COMPOSITIO MATHEMATICA

ROBERT KAUFMAN JANG-MEI WU Parabolic measure on domains of class Lip ¹/₂

Compositio Mathematica, tome 65, nº 2 (1988), p. 201-207 <http://www.numdam.org/item?id=CM 1988 65 2 201 0>

© Foundation Compositio Mathematica, 1988, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Parabolic measure on domains of class Lip $\frac{1}{2}$

ROBERT KAUFMAN & JANG-MEI WU

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA

Received 5 February 1987; accepted in revised form 12 August 1987

1. We shall construct a domain Ω in $\mathbb{R}^2_{x,t}$ whose boundary is given by the graph of a Lip $\frac{1}{2}$ function x = F(t), so that on $\partial \Omega$ the parabolic measure ω and the adjoint parabolic measure $\omega *$ are concentrated on two disjoint sets, whose projections onto the t-axis have Hausdorff dimensions strictly less than 1.

We do not known how small the dimensions can be made in the example. But the dimensions must be at least $\frac{1}{2}$, by a theorem of Taylor and Watson [8; p. 337], which states that a set E on a Lip $\frac{1}{2}$ curve x = F(t) has heat capacity zero if and only if its projection onto the t-axis has zero $\frac{1}{2}$ -capacity.

In a previous paper [3], we constructed a Lip $\frac{1}{2}$ domain $\{x > F(t)\}$ satisfying the weaker property that the projections of supports of ω and $\omega *$ have zero 1-dimensional Hausdorff measure. There are two technical improvements made here: an explicit construction of F(t) is given and shown to satisfy an explicit inequality in class Lip $\frac{1}{2}$, and a more careful estimation of parabolic measure is necessary. F is a lacunary sum but the gaps are not too large to obtain an estimate of the dimension. The size of the gaps is critical in obtaining an explicit estimate of F in Lip $\frac{1}{2}$.

Because the only diffeomorphisms that preserve the solutions of the heat equation $((\partial^2/\partial x^2) - (\partial/\partial t))u = 0$ are $\{(x, t) \rightarrow (ax + b, a^2t + c)\}$, [2], domains $\Omega = \{x > f(t)\}$, with Lip $\frac{1}{2}$ boundary x = f(t) are very natural for studying solutions of the heat equation. It follows from theorems of Petrowsky [7] that these domains are Dirichlet regular for the solutions of the heat equation.

For a Borel set $E \subset \partial \Omega$, we denote by $\omega^{(x,t)}(E)$ (or $\omega *^{(x,t)}(E)$) the parabolic measure (or the adjoint parabolic measure) of E with respect to Ω , i.e., the solution of the heat equation (or the adjoint heat equation) on Ω with boundary value 1 on E, 0 on $\partial \Omega \setminus E$, in the Brelot-Perron-Wiener sense.

We say that ω is supported on a Borel set $S \subset \partial \Omega$ provided that $\omega^{(x,t)}(\partial \Omega \setminus S) = 0$ for every $(x, t) \in \Omega$; and similarly for $\omega *$.

We say that u is a parabolic (or adjoint parabolic) function provided that

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0 \quad \left(\text{or } \frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial t} = 0 \right).$$

In the case of Laplace's equation, on the boundary of a Jordan domain in \mathbb{R}^2 , the harmonic measure is concentrated on a set of Hausdorff dimension 1; and any set of Hausdorff dimension less than 1 has zero harmonic measure [6]. For the heat equation, we conjecture that the parabolic measure on the boundary of a Jordan domain is supported on a set of "parabolic dimension" at most 2. We refer to [8] for the definition of parabolic dimension, and recall that the parabolic dimension of the line $\{t = 0\}$ is 1, of the line $\{x = at + b\}$ is 2, and of \mathbb{R}^2 is 3.

The parabolic measure for $\{x > 0\}$ is supported only by sets of full linear measure, therefore of parabolic dimension exactly 2. For the example to be constructed, the parabolic measure is supported by a subset of the graph $\{x = F(t)\}$ of parabolic dimension < 2.

