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0. Introduction

The purpose of this article is to study restrictions on the torsion groups of elliptic
surfaces over an arbitrary base curve. In fact our approach is dual to this: we
study the restrictions on the base curve, the rank of the Mordell-Weil group of
sections, and the Euler characteristic of the surface given a certain torsion group
of sections.

This problem was solved in the case of rational base by David Cox and Walter
Parry [C-P] using the theory of elliptic modular surfaces.
We intend to attack the problem in a more elementary way using an Euler

number argument. A similar technique was employed by Nikulin [N] to study
the possible finite abelian automorphism groups acting algebraically on a K3
surface, and the reader who is familiar with this work will not be surprised at the
method’s power.

In the case of a rational base curve we recapture their classification of the 19

possible torsion groups in what we think is a conceptually simpler way. We also
classify the torsion groups which can occur for an elliptic base, and the proof
actually shows that those are the only ones possible for any base curve, provided
one only looks at surfaces with sufficiently high Euler characteristics. We call this
the asymptotic case.

It is clear from our method that one may in principle determine all the possible
torsion groups for any genus base curve, although the computations are quite
messy. The reader should keep in mind that through the theory of elliptic
modular surfaces any finite abelian group of length at most 2 (i.e., a subgroup of
Z/N x Z/N for some N) may occur. The restrictions on the base curve

corresponding to a given torsion group are a priori imposed by the genus of the
corresponding modular curve. Similar results are also implicit in our method, and
we will include a few token examples.
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We also show that the methods of our approach can be applied to the finer
question of determining the possible Mordell-Weil groups. We illustrate this by
recapturing the list for rational and K3 surfaces first compiled by David Cox [C].
The point of our paper is to emphasize the purely combinatorial and

topological aspects of the results modulo some basic facts about elliptic surfaces.
We are not so much concerned about constructing examples, where we admit
that the approach through modular surfaces may be canonical, especially for
a non-rational base, when the curve has to be chosen with some care.
We will assume that the reader is familiar with the rudiments of the Kodaira

theory of elliptic surfaces, in particular the classification of the singular fibers and
their group structures. In section one we are going to review the basic facts we will
need, arriving at a lower bound for the number of singular fibers. In section two
we analyze the action of a torsion subgroup T of the Mordell-Weil group on the
elliptic surface: this is the heart of the theory. We pause here to analyze the
simplest case of the technique, i.e., the case when there is a p-torsion section for
some prime p. We want to impress the reader with the conceptual simplicity of
our method, which may be obscured by the rather involved combinatorics of the
general case, which we discuss in Section 3. In Section 4 we will collect our forces
and show how the lists of Cox-Parry and Cox can be recovered from our method,
and also extend the results to base curves of genus one, and to genus  2 in the

asymptotic case. We finally sharpen a result of Hindry and Silverman as an
illustration of the asymptotic approach.

1. Preliminaries: a lower bound for s

The basic facts we need about elliptic surfaces are given below; these are quite
well-known, and we present them without proof. We denote by MW the
Mordell-Weil group of sections and by T a torsion subgroup of MW. MW is
a finitely generated abelian group and T is finite. Recall that the length of a finitely
generated abelian group is the minimum number of generators.

LEMMA 1.1. Let n : X~ C be a smooth minimal elliptic surface.
(a) Any two torsion sections of n are disjoint.
(b) The restriction of T to any fiber is injective.
(c) The length of T is at most 2.
(d) If n has a nan-semistable fiber (i.e., one not of type ln for some n) then |T|  4.

REMARKS. Part (a) is not as well-known as it deserves to be, but the heuristic
reason is clear: you cannot "continuously" approach zero by just stepping on
torsion points. Part (b) follows immediately from (a), then (c) from (b), by
inspecting the group of torsion points on any fiber of n ; this inspection also proves
(d), since for each non-semistable fiber the group of torsion points has order at
most 4. We should note that singular fibers of type I. are often called
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multiplicative; the group of smooth points is isomorphic to a semidirect product
of Z/nZ with C*.

