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0. Introduction

For each positive integer N, the modular curve Xo (N) parametrizes elliptic curves
with an N-isogeny; recall that over C this curve can be realized as the quotient of
the extended upper half-plane {03C41 E C: Im 03C41 &#x3E; 01 u P1(Q) by the group ro (N) of
fractional linear transformations 03C41 ~ (a03C41 + b)/(c03C41 + d) where a, b, c, d are
integers such that ad - bc = 1 and c is divisible by N, with 03C41 corresponding to
the isogeny C/(Z + 03C41 Z) ~ C/((1/N)Z + 03C41 Z). The normalizer of 03930(N) in

PSL2(R) is an extension of ro(N) by a finite group B(N) of automorphisms of
Xo (N), and it is natural to ask whether this is the entire automorphism group of
this curve, assuming that it has genus at least 2 (this excludes only a known finite
list of N of which the largest is 49;1 of course a curve of genus 0 or 1 has infinitely
many automorphisms over C). In [3, Thm. 2.17] it is shown that, in this genus  2
case, Xo (N) has no automorphisms outside B(N), with the exception of N = 37
and possibly N = 63. For N = 37, B(N) contains only the identity and the class of
the Fricke involution W37:!1 ~ -37/03C41, and X0(37) is a curve of genus two
whose hyperelliptic involution is different from w37; this situation was described
thoroughly in [4]. For N = 63, B(N) is a 24-element group isomorphic to
A4 x Z/2, and [Aut X0(63):B(63)] is either 1 or 2, and in the latter case

Aut Xo (63) is isomorphic to S4 x Z/2 and contains an automorphism u not
permuting the cusps ([3, Prop. 2.18]), but the existence of such u was not settled,
and [3] suggested that the determination of Aut Xo (63) would require the
computation of explicit modular functions on Xo (63).

In this note we complete the determination of Aut Xo(N) for all N by showing
that the automorphism group of Aut X0(63) is indeed the group S4 x Z/2
described in [3, Prop. 2.18]. The extra automorphism u was initially constructed
using explicit modular equations (for the elliptic curve Xo(21), not the genus-5
curve Xo (63)), but it turns out that its existence can be confirmed "synthetically",

*NSF Grant DMS-87-18965.
1 See for instance the "Remarks on isogenies" and Table 5 of [1]. More specifically we find there that
there are precisely twenty-seven N such that Xo(N) has genus  2: all N  21, and N = 24, 25, 27, 32,
36, 49.
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using only the modular structure and enumerative geometry. We present this
conceptual proof first, and then exhibit the modular equations.
We shall work over the ground field C throughout; whenever a square root

appears it indicates the principal value with argument in [0, n).

1. First construction

As in [3, Remark 2.19] we consider Xo(63) as the quotient of the extended upper
half-plane by 03930(7) n r(3), where r(3) is the group of fractional linear trans-
formations s H (ar + b)/(cr + d) with a, b, c, d integers such that ad - bc = 1 and
a, c are both divisible by 3 (i.e. such that (a b) E PSL2(Z) is congruent to the identity
matrix mod 3); this works because the transformation -c = 303C41 identifies that

group 03930(7) n r(3) with a conjugate of 03930(63) in PSL2(Q). That group is the
intersection of the four conjugates of 03930(7) n 03930(3) = 03930(21) in 03930(7), and thus
Xo (63) is the normal cover of the degree-4 map 0: X0(21) ~ Xo (7), with covering
group A4 (this is the A4 factor of B(63) ~ A4 x Z/2). Here X0(21) and Xo (7) have
genus one and zero respectively; ~ has ramification of type (3,1) above four points
of Xo(7), namely the two cusps 0 and oo and the two complex multiplication
points P+ of discriminant - 3, for which we take representatives r =

(-3 ± 5)/14 in the upper half-plane. The covering group A4 and the map
0 commute with the involution w7 (the Z/2 factor of B(63)); W7 acts on the four
ramification points of 0 by the double transposition (0~)(P+P-). To construct
the extra automorphism of Xo(63) it is then necessary and sufficient to lift to
X0(21) the other two automorphisms, say u1 and w7u1, of X0(7) ~ P 1 (C) that act
by double transpositions on these four ramification points.
Now w7 has two fixed points on Xo(7): the two complex multiplication

points Q, Q’ of discriminants - 7 and - 28 respectively, represented by r = (7 +
7)/14 and T = -7/7. But W7 has no fixed points on Xo(21): a putative fixed
point would necessarily lie above Q or Q’ and so correspond to an endomorphism
of degree 21 of an elliptic curve with complex multiplication by an order in

