@article{CM_1990__73_2_121_0, author = {Cox, David A. and Green, Mark}, title = {Polynomial structures and generic Torelli for projective hypersurfaces}, journal = {Compositio Mathematica}, pages = {121--124}, publisher = {Kluwer Academic Publishers}, volume = {73}, number = {2}, year = {1990}, zbl = {0725.14007}, mrnumber = {1046733}, language = {en}, url = {www.numdam.org/item/CM_1990__73_2_121_0/} }
Cox, David A.; Green, Mark L. Polynomial structures and generic Torelli for projective hypersurfaces. Compositio Mathematica, Tome 73 (1990) no. 2, pp. 121-124. http://www.numdam.org/item/CM_1990__73_2_121_0/
[1] Variational Torelli implies generic Torelli, Inventiones math. 88 (1987), 439-446. | EuDML 143462 | MR 880961 | Zbl 0594.14011
, and ,[2] Generic Torelli for projective hypersurfaces, Compositio Math. 50 (1983), 325-353. | EuDML 89627 | Numdam | MR 720291 | Zbl 0598.14007
,[3] A new proof of the symmetrizer lemma and a stronger weak Torelli theorem for projective hypersurfaces, J. Differential Geom. 20 (1984), 459-461. | MR 788289 | Zbl 0599.14005
and ,[4]. A new proof of the explicit Noether-Lefschetz Theorem, J. Differential Geom. 27 (1988), 155-159. | MR 918461 | Zbl 0674.14005
,[5] Théorème de Torelli pour les cubiques de P5, Inventiones math. 86 (1986), 577-601. | EuDML 143409 | MR 860684 | Zbl 0622.14009
,