the spectral sequence (with the vanishing of E pq for q  0, cf. (1.7.2)):

associated to the filtration 6 of the co-Cech resolution of M whose components
are ~|I| = 1 - pjI!j*IM (using (2.8.4)), where jI : U 1 := nlEl Ui ~ X, cf. also [BBD].
We prove the assertions by induction on dim X. The case dim X = 0 is the

special case of 2.7, cf. also [C] [Bl]. In general we may assume that there exists
a function f such that with the notation of 1.2, X* is smooth, the underlying
perverse sheaf of j* N is a local system up to shift, and the assertion is proved on
X o . Associated to the triangle ~ j!j*M ~ M ~ i*i*M ~ we have the morphisms



223

of long exact sequences by 2.5:

where the compatibility of the adjunction (2.8.4) with the vertical morphisms
follows from the same argument as in the proof of (2.8.4). Then (x", P" are
isomorphisms by 2.7. For the proof of (2.8.2), i.e. the bijectivity of fi for k = 0, it is
enough to show the bijectivity of fi’ for k = 0 and the injectivity of fl’ for k = 1 by
the diagram (2.8.5). We have a canonical triangle

cf. [S2, 2.23-24], and using the associated long exact sequence (and the left
exactness), the assertion is reduced to the case supp M c Xo, if the injectivity of
fi for k = 1 is shown in this case. But this injectivity is reduced to the bijectivity of
the morphisms in (2.5.2):

by the commutativity of (2.5.2) and the last remark of 2.5 (e.g. the injectivity of
a for i = 1, etc.). Therefore by the duality and the symmetry of M Q9 N, (2.8.2) is
reduced to (2.8.2-3) in the case supp N c Xo. Then (2.8.3) is also reduced to
(2.8.2-3) in this case by the similar argument, because the morphisms to
Ext‘(M, DN) in (2.5.2) are isomorphisms by (2.8.2).
Now we prove the case supp N c Xo. By the same argument as above (i.e.

using (2.8.5-6)), (2.8.2) is reduced to the case supp M, supp N c Xo, and follows
from the inductive hypothesis using the adjunction for i*, i’ with i!DHX = DHXo,
because i* commutes with dual and tensor. Then (2.8.3) is also reduced to this
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case, and follows from the commutative diagram

for M’, N’ E MHM(Xo), where the first two horizontal morphisms are induced
by the trace morphism i*DHX ~ D5, and the first and the last horizontal

morphisms are isomorphisms by the adjunction and the fully faithfulness of

i*: DbMHM(X0)~ DbMHM(X), cf. [S2, 2.23].
Now it remains to show the compatibility with the corresponding iso-

morphism on the underlying Q-complexes. For (K’, F), (L’, F) E DbFbête in [BBD]
corresponding to K, L ~ Cbperv(Qx), we have a commutative diagram

by the edge morphism of the spectral sequence associated with the quasi
filtration induced by F on K M L and K’   L’, where the left hand sides

are the cohomologies of the double complexes whose (p, q)-components
are Ext0(K-P L-q, 03B4*DX), Ext0(Gr-qFK’ Gr-qFL’, 03B4*DX), ExtO(GriPK’,
DGr-qFL’). Here the adjunction for 03B4*, 03B4* and the vanishing of Ext’ for i  0 are

used. Then passing to the limit we get the compatibility by [BBD] [B2], because
the limit of the last horizontal morphism coincides with the morphism induced by
the functor real, cf. [loc. cit].

2.9. COROLLARY. With the notations of 2.8 we have functorial isomorphisms
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for L, M, N E Db MHM(X) compatible with the corresponding isomorphisms on the
underlying Q-complexes.

Proof. It is enough to show (2.9.2), because QHX Q9 M = M. In fact this follows
from QHX 0 M = (ax x id)* M and the functoriality of the pull-backs for the
compositions. For (2.9.2) it is enough to show

by 2.8 and D2 = id. But it is clear by definition and Dô! = ô* B. For the
compatibility with the corresponding isomorphism on the underlying Q-
complexes, we identify 03B4!(DK   K’) with Rom(K, K’) for K, K’ E D’(0x) using
the above construction and the natural isomorphism

for any K". Then the compatibility is clear.
As a corollary we get

2.10. THEOREM. Let X be an algebraic variety, and M, N E DbMHM(X) with
K, L ~ Dbc(QX) their underlying 0-complexes. Then we have a canonical short exact
sequence

such that the morphism 03B2 is identified with Exi(M, N) ~ Exti(K, L) =
H’(X, Rom(K, L)) induced by the forgetful functor. Here the middle Ext in
(2.10.1) is taken in D’MHM(X), and the first Ext and the last Hom in MHM( pt).