Q(-7), but that is impossible because 3 is inert in this field. Thus W7 must act
on the elliptic curve Xo(21) by translation by some 2-torsion point, and the
preimage of each of Q and Q’ consists of two pairs of points interchanged by that
involution. Let X0(21)+ and Xo (7) + be the quotients of Xo (21 ) and Xo (7) by w7;
these are again curves of genus one and zero respectively, and since 0 commutes
with w7 it descends to a degree-4 map ~+ : X0(21)+ ~ X0(7)+. This map again
ramifies over four points of X0(7): the image oo + of the cusps 0 and oo, and the
image P of the points P+ , both of type (3,1); and the images of Q and of Q’, which
we again call Q and Q’, both of type (2,2). Also ul and w7u1 both commute with
BV7 and so descend to an involution ut of X0(7)+ that takes ce + to P and Q to Q’.
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We now claim:

PROPOSITION. If 03C8 : C - P1(C) is any rational function of degree 4 on a curve
C of genus 1 such that 03C8 ramifies above 4 points of P1(C), two oftype (3,l) and two of
type (2,2), then the involution vl of P1(C) that takes each of these points to the other
ramification point of the same type lifts to a unique involution v of C with four fixed
points (equivalently, an involution that multiplies the holomorphic differentials of
C by -1), with two fixed points lying above each fixed point of vl.

In our case we obtain an involution U1 of X0(21)+ , and because U1 is not

a translation by a 2-torsion point on that curve it clearly lifts to a pair of
involutions u, w7u on Xo(21) which are the desired lifts of u1, w7u1. So we need
only demonstrate this Proposition to complete the determination of Aut Xo (63).

Proof of Proposition. Uniqueness is clear: if there were two lifts v, their

composition would be an automorphism of C nontrivially permuting the fibers of
t/J, but there is no such permutation consistent with both the (3,1) and the (2,2)
ramification. To obtain existence, we use the techniques of [5] to show that, given
the four ramification points of 03C8, there are three possible fourfold covers (C, g/) of
P’(C) with the specified ramification, and three fourfold covers of P1(C)/v1 which
lift to such a cover of P1(C) with an involution v such that y5 o v = V1 0 03C8, and thus
that each of the three possible (C, 03C8) admits a lift v of v 1. Indeed, a small loop
counterclockwise around each of the four ramification points of 03C8 induces
a permutation of that map’s four sheets, and some conjugates 03C31, 03C32, 03C33, 03C34 of

these permutations in the Galois group A4 of the normal cover of 03C8 satisfy
03C3103C3203C3303C34 = 1; since u l,a 2 are 3-cycles and Q3, a 4 are double transpositions it
follows that 03C31 and u 2 must lie in different conjugacy classes of A4. By
renumbering the sheets if necessary (i.e. applying an outer automorphism of A4)
we may assign a, to one of the two conjugacy classes of 3-cycles in A4 and a 2 to
the other. Then, since A4 has trivial center, it follows from [5, p. 63] that the
number of covers (C, 03C8) given this ramification is (1/|A4|) of the number of
solutions in A4 of 03C3103C3203C3303C34 = 1 with al’ a 2 in their assigned conjugacy classes
and 03C33, 03C34 in the conjugacy class of double transpositions, such that the four api
generate A4; in our case this last condition is satisfied automatically. Now there
are four choices of 03C31, 03C32 with 03C3103C32 = 1, each of which gives three choices for
(03C33, 03C34), and the twelve other choices of 03C31 and a 2 make u 1 a 2 a double

transposition and force 63, 03C34 to be the other two double transpositions in one of
two orders; hence the total number of solutions is 3·4 + 2 12 = 36, giving
36/IA41 = 3 covers (C, 03C8). Now if C has an involution v as described in the
Proposition, then C/v is a curve of genus zero with a map to P1 (C)/v1 ramified
above four points: the two images of the ramification locus of 03C8, one of type (3, 1)
and one of type (2, 2), and the images of the two fixed points of v, each of type (2,1,1 ).
Here the Galois group is S4, and so the number of such coverings of P’(C)Ivl
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given the location of the ramification points is (1/4!) the number of solutions to
glg2g3g4 = 1 in S4 with gl a 3-cycle, g2 a double transposition and g3, g4 single
transpositions (again such gi necessarily generate S4). For each of the 8.3 = 24
choices of g 1 and g2, their product g1g2 is a 3-cycle, so its inverse can be written as
the product of two single transpositions in three ways, for a total of 72 solutions
and 3 coverings of P1(C)/v1. Each of these is easily seen to lift to a cover (C, 03C8) of
P1(C) with an involution v as described in the Proposition; since these (C, 03C8) are
distinct (by the uniqueness part of the Proposition, proved above), it follows that
each of the three (C, 03C8) arises this way. Q.E.D.