Part (d) above shows that we can without any significant loss of generality
assume that all the fibers are semi-stable i.e. of type In. To be honest, in the finer
applications when we consider the full Mordell-Weil group we need to consider
arbitrary fibers; this will present no real difficulties, so in the interest of not
burdening the presentation with irrelevant detail we will concentrate on the case
of semistable elliptic surfaces, i.e., all fibers are of type In.
We need to bring three tools to bear on the problem at hand, one topological

(the Euler number formula), one algebraic (the Shioda-Tate formula) and one
analytic (Hodge theory).
We will employ the following notation now and for the rest of the article:

e = e(X) = the topological Euler number of the surface X,
x = ~(X) = the holomorphic Euler characteristic of X,
p = p(X) = the Picard number of X,
R = the rank of the Mordell-Weil group MW,
s = the number of singular fibers of n,
g = the genus of the base curve C,

q = h1(x) and pg = h2 ((x),
The topological input is given by the formula for the Euler characteristics of an

elliptic surface. Assume that n has singular fibers of type In1,..., Ins. Then

(see for example [AS, IV.4]).
Assume that X is a Jacobian surface, i.e., that 03C0 has a section. For a singular

fiber Xi let ri denote the rank of Xi, i.e. ri = the number of components minus one.
(If Xi is of type In, then ri = n - 1.) The formula of Shioda and Tate relating these
numbers is:

(see [S]).
In our case of only semistable fibers we have that

Assuming our elliptic surface X is not a product, then its irregularity q is the
genus g of the base curve C. Hence the Hodge diamond of X is
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and therefore 12X = e = 2 + 2pg + h1,1 - 4g = 2x + h’,’ - 2g, so that h1,1 =
10X + 2g. This of course forces

since p  h1,1.

Combining everything we get the following lower estimate on the number of
singular fibres.

PROPOSITON 1.6. Let X be a smooth minimal semistable elliptic surface (i.e.,
with only In fibres) which is not a product. Then

with equality if and only if X has maximal Picard number p = h1,1.
Proof. We have

proving the last statement. D

2. Translation by torsion sections and an upper bound for s.

The next ingredient is a combinatorial fixed point analysis of actions given by
translations by torsion sections. We have exploited this in our paper [M-P 1] to
which we will refer for the simple proof. Much to our surprise we have not seen
this used before in the literature.

Let T be a torsion subgroup of MW, let So be the zero section of T, and let S be
any other torsion section. Denote by rs the automorphism of X given by
translation (in the group law of the fibers) by S.

LEMMA 2.1. Let 03C0: X ~ C be a smooth minimal semistable elliptic surface.
Assume that the order of S in T in k.

(a) The fixed points of Ts are among the nodes of the In fibers of rc.
(b) If S meets a different component of an ln fiber than So does, then none of the

nodes of that fiber are fixed by rs. If this happens, then gcd(n, k) =F 1.
(c) If S meets the same component of an In fiber as does So, then each of the n

nodes of the In fiber is fixed by t s. If x is one of these nodes, then the
linearization of the action of rs at x is given by the 2 x 2 matrix (03B60 003B6-1), where
03B6 is a primitive kth root of unity.

Proof. See [M-P 1]. ~
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The torsion group T acts on X via the translationsrs, for S E T. We need some
information about the isotropy of this action.

LEMMA 2.2. Let n : X ~ C be a smooth minimal semistable elliptic surface with
a torsion group T.

(a) The only points of X with non-trivial isotropy under the action of T are the
nodes of the In fibers.

(b) The isotropy subgroup of a node x of an ln fiber is the set of sections S of T
which meet the same component of that fiber as does So.

(c) The nodes of any one ln fiber all have the same isotropy subgroup.
(d) If H ~ T occurs as a non-trivial isotropy subgroup, then both H and T/H are

cyclic.
(e) If x is a node of an ln fiber with isotropy subgroup H g T, then 1 TIHI divides n.

