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1. We shall construct a domain f2 in R2x,t’ whose boundary is given by the graph
of a Lip 2 function x = F(t), so that on an the parabolic measure 03C9 and the

adjoint parabolic measure co* are concentrated on two disjoint sets, whose
projections onto the t-axis have Hausdorff dimensions strictly less than 1.

We do not known how small the dimensions can be made in the example.
But the dimensions must be at least -1, by a theorem of Taylor and Watson
[8; p. 337], which states that a set E on a Lip 2 curve x = F(t) has heat
capacity zero if and only if its projection onto the t-axis has zero 2 -capacity.

In a previous paper [3], we constructed a Lip 2 domain {x &#x3E; F(t)l
satisfying the weaker property that the projections of supports of (O and cv*
have zero 1-dimensional Hausdorff measure. There are two technical

improvements made here: an explicit construction of F(t) is given and shown
to satisfy an explicit inequality in class Lip -L, and a more careful estimation
of parabolic measure is necessary. F is a lacunary sum but the gaps are not
too large to obtain an estimate of the dimension. thé size of the gaps is
critical in obtaining an explicit estimate of F in Lip 1 2.

Because the only diffeomorphisms that preserve the solutions of the heat
equation ((~2/~x2) - (~/~t))u = 0 are {(x, t) - (ax + b, a2 t + c)l, [2],
domains S2 = {x &#x3E; f(t)}, with Lip 2 boundary x = f(t) are very natural for
studying solutions of the heat equation. It follows from theorems of Pet-
rowsky [7] that these domains are Dirichlet regular for the solutions of the
heat equation.
For a Borel set E c ~03A9, we denote by 03C9(x,t) (E) (or 03C9*(x,t (E)) the parabolic

measure (or the adjoint parabolic measure) of E with respect to S2, i.e.,
the solution of the heat equation (or the adjoint heat equation) on 03A9

with boundary value 1 on E, 0 on ~03A9BE, in the Brelot-Perron-Wiener
sense.

We say that co is supported on a Borel set scan provided that
03C9(x,t)(~03A9BS) = 0 for every (x, t) E Q; and similarly for 03C9*.
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We say that u is a parabolic (or adjoint parabolic) function provided that

In the case of Laplace’s equation, on the boundary of a Jordan domain
in R2, the harmonic measure is concentrated on a set of Hausdorff dimen-
sion 1 ; and any set of Hausdorff dimension less than 1 has zero harmonic
measure [6]. For the heat equation, we conjecture that the parabolic measure
on the boundary of a Jordan domain is supported on a set of "parabolic
dimension" at most 2. We refer to [8] for the definition of parabolic dimension,
and recall that the parabolic dimension of the line {t = 01 is 1, of the line

{x = at + bl is 2, and of R2 is 3.
The parabolic measure for {x &#x3E; 01 is supported only by sets of full linear

measure, therefore of parabolic dimension exactly 2. For the example to be
constructed, the parabolic measure is supported by a subset of the graph
{x = F(t)} of parabolic dimension  2.

2. A. function of class Lip 2

Proof. To prove (a) we observe that

We obtain each term inside the minimum by using one of the inequalities on
h. The numbers n = 1, 2, 3, ... are divided into three groups.

(i) N-n  03B5|t - s |1/2. Using N-n in the minimum, and N  4, we see that
the contribution from this group is at most 281t - sI1/2N(N - 1)-1 
303B5|t - S |1/2.
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(ii) Nn03B5-1/2|t - s|  81 t - s|1/2. The same estimate applies, if we use
the third term in the minimum.

(iii) 03B5|t - s|1/2  N-"  03B5-3/2|t - s|1/2.
There can be at most oriè solution n to this pair of inequalities: if n1  n2
and both are solutions, then (n2 - n1) log N  log 03B5-5/2, so n2 - n,  1 or

n2 = n1. The contribution from (iii) is thus at most 21 t - s |1/2.

Adding up for (i), (ii), (iii) gives (a).
In view of (a), inequality (b) is evident.
To prove (c), with s = 1:, we observe that n = k belongs to (iii).

