Some diophantine equations with many solutions
Compositio Mathematica, Volume 66 (1988) no. 1, pp. 37-56.
@article{CM_1988__66_1_37_0,
     author = {Erd\"os, P. and Steward, C. L. and Tijdeman, R.},
     title = {Some diophantine equations with many solutions},
     journal = {Compositio Mathematica},
     pages = {37--56},
     publisher = {Kluwer Academic Publishers},
     volume = {66},
     number = {1},
     year = {1988},
     mrnumber = {937987},
     zbl = {0639.10014},
     language = {en},
     url = {http://www.numdam.org/item/CM_1988__66_1_37_0/}
}
TY  - JOUR
AU  - Erdös, P.
AU  - Steward, C. L.
AU  - Tijdeman, R.
TI  - Some diophantine equations with many solutions
JO  - Compositio Mathematica
PY  - 1988
SP  - 37
EP  - 56
VL  - 66
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1988__66_1_37_0/
LA  - en
ID  - CM_1988__66_1_37_0
ER  - 
%0 Journal Article
%A Erdös, P.
%A Steward, C. L.
%A Tijdeman, R.
%T Some diophantine equations with many solutions
%J Compositio Mathematica
%D 1988
%P 37-56
%V 66
%N 1
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1988__66_1_37_0/
%G en
%F CM_1988__66_1_37_0
Erdös, P.; Steward, C. L.; Tijdeman, R. Some diophantine equations with many solutions. Compositio Mathematica, Volume 66 (1988) no. 1, pp. 37-56. http://www.numdam.org/item/CM_1988__66_1_37_0/

1 A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1967/68) 173-191. | MR | Zbl

2 A. Balog and A. Sárközy, On sums of sequences of integers, II, Acta Math. Hungar. 44 (1984) 169-179. | MR | Zbl

3 E. Bombieri and W.M. Schmidt,On Thue's equation, Invent. Math. 88 (1987) 69-81. | MR | Zbl

4 N.G. De Bruijn, The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15 (1951) 25-32. | MR | Zbl

5 N.G. De Bruijn, On the number of positive integers ≤ x and free of prime factors > y, Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951) 50-60. | Zbl

6 A.A. Buchstab, On those numbers in an arithmetical progression all prime factors of which are small in order of magnitude (Russian), Dokl. Akad. Nauk. SSSR 67 (1949) 5-8. | MR

7 E.R. Canfield, P. Erdös and C. Pomerance, On a problem of Oppenheim concerning 'Factorisatio Numerorum', J. Number Th. 17 (1983) 1-28. | MR | Zbl

8 J.-M.-F. Chamayou, A probabilistic approach to a differential-difference equation arising in analytic number theory, Math. Comp. 27 (1973) 197-203. | MR | Zbl

9 J. Coates, An effective p-adic analogue of a theorem of Thue, Acta Arith. 15 (1968/69) 279-305. | MR | Zbl

10 J. Coates, An effective p-adic analogue of a theorem of Thue II, The greatest prime factor of a binary form, Acta Arith. 16 (1969/70) 399-412. | MR | Zbl

11 H. Davenport and K.F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955) 160-167. | MR | Zbl

12 K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astr. Fys. 22 (1930) A10, 1-14. | JFM

13 P. Erdös, The difference of consecutive primes, Duke Math. J. 6 (1940) 438-441. | JFM | MR | Zbl

14 P. Erdös, Problems in number theory and combinatorics, Proc. 6th Manitoba Conference on Numerical Mathematics, Congress Numer. 18, Utilitas Math., Winnipeg, Man. (1977) 35-58. | MR | Zbl

15 P. Erdös and P. Turán, On a problem in the elementary theory of numbers, Amer. Math. Monthly 41 (1934) 608-611. | JFM | MR | Zbl

16 J.-H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984) 561-584. | MR | Zbl

17 J.-H. Evertse and K. Györy, On unit equations and decomposable form equations, J. reine angew. Math. 358 (1985) 6-19. | MR | Zbl

18 J.-H. Evertse, K. Györy, C.L. Stewart and R. Tijdeman, S-unit equations and their applications, New Advances in Transcendence Theory (to appear). | MR | Zbl