Proof. Statements (a) and (b) follow from Lemma 2.1, and (c) is a consequence
of (b). To prove (d), note that H must embed into the group of smooth points of
the component meeting So ; this is the connected component of the identity of the
group of smooth points of the ln fiber, and is isomorphic to C*. Hence H embeds
into C*, so H is cyclic. In fact H is the kernel of the map sending T to the group of
components of the ln fiber, which is a cyclic group of order n; therefore T/H
enbeds into Z/nZ. This finishes the proof of (d), and also proves (e). 0

Property (c) above justifies the following terminology: we say that the isotropy
of the singular fiber ln is H if H is the isotropy subgroup of the nodes of that fiber.

Finally we must understand the quotient surface X/Te

LEMMA 2.3. Let n: X - C be a smooth minimal semistable elliptic surface with
a torsion group T.

(a) The elliptic fibration 7r induces an elliptic fibration nT: X/T ~ C.
(b) 03C0T has exactly s singular fibers also, one under each singular fiber of 03C0.
(c) The image of an ln fiber with isotropy H, under the quotient map, is a cycle of

nlITIHI smooth rational curves meeting at singular points which are rational
double points of type A|H|-1. These double points are the only singularities of
X/T. The image of a smooth fiber is a smooth fiber.

(d) Let YT be the smooth surface obtained by minimally resolving the singularities
of X/T, and let 03C0’T: YT ~ C be the induced map to C; it is a smooth minimal
semistable elliptic surface also. The singular.fiber of 03C0’T corresponding to an ln
fiber of 7r with isotropy H is an lnIHI/IT/HI fiber.

(e) The Euler number e and the Euler characteristic X for YT is the same as that
for X.

(f) Let the singular fiber of 03C0 be In1,... lnn’ with isotropy subgroups H1,..., Hs
respectively. Then e|T| = 03A3ni|Hi|2.

Proo, f. Since T acts on the fibers, it preserves the map 7r; hence the map 7rT
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exists, and it is an elliptic fibration, since the quotient of a smooth elliptic curve by
a finite subgroup is again smooth elliptic. This proves (a), and the last statement of
(c). Statement (b) follows from (c), and to prove the first part of (c), assume that an
ln fiber F has isotropy H. Then T/H acts faithfully on the set of components of F;
indeed, since T/H embeds as a subgroup of the group of components, there will be
n/|T/H| components in the quotient, and they will meet in a cycle. The local
analysis showing that they meet at double points of type A|H|-1 is Lemma 2.1(c).
Upon resolving these nlITIHI singularities, one introduces (n/|T/H|)(|H| - 1)

new curves in the cycle (an additional (|H| - 1) at each node), giving a total of
NIHIIITIHI in the cycle of the resolution YT. This proves (d).
As elliptic curves over the function field k(C) of C, both X and YT are isogenous;

therefore they cover each other (birationally) and so must have the same p..
This implies that they have the same Euler characteristic x, and therefore

the same Euler number e. This proves (e), and now (f) follows by applying
(1.2) to YT . D

We will say that a cyclic subgroup H of T such that T/H is cyclic is cyclic and
cocyclic in T, and we will abbreviate this as "c&#x26;c". For each nontrivial cyclic and
cocyclic subgroup H of T, let iT,H be the number of nodes of singular fibers of
X with isotropy group H under the action of T. Note that, for example i{0},{0} = e.

PROPOSITION 2.2. Let 03C0:X~C be a smooth minimal semistable elliptic
surface, and let T be a group of torsion sections of X. Then

(b) For each H E T cyclic and cocyclic,

Proof. Statement (a) is simply Lemma 2.3 (f), the sum being organized over
the subgroups instead of the singular fibers. The second statement is obtained by
noticing that a node of a singular fiber of X is fixed by H under the induced
H-action if and only if it is fixed by a subgroup of T containing H, under the full
T-action. ~

We are finally in a position to illustrate the technique of this article; at this
point we can analyze the case when rc has a section of order p, where p is a prime.
Let T be a subgroup of MW of order p. The only relevant isotropy numbers in this
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case are iT,T and iT,{0}, which by the previous Proposition satisfy