2. A. function of class Lip $\frac{1}{2}$

LEMMA 1. Given $0 < \varepsilon < 10^{-2}$, let h(t) be a C^1 function on $(-\infty, \infty)$, periodic with period 1, so that h(0) = 0, h(t) = h(1 - t), $h(t) = t^{1/2}$ for $\varepsilon \leq t \leq \frac{1}{4}, |h| < 1, |h'| \leq 2\varepsilon^{-1/2}$, and $|h(t) - h(s)| \leq 2|t - s|^{1/2}$ for all s, t. Let $N \geq \varepsilon^{-5/2}$ be an integer and $f(t) = \Sigma_1^{\infty} N^{-n} h(N^{2n} t)$. Then (a) $|f(t) - f(s)| \leq (2 + 6\varepsilon)|t - s|^{1/2}$ for all s, t.

Let $\tau = mN^{-2k}$, with an integer $m = 0, 1, ..., N^{2k} - 1$. Then

- (b) $|f(t) f(\tau)| \leq 3\varepsilon^{1/2} N^{-k}$, whenever $0 \leq t \tau \leq \varepsilon N^{-2k}$, and
- (c) $\frac{1}{2}(t-\tau)^{1/2} \leq f(t) f(\tau) \leq \frac{3}{2}(t-\tau)^{1/2}$, whenever $\varepsilon N^{-2k} \leq t \tau \leq \frac{1}{4}N^{-2k}$.

Proof. To prove (a) we observe that

$$|f(t) - f(s)| \leq 2 \sum_{n=1}^{\infty} \min(N^{-n}, |t - s|^{1/2}, N^n \varepsilon^{-1/2} |t - s|).$$

We obtain each term inside the minimum by using one of the inequalities on h. The numbers $n = 1, 2, 3, \ldots$ are divided into three groups.

(i) $N^{-n} \leq \varepsilon |t - s|^{1/2}$. Using N^{-n} in the minimum, and $N \geq 4$, we see that the contribution from this group is at most $2\varepsilon |t - s|^{1/2}N(N - 1)^{-1} < 3\varepsilon |t - s|^{1/2}$.

(ii) $N^n \varepsilon^{-1/2} |t - s| \leq \varepsilon |t - s|^{1/2}$. The same estimate applies, if we use the third term in the minimum.

(iii) $\varepsilon |t - s|^{1/2} < N^{-n} < \varepsilon^{-3/2} |t - s|^{1/2}$.

There can be at most one solution n to this pair of inequalities: if $n_1 \le n_2$ and both are solutions, then $(n_2 - n_1) \log N < \log \varepsilon^{-5/2}$, so $n_2 - n_1 < 1$ or $n_2 = n_1$. The contribution from (iii) is thus at most $2|t - s|^{1/2}$.

Adding up for (i), (ii), (iii) gives (a). In view of (a), inequality (b) is evident. To prove (c), with $s = \tau$, we observe that n = k belongs to (iii).

However, a more precise estimate can be given: $N^{-k}h(N^{2k}t) - N^{-k}h(N^{2k}\tau) = N^{-k}h(N^{2k}t) = (t - \tau)^{1/2}$. The total contribution from (i) and (ii) is at most $6\varepsilon(t - \tau)^{1/2}$. Since $6\varepsilon < 1/2$, (c) follows.

3. Estimates of parabolic measure

Suppose that x = F(t) is Lip $\frac{1}{2}$ on $(-\infty, \infty)$ with $|F(t) - F(s)| \le M |t - s|^{1/2}$. For a > 0, we denote by $\Delta(t, a) = \{(F(s), s): |s - t| < a\}$ and $A(t, a) = (F(t) + 2M\sqrt{a}, t + 2a)$. Lemma 1.4 in [5] can be restated as follows.

LEMMA 2. There is a positive constant C(M) depending on M only, so that if u is a nonegative parabolic function on $\Omega \equiv \{x > F(t)\}$, vanishing on $\{(F(s), S): |s - t| > a/64\}$, then

$$u(y, s) \leq C(M)u(A(t, a))\omega^{(y,s)}(\Delta(t, a))$$

whenever $(y, s) \in \Omega$ satisfies |s - t| > a/8 or $|y - F(t)| \ge M\sqrt{a}$.

We may view Lemma 2 as a quantitative version of the Harnack inequality.

Given $0 < \varepsilon < 10^{-4}$ and $N \ge \varepsilon^{-4}$, let f(t) be the function defined in Lemma 1, $F(t) = 2\sqrt{2}f(t)$ and $\Omega = \{x > F(t)\}$. It follows from (a) in Lemma 1 that $|F(t) - F(s)| \le 9|t - s|^{1/2}$ for all s, t. We fix a reference point (100, 100), and denote $\omega^{(100,100)}$ by ω .