19 J.-H. Evertse, K. Györy, C.L. Stewart and R. Tijdeman, On S-unit equations in two unknowns, Invent. Math. (to appear). | MR | Zbl

20 K. Györy, Explicit upper bounds for the solutions of some Diophantine equations, Ann. Acad. Sc. Fenn. Ser. AI 5 (1980) 3-12. | MR | Zbl

21 K. Györy and Z.Z. Papp, Effective estimates for the integer solutions of norm form and discriminant form equations, Publ. Math. Debrecen 25 (1978) 311-325. | MR | Zbl

22 K. Györy and Z.Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, Studies in Pure Math. to the Memory of Paul Turán, Birkhäuser, Basel, pp. 245-257. | MR | Zbl

23 K. Györy, C.L. Stewart and R. Tijdeman, On prime factors of sums of integers I, Comp. Math. 59 (1986) 81-88. | Numdam | MR | Zbl

24 K. Györy, C.L. Stewart and R. Tijdeman, On prime factors of sums of integers III, Acta Arith. (to appear). | MR | Zbl

25 G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th edn., Oxford (1979). | MR | Zbl

26 A.E. Ingham, On the difference between consecutive primes, Quarterly J. Math. Oxford 8 (1937) 255-266. | JFM | Zbl

27 S. Lang, Integral points on curves, Publ. Math. I.H.E.S. 6 (1960) 27-43. | Numdam | MR | Zbl

28 D.J. Lewis and K. Mahler, On the representations of integers by binary forms, Acta Arith. 6 (1960) 333-363. | MR | Zbl

29 J Van De Lune and E. Wattel, On the numerical solution of a differential - difference equation arising in analytic number theory, Math. Comp. 23 (1969) 417-421. | MR | Zbl

30 K. Mahler, Zur Approximation algebraischer Zahlen, I: Über den grössten Primteiler binärer Formen, Math. Ann. 107 (1933) 691-730. | JFM | MR | Zbl

31 K. Mahler, Zur Approximation algebraischer Zahlen, II: Über die Anzahl der Darstellungen grösser Zahlen durch binäre Formen, Math. Ann. 108 (1933) 37-55. | JFM | MR | Zbl

32 K. Mahler, On the lattice points on curves of genus 1, Proc. London Math. Soc. (2) 39 (1935) 431-466. | JFM | Zbl

33 K. Mahler, On Thue's equation, Math. Scand. 55 (1984) 188-200. | Zbl

34 H. Maier, Chains of large gaps between consecutive primes, Adv. in Math. 39 (1981) 257-269. | MR | Zbl

35 K.K. Norton, Numbers with small prime factors, and the least k-th power non-residue, Memoirs of the American Math. Soc. 106 (1971). | MR | Zbl

36 A. Sárközy and C.L. Stewart, On divisors of sums of integers I, Acta Math. Hungar. 48 (1986) 147-154. | MR | Zbl

37 A. Sárközy and C.L. Stewart, On divisors of sums of integers II, J. reine angew. Math. 365 (1986) 171-191. | MR | Zbl

38 J.H. Silverman, Integer points and the rank of Thue elliptic curves, Invent. Math. 66 (1982) 395-404. | MR | Zbl

39 J.H. Silverman, Representations of integers by binary forms and the rank of the Mordell-Weil group, Invent. Math. 74 (1983) 281-292. | MR | Zbl

40 J.H. Silverman, Integer points on curves of genus 1, J. London Math. Soc. 28 (1983) 1-7. | MR | Zbl

41 J.H. Silverman, Quantitative results in Diophantine geometry, Preprint, M.I.T. (1984).

42 V.G. Sprindzhuk, Estimation of the solutions of the Thue equation (Russian), Izv. Akad. Nauk. SSSR Ser. Mat. 36 (1972) 712-741. | MR

43 C.L. Stewart,, Some remarks on prime divisors of integers, Seminaire de Théorie des Nombres, Paris 1984-85, Progress in Math. 63, Birkhauser, Boston, etc. (1986) 217-223. | MR | Zbl

44 C.L. Stewart and R. Tijdeman, On prime factors of sums of integers II, Diophantine Analysis, LMS Lecture Notes 109, Cambridge Univ. Press (1986) 83-98. | MR | Zbl