Proof. This is clear by 2.9 and the compatibility of the adjunction for al, (aX)*
with the forgetful functor, because Ext‘ in MHM(pt) vanishes for i &#x3E; 1 by [B1], cf.
also 3.6 below for the case of admissible variation of mixed Hodge structure with
i = 1.

3. Extension of admissible variations

In this section we assume X smooth and connected. We prove 2.10 directly in the
case of admissible variation of mixed Hodge structure for i = 1.
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3.1. Let A be a noetherian subring of R. We assume

any torsion free finite A-module is projective (3.1.1)

so that

i.e. A is a field or a Dedekind domain. Let B be the subfield of Il generated by
A. If A is a field or (a localization of) the ring of integers of an algebraic
number field, we have B = A ~ z Q, and the A-torsions of an A-module M (i.e.
Ker(M - M ~A B)) coincide with the Z-torsions. We denote by MHS(A) the
abelian category of A-mixed Hodge structures, and MHS(A)p its full subcategory
of polarizable objects, cf. [D2], where the weight filtration W is defined over B,
and polarizable means that the graded Hodge structures are polarizable over B.
Let VMHS(X, A)ad be the abelian category of admissible variations of A-mixed
Hodge structures [SZ] [K], where the definition in [SZ] is valid only in the
unipotent local monodromy case, and the general case is reduced to this case in
[K] cutting by curves and taking ramified coverings. By definition we have

where pt = Spec C and VHS(X, A, n)p is the category of polarizable variations
of A-Hodge structures of weight n on X.

3.2. If A is a field we can define MHM(X, A) the category of mixed Hodge
Modules with A-structure as in [S1 - 2], and prove

where the left is the full subcategory of smooth mixed Hodge Modules of
MHM(X, A) (i.e. the underlying perverse sheaves are local systems on X up
to shift), cf. [S2]. More precisely VMHS(X, A)ad c DbMHM(X, A) and M E
MHM(X, A)sm iff M[ - dim X] E VMHS(X, A)ad. In particular we have
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3.3. With the notation and assumption of 3.1, we denote by MR the underly-
ing R-local system of M E VMHS(X, A)ad for R = A, B, C. We say that M E
VMHS(X, A)ad is torsion-free (resp. torsion) if so are the stalks of MA. For
M E VMHS(X, A)ad we have a canonical exact sequence

such that MT (resp. MF) is torsion (resp. torsion-free). By definition of the
underlying A-structure of a variation of mixed Hodge structure we can check
easily

For M ~ VMHS(X, A)ad we define the weight filtration W on M by W MA =

Ker(MA ~ MB/ WiMB) so that MI Wi M are torsion-free and (WiM)B = WiMB’
Then W M are torsion for i ~ 0, and in general W is not separated and M H W M
is not exact unless A is a field. We are interested in the extension defined by the
short exact sequence

where Grr M is torsion-free by definition. Let AHX E VMHS(X, A)ad be the
constant variation of weight 0 whose underlying A-local system is Ax, and put
AH = AHpt, cf. (3.1.4). If M ~ VMHS(X, A)ad is torsion-free, its dual variation
M* :== Rom(M, AHX) can be defined naturally so that the restriction to the fibers
commute with dual, cf. [C][B1] for the case X = pt. Here M* is torsion-free
by definition and M** = M. By the same argument as in the proof of 2.6 we
can show:

3.4. LEMMA. We have a canonical isomorphism

for M, N E VMHS(X, A)ad such that N is torsion-free, where the Ext’ are taken
in the derived category of VMHS(X, A)ad’

3.5. REMARKS. (i) By (3.4.1) for i = 1, the short exact sequences 0 ~ M ~
L ~ N -+ 0 and 0 ~ N* Q9 M ~ L’ ~ A’ -+ 0 correspond to each other by the
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diagram of nine lemma:

where the inverse functor is defined similarly.
(ii) If N is not torsion-free, we have a long exact sequence induced by (3.3.1):

where ô is induced by the composition with e ~ Ext1(NF, NT) corresponding to
(3.3.1), and Exti(NT, M) = Exti(NTA, MA) for i  1 by (3.3.2). Here e = 0 by
(3.1.1)(3.3.2) if X = pt.