However, a more precise estimate can be given: N -k h(N 2k t) - N-kh(N2k03C4) =
N -k h(N 2kt) = (t - 03C4)1/2. The total contribution from (i) and (ii) is at most
603B5(t - r)1/2. Since 6e  1/2, (c) follows.

3. Estimâtes of parabolic measure

Suppose that x = F(t) is Lip -1 on (-00, oo) with |F(t) - F(s)| 
Mit - SI1/2. For a &#x3E; 0, we denote by 0394(t, a) = {(F(s), s): Is - tl |  al and
A(t, a) = (F(t) + 2MJa, t + 2a). Lemma 1.4 in [5] can be restated as
follows.

LEMMA 2. There is a positive constant C(M) depending on M only, so that
if u is a nonegative parabolic function on Q ~ {x &#x3E; F(t)l, vanishing on
{(F(s), S): |s - t| &#x3E; al641, then

We may view Lemma 2 as a quantitative version of the Harnack inequality.
Given 0  e  10-4 and N  03B5-4, let f(t) be the function defined in

Lemma 1, F(t) = 22f(t) and Q = {x &#x3E; F(t)l. It follows from (a) in
Lemma 1 that |F(t) - F(s) 1  9| t - s |1/2 for all s, t. We fix a reference

point (100, 100), and denote W(lOO,lOO) by w.

LEMMA 3. There is an absolute constant Co &#x3E; 0, so that whenever 03C4 = m N-2k
with m = 0, 1, ... , N2k - 1,

we have 03C9(Ek)  c. e’/2 w(lk)’
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Proof For a fixed L = m N-2k, we let A = (F(t) + 5N-k , L + 1 8N-2k),
Jk = {(F(t), t): 0  t - 03C4  1 4 N-2k}, and Lk = {(F(t), t):|t - 03C4|  1 16N-2k}.
Applying Lemma 2 with M = 10, a = /6 N-2k and u = 03C9(Ek), we obtain

where C, is an absolute constant.
To estimate wA(Ek)’ we define 03A6 to be the transformation: (x, t) ~ (20J£ +

(x - F(03C4)Nk, e + (t - !)N2k). Hence 03A6(A) = (20J£ + 5, e + 1 8); and
because of (b) and (c),

Since 03A6 preserves parabolic functions, u(Q) - 03C903A6-1(Q)(Ek) is the parabolic
measure of 03A6(Ek) with respect to the domain 03A6(03A9), and u(03A6(A)) = COA (Ek ).
Because u = 0 on ~03A6(03A9) n {t  03B5}, we have u = 0 on 03A6(03A9) n {t = 03B5}. Let

which is parabolic for t &#x3E; 0, and is positive when x &#x3E; 2t. When (x, t) e
03A6(Ek), K(x, t)  c203B5-3/2 for some absolute constant c2 &#x3E; 0. Applying the
maximum principle to c-12 03B53/2 K and u over the region 03A6(03A9 ~ {03B5  t  03B5 + 1 4},
we have

where C3 is an absolute constant. Since 03C9A(Ek) = u(03A6(A)), we conclude the
lemma.

REMARK. If we choose x = Bf(t), with B &#x3E; 22, in the construction ofQ,
the domain has a bigger Lip 2 constant. We need then to use higher partials
(ê"lôr) W(x, t; 0,, 0) as the comparison functions in estimation and obtain
03C9(Ek)  CBf/1Bw(lk) in the lemma with CB &#x3E; 0 and QB &#x3E; 3/2 depending on B.
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4. Conclusion

LEMMA 4. Suppose that E is the reciprocal of a positive even integer with
E  min{10-4, (2c0)-2}, Co as in Lemma 3, and that N = E-4. Then there
exist sets T, T* ~ (- ~, ~) of dimension strictly less than 1, so that 03C9 and

03C9* are supported on {x = F(t): t E T} and {x = F(t): t E T*} respectively.
Moreover T and T* can be chosen to be disjoint.