2. Second construction

We give explicit formulas for 0 and the involutions of the modular curves X0(7)
and Xo(21) described above in terms of modular functions on these curves.
[Naturally our equations for X0(7) and X0(21) are versions of classical formulas
such as those of [2], but it was easier to derive them from scratch than to look for
them in that tome and then adapt them to our needs.]
We uniformize X0(7) ~ P1(C) by the Hauptmodul

(where q = e203C0i03C4 as usual); this has a simple pole at the cusp oo and a simple zero at
the cusp 0, and W7 takes the form H ~ 49/H. By applying the identities

ri(z + k) = e03C0ik/12~(z)(k ~ Z) and ~(-1/z) = (-iz)1/2~(z) we can then find the

coordinates of P+, Q and Q’: since the value 03C4 = (-3 + 5)/14 representing P+
satisfies 7i = 5 - 1/i, we obtain

whence H(P + ) = -e03C0i/303C4-2 = -(13 + 3-3)/2; likewise (or by applying w7)
we find H(P_) = -(13-3-3)/2, and also H(Q) = - 7, H(Q’) = 7. [For
a check on these computations, note that the X0(1)-Hauptmodul j = j(i) is

a degree-8 function on X0(7) with a simple pole at oo and an order-7 pole at 0, so
j = F(H)IH’ for some degree-8 polynomial F; comparing coefficients of the
q-expansions at infinity we find F(N) = (H2 + 13H + 49) (H2 + 245H + 2401)3,
and substituting H = -(13 ± 3-3)/2, -7,7 we find j(P 1:) = 0, j(Q) = -153,
and j(Q’) = 2553, which are the correct CM-values of the j-invariant for

discriminant - 3, - 7, - 28.]
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On Xo(21) we have a function of degree two

invariant under w21, with simple poles at the cusps 0 and oo and simple zeros at
the cusps 1/3,1/7. Another function of degree two is

with simple poles at oo and 1/7 and simple zeros at 0 and 1/3; we have
W2191 = 7/g1 and so (g, + 7/g1)f is necessarily a quadratic polynomial in f,
which a comparison of q-expansions determines to be f2 - 3 f + 1. Thus the
degree-4 function

has double poles at 0 and oo and satisfies w21 g = - g and

which we take to be the defining equation for Xo(21). [Check: the minimal Néron
model of that equation is

the same as the equation for the elliptic curve # 21B ~ X0(21) given in [1]; here

Next we compute the map 0: Xo(21) - Xo(7), that is, write H as a rational
function of f and g: the il-products give H = g21/f, and

This function H(f,g) = (f2 - 3 f + 1 + g)2/(4f3) indeed has a triple pole at
(f,g) = (0, 1) and a simple pole at (f,g) = (oo, + (02), a triple zero at ( f, g) =
(~, - ~2) and a simple zero at ( f, g) = (0, -1 ) (this was confirmed by expanding



208

± ( f 4 - 6f3 - 17f2 - 6 f + 1)1/2 in power series about f = 0, ~); also H -

H(P+ ) has a triple zero at ( f, g) = (( -1 ~ -3)/2, - 3 ± -3) and a simple zero
at (f,g) = (1, ± 3-3) - all in accordance with the ramification behavior of 0.
(It so happens that these 8 preimages of 0, oo, and P+ all lie in the Q( 3)-
rational torsion subgroup (Z/8) x (Z/2) of the elliptic curve X0(21), but the
significance here of this is not clear.)

Finally, we use the involution u 1: H H (H(P+)·H - 49)/(H - H(P +» which
commutes with w7 and takes 0 to P _ and oo to P + . A lift of u 1 to an involution
u of Xo (21 ) must interchange the triple zeros (~, -~2) and (( -1 + -3)/2,
- 3 - -3) of H and u 1 H; and this specifies u uniquely: the image under u of
any point (f, g) = (x, y) is the unique point u(x, y) such that (x, y) + u(x, y) -
(~, -~2) - (( -1 + -3)/2, - 3 - -3) is the divisor of a rational function
on X0(21). Such a function must be either constant or proportional to

2(g - 3 - -3)/(2f + 1 - -3) - f - A for some constant A; thus two
points on Xo(21) are interchanged by u if and only if the degree-2 rational function

2(g - 3 - -3)/(2f + 1 - -3) - f assumes the same (possibly infinite)
value A at these points. This is true for the triple zeros of H and U1 H by
construction; it is also true for the simple zeros (0, -1), (1, - 3-3) with
A = -(1 + 5-3)/2, for the simple poles (~, + o0 2), (1, 3-3) with

A = 3 - 7)/2, and for the triple poles (0, 1), (( -1 - -3)/2, - 3 + -3)
with A = (1 - 3-3)/2. It follows that the rational functions H 03BF u and u1 03BF H on
X0(21) have the same zeros and poles and agree on one (indeed several) nonzero
values, and therefore they are equal and so u gives the desired lift of u1-

Q.E.F.
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