Solving this gives iT,{0} = 12Xpl(p + 1) and iT,T = 12X/(p + 1). We immediately
see a divisibility condition: p + 1 must divide 12x. However, we can say much
more. Every singular In fiber has isotropy either {0} of T; those with trivial
isotropy {0} must have n divisible by p, by Lemma 2.2(e). For fixed x, one
maximizes the number of singular fibers s by having iT,T fibers of type I1 with
isotropy T and iT,{0}/p fibers of type 7p with isotropy {0}. Hence the maximum
number of singular fibers is iT,T + iT,{0}/p = 24XI(p + 1): s  2e/(p + 1).
Combining this upper bound with the lower bound of Proposition 1.6. we see

that

if there is p-torsion in the Mordell-Weil group.
Statement 2.5 is the prototype of the conditions obtained by assuming a certain

torsion subgroup T of MW. Without stopping to make a complete analysis at this
time, let us merely draw the easy conclusions possible from (2.5).

COROLLARY 2.6. Let 03C0: X ~ C be a smooth minimal semistable elliptic surface,
and assume that there is p-torsion in MW. Then p + 1|12~.
Moreover:

Note that if g = 0 and x = 1, if there is 5-torsion in MW, we must have 2 Il
fibers and 2 I5 fibers; this is a rational extremal fibration (see [M P]) and the
surface is determined uniquely.
As the reader can no doubt imagine, one can play many games with the

inequality (2.5); we have just given several consequences in (2.6). For example, if
a rational elliptic surface (g = 0 and X = 1) has an infinite Mordell-Weil group
(R  1) then p = 2 or 3 is all that is allowed. If a K3 elliptic surface (g = 0 and
x = 2) has R  1 or the Picard number p is not maximal ( p = 20) then p = 2, 3,
or 5. ( In fact the existence of 7-torsion in MW for a K 3 elliptic surface determines
the surface.)
The simpleminded discussion above illustrates the basis ideas of the paper and

gives we think the essential flavor of the same. We fear however that the simplicity



256

is somewhat obscured by the rather formidable technicalities of computing the
iT,H’s in the next section.

Observe though that the expression 2/(p + 1) denotes some kind of "size" for
the group 7L/ p7L. ( In an inverse way, the "bigger" the group the smaller the "size").
The basic effort of this paper is to find the right definition of "size" for a group,
given that we need only to compare this with the estimate of Proposition 1.6 to
draw the conclusions we seek.

Essentially, we want the "size" of such a group T to be the upper bound on the
number of singular fibers which a smooth minimal semistable elliptic surface may
have, if it admits T as a group of torsion sections. Since this upper bound depends
linearly on the Euler number e, we will in fact divide this upper bound by e to get
our definition of "size". In anticipation of this, let us define, for each cyclic and
cocyclic subgroup H of T, the number ’00FFT,H = iT,H/e; this is the fraction of the
nodes which have isotropy H under the T - action, and a priori depends not only
on T and H but also on the representation of T as a group of torsion sections of X.

Let then T be a finite abelian group of length at most 2. Assume that T occurs
as a group of torsion sections of a smooth minimal semistable elliptic surface with
Euler number e. Let iT,H be the number of nodes of fibers with isotropy a given
cyclic and cocyclic subgroup H of T, as above. A fiber of type ln with isotropy
H must have n divisible by 1 TIHI by Lemma 2.2(e), so that for fixed e, the

maximum number of singular fibers would be achieved when every singular fiber
with isotropy H is of type I|T/H|. This leads to a maximum of 03A3H iT,H/|T/H|
singular fibers.
Re-expressing this in terms of the y’s leads us to the following:

DEFINITION 2.7. Let T be a finite abelian group of length at most 2. Define the
size of T(= Size(T» by

From the analysis above and the definition of the y’s, we have the following
upper bound for the number of singular fibers s:

PROPOSITION 2.2. Let n: X ~ C be a smooth minimal semistable elliptic
surface with s singular, fibers and Euler number e. Assume that X has a torsion group
of sections T. Then

3. The computation of Size(T)

It is our job in this section to prove that Size (T) is well-defined (i.e., that the 7T,H’S
are determined by T alone, not by T’s representation as a group of torsion
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sections) and to calculate Size (T). Note that the analysis of the previous section
shows that Size(Z/pZ) = 21(p + 1) for a prime p. Also, we have Size(fOI) = 1.