Proof Because F(t) = F( - t), the conclusion for 03C9* follows from that for
cv by symmetry.

Because a set of the form {x = F(t): t ~ E}, with |E| = 0, can be written
as the union of two disjoint sets El and E2 with 03C9(E1) = 0 and 03C9*(E2) = 0
at any point in 0 [9]; we may modify T and T* to become disjoint after we
prove their existence.

Because F has period one, we need only to study the support of 03C9 v on

ao ~ {0  t  1}. We shall fix the reference point (100, 100) and denote
by 03C9 = 03C9(100,100).
An increasing sequence Ao c Al ~ A2 ~ ... of algebras of subsets of

[0, 1) is defined as follows. Ak is the algebra generated by the intervals
[2pN-2k, (2p + 2)N-2k), where p is an integer and 0  2p  N2k - 2. (Ao
is the trivial algebra). Since 2pN-2k - 2pN2 N-2k-2, we have Ak ~ Ak+1.
Let 1: = (2p + 1)N-2k as above; then the interval [03C4, 03C4 + EN-2k ) belongs to
the algebra Ak+l if (2p + 1)N-2k + EN-2k = 2qN-2k-2 defines an integer q.
Now q = N2(2p + 1 + E) = 03B5-8(2p + 1 + E), so that q is indeed an

integer. The interval [03C4, T + EN-2k ), called B( p, k), is contained in a basic
interval B( p, k) of Ak and À(B(p, k))  c003B53/2 03BB((p, k)), where À is the

normalized projection of 03C9 on [0, 1) with 03BB([0, 1)) = 1. Let Bk be the union
of the sets B( p, k), 0  p  N2k - 2; the conditional probability 03BB(Bk| Ak) 
CoE3/2.

Let h be the characteristic function of Bk. Hence gk - fk - E(fk 1 Ak)
defines an orthogonal sequence with |gk|  1. Using the orthogonality, and
Chebyshev’s inequality as in [4] we see that g2 + g4 + ... + g2, = o(r)
03BB-almost everywhere, or 1; + h + ... + f2r  coE3/2r + o(r) 03BB - a.e.

Thus for /t-almost all t, the number n(r, t) of integers k  r, such that
t E B2k , is at most CoE3/2 r + o(r). (The number Co retains the same value.) Fix
£5, with CoE3/2  £5  8/2 and let Em = {t E [0, 1): n(r, t)  £5r, for every
r  m}. Then 03BB(~~1 Em) = 1.

Let t = 03A3~1 Ck(t)N-2k be the expansion in base N2 , excepting the rational
numbers. Then t E B2k if and only if C2k (t) is odd and 0  C’2k+ 1 (t)  EN2.
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For large r, Em is contained in a union of K basic intervals of A2r, where

This may be seen as follows. Fixing m, r  m, and 0  n  ôr, we consider
those t E Em, so that n(r, t) = n, i.e., those t E Em, such that the event
t E B2k occurs for exactly n values of k, 0  k  r. These n places can be
chosen in (rn) ways. When t E B 2k the number of choices for C2k and C2k+l
is (03B5/2)N4; when t e B2k , the number of choices for C2k and C2k+ is N4 -
(03B5/2)A4. This yields the first estimation for K.

To obtain the second estimation, we use Stirling’s formula n1 ~ nne-n Jiz,
for large n. The largest term occurs when n - ôr (since b  e/2) and is
approximately N4r~r, where il = 03B4-03B4(1 - 03B4)-(1-03B4)(03B5/2)03B4(1 - (BI2)Y-b. Now
q depends on 03B4, and increases up to q = 1 when ô = e/2. Especially q  1

when ô  e/2. From the definition of Hausdorff dimension, we conclude
that ~~1 Em has dimension at most log M/log N  1. (Apart from the details
introduced to make the a-algebras match up, the method is due to Besicovitch
[1]; certain choices of successive digits in the expansion occur with a frequency
différent from - in fact, less than - the natural frequency. This pushes the
dimension below 1.)

Therefore the domain {x  F(t)l so constructed has all the properties
promised at the beginning.
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