LEMMA 3. There is an absolute constant $c_0 > 0$, so that whenever $\tau = m N^{-2k}$ with $m = 0, 1, \ldots, N^{2k} - 1$,

$$I_k = \{ (F(t), t) : |t - \tau| < N^{-2k} \} and$$
$$E_k = \{ (F(t), t) : 0 < t - \tau < \varepsilon N^{-2k} \}, t \in \mathbb{N}^{-2k} \} = \{ (F(t), t) : 0 < t - \tau < \varepsilon N^{-2k} \}, t \in \mathbb{N}^{-2k} \}$$

we have $\omega(E_k) \leq c_0 \varepsilon^{3/2} \omega(I_k)$.

Proof. For a fixed $\tau = mN^{-2k}$, we let $A = (F(t) + 5N^{-k}, \tau + \frac{1}{8}N^{-2k})$, $J_k = \{(F(t), t): 0 < t - \tau < \frac{1}{4}N^{-2k}\}$, and $L_k = \{(F(t), t): |t - \tau| < \frac{1}{16}N^{-2k}\}$. Applying Lemma 2 with M = 10, $a = \frac{1}{16}N^{-2k}$ and $u = \omega(E_k)$, we obtain

$$\omega(E_k) \leqslant C_1 \omega(L_k) \omega^A(E_k) \leqslant C_1 \omega(I_k) \omega^A(E_k),$$

where C_1 is an absolute constant.

To estimate $\omega^{A}(E_{k})$, we define Φ to be the transformation: $(x, t) \rightarrow (20\sqrt{\varepsilon} + (x - F(\tau)N^{k}, \varepsilon + (t - \tau)N^{2k})$. Hence $\Phi(A) = (20\sqrt{\varepsilon} + 5, \varepsilon + \frac{1}{8})$; and because of (b) and (c),

$$\Phi(E_k) \subset \{(x, t): \varepsilon \leqslant t \leqslant 2\varepsilon, 10\sqrt{\varepsilon} \leqslant x \leqslant 30\sqrt{\varepsilon}\},\$$
$$\Phi(J_k) \subset \{(x, t): \varepsilon \leqslant t \leqslant \frac{1}{4} + \varepsilon, x > \sqrt{2t}\}.$$

Since Φ preserves parabolic functions, $u(Q) \equiv \omega^{\Phi^{-1}(Q)}(E_k)$ is the parabolic measure of $\Phi(E_k)$ with respect to the domain $\Phi(\Omega)$, and $u(\Phi(A)) = \omega^A(E_k)$. Because u = 0 on $\partial \Phi(\Omega) \cap \{t < \varepsilon\}$, we have u = 0 on $\Phi(\Omega) \cap \{t = \varepsilon\}$. Let

$$\begin{split} K(x, t) &= \frac{\partial}{\partial t} W(x, t; 0, 0) \\ &= \frac{1}{\sqrt{4\pi}} t^{-3/2} \left(\frac{x^2}{4t} - \frac{1}{2} \right) e^{-(x^2/4t)}, \quad t > 0, \end{split}$$

which is parabolic for t > 0, and is positive when $x > \sqrt{2t}$. When $(x, t) \in \Phi(E_k)$, $K(x, t) \ge c_2 \varepsilon^{-3/2}$ for some absolute constant $c_2 > 0$. Applying the maximum principle to $c_2^{-1} \varepsilon^{3/2} K$ and u over the region $\Phi(\Omega) \cap \{\varepsilon \le t \le \varepsilon + \frac{1}{4}\}$, we have

$$\begin{aligned} u(\Phi(A)) &\leq C_2^{-1} \varepsilon^{3/2} K(20\sqrt{\varepsilon} + 5, \varepsilon + \frac{1}{8}) \\ &\leq C_2^{-1} \varepsilon^{3/2} \sup \left\{ K(x, t) : 5 \leq x \leq 6, \frac{1}{8} \leq t \leq \frac{1}{4} \right\} = C_3 \varepsilon^{3/2}, \end{aligned}$$

where C_3 is an absolute constant. Since $\omega^A(E_k) = u(\Phi(A))$, we conclude the lemma.