If G is any group, we denote by Gp its Sylow-p-subgroup.
If T is a cyclic group, then of course every subgroup of T is cyclic and cocyclic.

We need to understand the length 2 situation. Since H is cyclic and cocyclic in Tif
and only if Hp is in Tp for each prime p, we need only analyze the p-group case.

LEMMA 3.1. Let T~ Z/pm Z x Z/pnZ, with 1  m  n. Then:
(a) Every cyclic and cocyclic subgroup H of T has order pk, with m  k  n.
(b) Assume that m  n. Then the number of cyclic and cocyclic subgroups of T of

order pk is pm if k = m or k = n, and pm-1(p - 1) f m  k  n.

(c) Assume that m = n. Then the number of cyclic and cocyclic subgroups of T of
order pm is pm-1 (p + 1).

(d) There are no inclusions among the cyclic and cocyclic subgroups of T.
Proof. Statement (a) is clear: since p" is the largest order for an element of T, it is

the largest order of both an element of H (forcing |H|  pn) and an element of T/H
(forcing |H|  pm) . Let H be cyclic and cocyclic, generated by (pr a, pS b), with a and
b prime to p. Then T/H can be identified with the cokernel of the map from Z3 to

7L2 given by the matrix p 0n pra . The g.c.d. of the entries is min(r,s) and
the g.c.d. of the determinants of the 2 x 2 minors is pmin(m+s,n+r), so that
T/H ’" Z/pmin(r,s) x Z/ pmin(m + s,n + r). Hence H is cocyclic if and only if min(r, s) =
0, i.e., either r = 0 or s = 0.
Assume then that m =F n. If |H| = pm, then r = 0, and H will contain a unique

element of the form (1, 03B2), for some fi E Z/pn; such H’s are classified by this fi,
which can be any multiple of pn-m ; there are pm of these. If IHI = pn, then s = 0,
then H contains a unique element of the form (03B1,1); such H’s are classified by this
a, which may be any element of Z/pm. Finally assume that |H| = pk with
m  k  n; this forces r = 0 again, and note that H contains a unique element of
the form (a, pn-k); any a prime to p will do here. There are pm -1 (p - 1) such a’s,
proving (b).
Assume that m = n ; then H must have order pm, and can be generated by

a unique element of the form (03B1,1) or one of the form (1, fi) or both. There are pm
possible elements of the form (03B1,1) to use, all giving different H’s. Those generated
by an element of the form (1, 03B2) can also be generated by an(03B1,1) if and only if Pis
a unit mod p; therefore there are pm - ’ new subgroups of order pm generated by the
(1, 03B2)’s with p 1 fi not yet counted. This gives a total of pm + pm -1 = pm -1 (p + 1) as
claimed.

The last statement is obvious now if m = n, so assume m  n. If H1 ~ H2, then
Hl must be generated by an element of the form (1, 03B2), by the above argument;
such a generator cannot be the multiple (by p) of any other element of T, hence it
cannot be a multiple of the supposed generator of H2 . Therefore H cannot be
properly contained in H2. 0
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Let us now turn to the problem of showing that the yT,H’s are well-defined.
Rewriting the equations of Proposition 2.4 in terms of the y’s, we have

and

Note that e has disappeared from these equations, and the following suffices to
prove that the y’s are well-defined.

PROPOSITION 3.4. The above system of equations is of full rank, and so
determines the numbers YT,H.
Proof We work by induction on 1 TI. We have already seen that these

equations determine the y’s in case T is trivial or T is cyclic of prime order. Let
03C3(T) be the number of cyclic and cocyclic subgroups of T; then we have in (3.2)
and (3.3) 1 + 03C3(T) equations in 03C3(T) unknowns.
Assume first that T is not cyclic. Then in fact the equations of (3.3) are of full

rank, and determine the y’s by induction. To prove this, we work by descending
induction through the lattice of cyclic and cocyclic subgroups of T; note that
none of these is T by assumption. If H is a maximal such subgroup, one of the
equations of(3.3) is simply yT,x = YH,H, and so 03B3T,H is determined by the induction
on |T|. Assume now that H is any cyclic and cocyclic subgroup, not maximal, and
that yT,G is known for all cyclic and cocyclic subgroups of T larger than H. Then
all the terms of the equation 7H,jl = 03A3H~G~T03B3T,G are known except YT,H, and we
are done by induction in this case.
Assume now that T is cyclic of order N, and write 03B3M for Y T,ZIMZ when M divides