(iii) If A is a field, we have an exact sequence

where ~ is given by the composition with e ~ Ext1(GrW0M, W-1M) corresponding
to the short exact sequence (3.3.3), and Ext1(AHX, GrW0M) = 0 by polarization.

(iv) In the case X = pt we define as in [B1][C] :

for M E MHS(A), where the morphism is given by the alternating sum of four
natural inclusions, cf. [loc. cit]. Then

and for a short exact sequence 0 ~ M’ ~ M ~ M" ~ 0 we have
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by snake lemma, because Hom(AH, M) is the kernel of the morphism in (3.5.4).
We have a canonical isomorphism by [loc. cit] :

where Ext is taken in MHS(A) (here 2.6 holds also for MHS(A)). In fact we
may assume M torsion-free by (3.1.1), cf. the last remark of 3.5(ii). For an exact
sequence 0 - M ~ L- AH ~ 0 in MHS(A), we have a splitting SB: B -+ WOLB,
and it induces a direct sum decomposition

Then we get eA E MB, ec E Wo Mc such that (eA,1) E LA, (eC, 1) E F° WoLc by (3.5.9),
using the bi-strictness of the morphisms of mixed Hodge structures, cf. [D2],
where eA and ec are unique modulo MA and FOWoMc. The ambiguity of SB is
given by WOMB and the dependence of eA, ec on the change of sB is given just
as in (3.5.4) (up to sign). Here note that the right exactness of J(M) in (3.5.7) is
equivalent to the vanishing of Exti(AX, M) for i &#x3E; 1 by effaceability, as remarked
by Janssen.
Now we consider the polarizable case. For M E MHS(A)P we define J’(M) by

replacing W0MC in (3.5.4) with

Then for a short exact sequence 0 - M’ ~ M ~ M" - 0 in MHS(A)P we have

because Grô of the short exact sequence splits after the scalar extension OA B
by polarization. If M has weights  0 (resp. &#x3E; 0), (3.5.5) (resp. (3.5.6)) holds with
J(M) replaced by J’(M), and we have J’(M) = J(M). If M is pure of weight 0
we have

i.e. J’(M) is the A-torsions of J(M). Then we get

cf. [loc. cit], where Ext1 is taken in MHS(A)P. In fact if M,M’EMHS(A)P are
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pure of same weight, an extension of M by M’ in MHS(A) is polarizable iff the
extension splits after scalar extension Q9 AB.

3.6. THEOREM. With the notation of 3.1, let M, N E VMHS(X, A)ad, and
K = MA, L = NA- If N is torsion-free, we have a canonical short exact sequence

such that the morphism fi is identified with Ext 1 (N, M) ~ Ext 1 (L, K) =
H1(X, L* Q9 K) induced by the forgetful functor. Here the middle Ext is taken in
VMHS(X, A)ad, and the first Ext and the last Hom in MHS(A)P.

3.7. REMARKS. (i) If A is a field, 2.10 holds with Q replaced by A, and implies
3.6, because VMHS(X, A)ad is a full subcategory of MHM(X, A) (up to shift)
stable by extensions, cf. (3.2.1).

(ii) If N = AHX, the morphisms et, fi in (3.6.1) can be defined as follows. Let 0 ~
M ~ M’ ~ A t - 0 be the short exact sequence corresponding to e ~ Ext1(AHX, M),
and

the associated long exact sequence. We define 03B2(e) to be the image of 1 by ô. Then
this definition is compatible with the morphism induced by the forgetful functor
in 3.6, because the adjunction for A-complexes is induced by A ~ (ax)*Ax. The
morphism a is defined by the composition

Then the exactness of (3.6.1 ) is clear except for the surjectivity of fi. In fact, we
have a section s: Ker fi - Ext l(AH, HO(X, M)) by the short exact sequence
deduced from (3.7.1), which is compatible with the restriction to the fiber at each
point of X, i.e. we have a commutative diagram
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where Mp, M’P e MHM(A)P are the fibers of M, M’ at P e X. This shows as = id,
where pa = 0 is clear by the compatibility of (3.7.2) with the forgetful functor and
Ext1(A, H°(X, L)) = 0. For the proof of sa = id, we have a commutative diagram

because X is connected, where e’ and e = a(e’) correspond to 0 ~ H°(X, M) -
M" ~ AH ~ 0 and 0 ~ M ~ M’ ~ AHX ~ 0.