N. One of the equations of (3.3) isjust YN = yN, and so is useless; we must really use
(3.2) in this case. However the argument of the noncyclic case applies here, to the
extent that all the YM’S can be solved for in terms ofYN’ using the equations of (3.3)
are of full rank, and so to finish it suffices to show that (3.2) is independent of them.
For this we may consider the associated homogeneous system of equations

and
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(introducing new variables gM to avoid confusion with the y’s). We have shown
that the equations of (3.6) are of full rank, and we need to show that (3.5) is
independent of them. For this we need only demonstrate one solution of (3.6)
which is not a solution of (3.5). It is a standard fact from elementary number
theory that the numbers

satisfy (3.6), where y is the Môbius function:

Let pl, ... , pr be the distinct prime divisors of N, and let D = 1-Ip,. Then plugging
these gm’s into (3.5) gives

which is clearly not zero. This proves that the original system is of full rank, and
completes the proof of the Proposition. 0

Our next task is to compute the numbers yT,H explicitly. We are fortunate that
these numbers turn out to be multiplicative in the following sense:

LEMMA 3.7.

Proof. Simply note that the equations (3.2) and (3.3) which determine the y’s
are themselves multiplicative, i.e., if we make the formal substitution of TIp 1’T p,Hp
for yT,H in these equations, both sides factor completely into the corresponding
equations for yTp,Hp. Therefore, if the yTp,Hp satisfy their defining equations, then
the above definition of 03B3T,H will satisfy the (3.2) and (3.3). By the previous
Proposition, the system has a unique solution, so this must be it. 0

The argument would be somewhat cleaner if we could prove (3.7) from first
principles, and proceed from there; we have not been able to do that. If we
interpret yT,H as the probability of a node having isotropy group H, then (3.7) says
that if two subgroups have relatively prime order, then having them as isotropy
groups are independent events.
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In any case to compute the yT,H’s, we need only compute for T éé 7L/pn7L and
T ~ 7L/pm7L x Z/pnZ, for 1  m  n. This is now a straightforward computation:

LEMMA 3.8. Suppose that 1  m  n.

Proof. We need to show that the above y’s satisfy (3.2) and (3.3). Assume first
that T L--- Z/PnZ. First evaluate (3.2):

as required.
To verify (3.3), fix 1 between 0 and n. If 1 = 0, we have

If 1 &#x3E; 0, then

This proves that the formulas of (a) are correct.
Since there are no inclusions among any cyclic and cocyclic subgroups in
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case (b) by Lemma 3.1(d), we have YT,Z1,11 = 03B3Z/pkZ,Z/pkZ = 1/p k(l + llp) by
part (a). D

We are finally ready to compute the size of a group T.

THEOREM 3.9.

(Here vp(k) is the p-order of k, i.e., the largest power of p dividing k.)
Proof. Since the y’s are multiplicative, we see by inspecting the Definition 2.7 of

Size(T) that Size is multiplicative also, i.e., Size( T ) = IIp Size( Tp ). Since the above
formula is multiplicative too, it suffices to verify the formula above for the

p-groups.
First assume T ~ Z/pnZ. Then

as the formula states.

Next assume that T &#x26;é Z/pmZ x 7L/pn7L with 1  m  n. Then

which is the above.
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Finally assume that T -- (Z/pn)2. Then

again agreeing with the formula. ~

Note that this agrees with our previous calculation for Z/pZ. Relating this to
the work of Cox and Parry [C-P], note that

where voo is the number of cusps and y is the index in PSL(2, Z) of the group
r M(N) = {y E SL(2, Z)| 03B3 ~ (10 b0) mod N and b ~ 0 mod MI.
We have the following special case for the computation of Size( T) in the case of

p-groups:

4. Applications

By comparing the lower bound given in (1.6) with the upper bound of (2.8) for the
number of singular fibers s, we obtain the following inequality on which all of the
rest of our calculations are based:

THEOREM 4.1. Let 03C0: X ~ C be a smooth minimal semistable elliptic surface,
and assume that 03C0 admits T as a group of torsion sections. Then

where g is the genus of C, X is the Euler characteristic of X, and R is the rank of the
Mordell-Weil group of sections.
The formula (3.10) for Size shows that the above theorem is equivalent to the

inequality given in Proposition 1.1 of [C]. However, we feel that the above
formulation is easier to work with than that version.

There is one more ingredient to bring to bear on the numerology of this
problem, and that is a divisibility condition, which we believe is a new result.
Recall that the integers iT,H = 12~03B3T,H are the numbers of nodes with isotropy
group H, and that they occur in singular fibers whose sizes are multiples of |T/H|,
by Lemma 2.2(e). Therefore the numbers iT,H/[T/H| = 12~202203B3T,H/T/H| are

integers for each cyclic and cocyclic subgroup H of T. We can express this more
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efHciently by defining numbers Â Tp for a finite abelian p-group Tp of length at
most 2 as

If T is not a p-group, define 03BBT = 03A0p03BBTp.
PROPOSITION 4.2. Assume an elliptic surface with Euler characteristic X admits
T as a torsion group of sections. Then ÀT divides 12X.

Proof. We’ve remarked above that 12~202203B3T,H/|T/H| is an integer for every cyclic
and cocyclic H in T; note that this product splits as 12X - 202203A0p03B3Tp,Hp|Hp|/| TPI. Using
Lemma 3.8 we see that

If Tp is not cyclic or if Tp ~ Z/pZ, this is exactly Àçj for every H. If Tp ~ Z/pnZ
with n  2, then both factors above appear in the product (for different H’s)
and so the difference, which is ÂTpl, can also be used in the product; using the
difference is stronger than using either one, so we conclude that 12~03A003BB-1Tp =
12XIÂT E Z. ri

Propositions 4.1 and 4.2 exhaust the theoretical content of this article. We
would like to conclude by applying these conditions to classifying the possible
Mordell-Weil groups of semistable elliptic surfaces in several situations. We will
first assume that the base curve has genus g = 0, i.e., C ~ CP1. In this case (4.1 )
can be written as

which implies that

since R  0 and ~  1. There are a finite number of T’s such that (4.4) is satisfied
for it and all of its subgroups, and for each of those T’s, one has a divisibility
condition on x given by (4.2), and a bound on R given by (4.3); note that (4.3) also
gives a lower bound on x. A table of this information is given below, followed by
the proofs.
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(4.5) Table of possible Mordell-Weill groups when genus(C) = 0.

Note that this list of 19 torsion groups is exactly the list of Cox and Parry [C-P,
Theorem 5.1]. If we restrict this list to the groups allowed when x = 1, then we
recover exactly the list of Cox for Mordell-Weil groups of rational elliptic
surfaces [C, Proposition 2.1]. If we restrict to those allowed when x = 2, then
we obtain the list of 65 Mordell-Weil groups possible for K3 elliptic surfaces
[C, Theorem 2.2]. In [C] and [C-P] it is shown that all these groups can occur
in these cases, so the method of this paper appears to be quite sharp.

Let us briefly sketch the proof that the table above is complete. We leave to the
reader the computations of Size(T) and ÂT, and the deductions re x and R, for
these 19 groups; we will only show that no other are possible.
We have already seen that T can have p-parts for p = 2, 3, 5 and 7 only, by

Corollary 2.6. Since Size(Z/p2Z) = (3p - 1)/p2(p + 1), we see that Zj25Z and
Z/49Z are ruled out; Sizc(Z/27Z) = 5 54 and Size(Z/16Z) = 7 48, so these are also
ruled out, and hence no cyclic p-groups other than those of the table can occur.