3.8. Proof of 3.6. By 3.4 we may assume N = Ax, and it is enough to show
the surjectivity of fi by 3.7(ii), because the diagram (3.5.1) is compatible with the
forgetful functor. Here we may assume also A = B by definition of A-structure
on the extensions of admissible variations, and the property of fi in 3.6.
For P E X, let ip: X = P  X ~ X x X the natural embedding, and 03B4: X -

X x X the diagonal. Let U = XBP, Y = X x U, and ih: U ~ Y, Ô’: U ~ Y the
restrictions of ip, ô to Y. Put Y’ = YB(Im ip u Im b) with j: Y’ ~ Y the natural
inclusion. We have a triangle

for M’ = pr*1 M ~ VMHS( Y, A)ad, where prl : Y - X, pr2: Y ~ U are the natural
projections. We denote by Mp E MHS(A)P the fiber of M at P, and for
N E MHS(A)p, NuE VMHS(U, A)ad denotes the constant variation with fiber N.
Taking the direct image of (3.8.1) by pr2, we get a long exact sequence in
VMHS(U, A)ad:

and a short exact sequence

so that e E Hom(AH, H1(X, M)) induces e’ E Ext1(AZ, Coker t). Consider the
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diagram of nine lemma:

Let e" be the image of e’ in Ext1(AHU, Coker t’). Then e" comes from

Ext1(AH, M,IHO(X, M)) by the pull-back a*U, because we have a natural
morphism of the triangle (3.8.1) to the pull-back of the triangle ~ j’!j’*M ~
M ~ 1£ Mp - by prl, which induces the morphism of the associated long exact
sequences and Coker t ~ Coker v’, where j’ : U -+ X, i’ : P ~ X are the natural
inclusions. By the right exactness of Ext 1 on MHS(A)p, cf. 3.5 (iv), e" is the image
of e1 ~ Ext1(AHU, (MP)U). Let e’1 be the image of e 1 in Ext 1 (A H Coker t) by the
natural morphism. Then the image of e’ - e ? in Ext1(AHU, Coker v’ ) is zero, and
e’ - e’1 is the image of e2 ~ Ext1(AHU, Mu). Here e2 is extended to X, if it

holds for the underlying A-local systems by the property of admissible variation.
Therefore by the property of 03B2 in 3.6 the proof of the surjectivity of 03B2 is reduced

to the coincidence of the underlying extension class é2 of e2 with the restriction to
U of the underlying class é of e under the natural isomorphisms

where K, K’ are the underlying A-local systems of M, M’. Let

the first morphism in the direct image of the underlying triangle of (3.8.1). By
Ext1(A, KP) = 0 the underlying classes e", ë1 of e ", e 1 are zero, and the com-
position of ui with aÛé E Extl(AU, ( pr2)*K’) is zero, where the first isomor-

phism of (3.8.5) is used. Moreover the underlying class é’ of e’ is the image of
u 03BF a*Ue ~ Ext1(AU, (KP)U ~K|U), because u 0 atë is factorized by
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and the quotient triangle of

by -+ 0 - H0(X, K)U ~ Im t ~ is equivalent to the underlying exact sequence of
(3.8.3). On the other hand the composition of u2 with a*Ue is the restriction to U
of the extension class in Ext1(Ax, K) corresponding to ê by definition of the
second isomorphism of (3.8.5). Therefore by the long exact sequence associated
with the (underlying) middle exact sequence of (3.8.4) the assertion is reduced to:

where v*: Ext1(AU, H’(X, K)u) - Ext1(Au, (Kp)u ~ K|U). But this follows from
the splitting of the injection N0(X, K) -+ Kp.
3.9. REMARK. The above proof of 3.6 can be applied to the analytic case if
we use [KK]. In fact it is enough to show the long exact sequence (3.8.2) in
VMHS(X, A)ad, where we assume X has a Kahler compactification X (the
condition of admissible variation and the mixed Hodge structure on the
cohomology might depend on the meromorphic equivalent class of compacti-
fication). To show that R1(pr2)*j!j*M’ is admissible relative to X, we embed
pr2 to pr2: X x X - X, and for any curve C in X such that C n U is dense in
C, we take a desingularization of (pr-12C,pr-12CBY’), and apply the argu-
ments in [S2][S4] . To show that the morphisms are compatible with mixed
Hodge structures, we may restrict to each point Q of U and its fiber pr-12(Q).
Let jQ: XB(P ~ Q) ~ X be the natural inclusion. Then the cohomology
H’(X, (jQ), j*QM) is calculated by taking 03C0: X’ ~ X the blow-up along P and Q,
and the restriction of (3.8.2) to Q follows from the (perverse) Leray spectral
sequence.
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