Size (Z/pZ x Z/pZ) = 1/p, so p = 7 is not allowed here. Since Size(Z/pZ x
Z/p2Z) = 2/(p + pl), only p = 2 is allowed; for p = 2, any non-cyclic group of
order 16 is OK, but the non-cyclic groups of order 32 fail the Size test

(Z/2Z x Z/16Z fails because Z/16Z did, and Size(Z/4Z x Zj8Z) = 6), so no other
noncyclic p-groups other than those of the table occur.
For the non-p-groups, we must have to analyze the combinations of the

allowed p-groups and this is particularly simple to do since Size is multiplicative.
We leave to the reader to check that the 19 groups above exhausts the

possibilities.
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Let us turn our attention to the case when the base curve C has genus g = 1. In

this case (4.1) can be written as

and so we require Size(T)  1 6, since R  0 and ~  1. We see that any group
which occurs for g = 0 also can occur for g = 1, and in fact the only "new" groups
which occur have Size = 1 6 exactly. We list these groups in Table 4.8 below.

Before doing so, note that in general (4.1) can be written as

and so for any genus g, if Size( T)  1 6, then T cannot occur for large x. Therefore
the list of groups which can occur in genus 0 and 1 (i.e., those T with Size(T)  1 6)
are also the only groups which can occur for any genus and arbitrarily large x.
This is the asymptotic analysis alluded to in the introduction; although a result of
this type can be obtained from modular surface considerations, we believe that
this approach is new.
The reader should at this point recall Corollary 2.6, noting that if ~ &#x3E; 7g - 6,

then the only primes p dividing |T| are 2, 3, 5, 7, and 11; This is the first precise case
of the asymptotic results.

(4.8) Table of torsion groups possible if g = 1, not possible if g = 0.
All these groups below have Size(T) = 6. If g = 1, then R = 0.

As a final example of the asymptotic analysis, we offer the following, which is
(as we shall see below) a sharpening of a result of Hindry and Silverman.

PREPOSITION 4.9. Suppose ~  2g - 2. Then Size(T)  1 2.
Proof. We may assume that S = Size(T) is less than 6 and that g  2. In this

case 12S - 2  0, so (12S - 2)~  (12S - 2)(2g - 2). Hence

which forces 12S - 1  0 since g  2. ~
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One can readily list all the groups T with Size(T)  2, and we present the
result below; actually to save space we only list those groups T with 1 6 &#x3E;

Size(T)  2, in light of the previous tables.

(4.10) Table of groups T with 1 6 &#x3E; Size(T)  1 12.
Notation: (N) denotes Z/N, (M, N) denotes Z/M x Z/N.

(13), (17), (18), (19), (20), (21), (22), (23), (24), (26), (28), (2.14),
(30), (33), (35), (36), (2,18), (3,12), (40), (2, 20), (2, 22), (3,15),
(2, 24), (4,12), (5,10), (3,18), (2, 28), (2, 30), (3, 21), (3, 24), (6,12),
(5,15), (4, 20), (4, 24), (7,14), (5, 20), (10,10), (6,18), (12,12),
The groups in Table 4.10 are listed by increasing order, and inspecting the

previous tables of groups with Size at least i, we draw the following corollary:

This last statement is Hindry and Silverman’s result [H-S, p. 440].
The last application of this section is a bound on the rank R of the

Mordell-Weil group obtained by Cox [C, Corollary 1.3]. The proof, using our
method, follows directly from (4.7).

PROPOSITON 4.12. Suppose Size(T)  6 and 7t: X ~ C admits T as a group of
torsion sections. Then R  2g - 2, where g = genus(C).
We would finally like to make some brief remarks concerning the existence of

the Mordell-Weil groups listed above. Recall that the Tables 4.5 and 4.8 have

been previously worked out by David Cox [C] thus we find it unnecessary to
duplicate the existence work here. It should be remarked however that as

a spin-off from the exhaustive list of all possible elliptic fibrations on a rational
surface worked out by one of the present authors [P], the list of Mordell-Weil
groups come more or less for free. Also most of the torsion groups in the K3 case

appear in the two authors forthcoming paper [M-P 2]
The more subtle things occur for torsion groups only existing over non-rational

base. One should remark that it is enough to exhibit those for the elliptic base, as
the other manifestations can be gotten by "generic" base changes (all genera
except of course the rational can occur as coverings of elliptic curves).
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