REMARK. If we choose x = Bf(t), with $B > 2\sqrt{2}$, in the construction of Ω , the domain has a bigger Lip $\frac{1}{2}$ constant. We need then to use higher partials $(\partial^n/\partial t^n)W(x, t; 0, 0)$ as the comparison functions in estimation and obtain $\omega(E_k) \leq C_B \varepsilon^{\varrho_B} \omega(I_k)$ in the lemma with $C_B > 0$ and $\varrho_B > 3/2$ depending on B.

4. Conclusion

LEMMA 4. Suppose that ε is the reciprocal of a positive even integer with $\varepsilon < \min\{10^{-4}, (2c_0)^{-2}\}, c_0$ as in Lemma 3, and that $N = \varepsilon^{-4}$. Then there exist sets $T, T^* \subseteq (-\infty, \infty)$ of dimension strictly less than 1, so that ω and ω^* are supported on $\{x = F(t): t \in T\}$ and $\{x = F(t): t \in T^*\}$ respectively. Moreover T and T* can be chosen to be disjoint.

Proof. Because F(t) = F(-t), the conclusion for $\omega *$ follows from that for ω by symmetry.

Because a set of the form $\{x = F(t): t \in E\}$, with |E| = 0, can be written as the union of two disjoint sets E_1 and E_2 with $\omega(E_1) = 0$ and $\omega *(E_2) = 0$ at any point in Ω [9]; we may modify T and T* to become disjoint after we prove their existence.

Because F has period one, we need only to study the support of ω on $\partial \Omega \cap \{0 \le t \le 1\}$. We shall fix the reference point (100, 100) and denote by $\omega = \omega^{(100,100)}$.

An increasing sequence $A_0 \subset A_1 \subset A_2 \subset \ldots$ of algebras of subsets of [0, 1) is defined as follows. A_k is the algebra generated by the intervals $[2pN^{-2k}, (2p+2)N^{-2k})$, where p is an integer and $0 \leq 2p \leq N^{2k} - 2$. $(A_0 \otimes 2p \otimes N^{2k} - 2)N^{-2k}$, where $p \otimes 2pN^{-2k} = 2pN^2 \cdot N^{-2k-2}$, we have $A_k \subset A_{k+1}$. Let $\tau = (2p+1)N^{-2k}$ as above; then the interval $[\tau, \tau + \varepsilon N^{-2k})$ belongs to the algebra A_{k+1} if $(2p+1)N^{-2k} + \varepsilon N^{-2k} = 2qN^{-2k-2}$ defines an integer q. Now $q = N^2(2p+1+\varepsilon) = \varepsilon^{-8}(2p+1+\varepsilon)$, so that q is indeed an integer. The interval $[\tau, \tau + \varepsilon N^{-2k})$, called B(p, k), is contained in a basic interval $\tilde{B}(p, k)$ of A_k and $\lambda(B(p, k)) \leq c_0 \varepsilon^{3/2} \lambda(\tilde{B}(p, k))$, where λ is the normalized projection of ω on [0, 1) with $\lambda([0, 1)) = 1$. Let B_k be the union of the sets $B(p, k), 0 \leq p \leq N^{2k} - 2$; the conditional probability $\lambda(B_k | A_k) \leq c_0 \varepsilon^{3/2}$.

Let f_k be the characteristic function of B_k . Hence $g_k \equiv f_k - E(f_k | A_k)$ defines an orthogonal sequence with $|g_k| \leq 1$. Using the orthogonality, and Chebyshev's inequality as in [4] we see that $g_2 + g_4 + \cdots + g_{2r} = o(r)$ λ -almost everywhere, or $f_2 + f_4 + \cdots + f_{2r} \leq c_0 \varepsilon^{3/2} r + o(r) \ \lambda - a.e.$ Thus for λ -almost all t, the number n(r, t) of integers $k \leq r$, such that $t \in B_{2k}$, is at most $c_0 \varepsilon^{3/2} r + o(r)$. (The number c_0 retains the same value.) Fix δ , with $c_0 \varepsilon^{3/2} < \delta < \varepsilon/2$ and let $E_m = \{t \in [0, 1): n(r, t) \leq \delta r, \text{ for every}$ $<math>r \geq m\}$. Then $\lambda(\bigcup_1^{\infty} E_m) = 1$.

Let $t = \sum_{1}^{\infty} C_k(t) N^{-2k}$ be the expansion in base N^2 , excepting the rational numbers. Then $t \in B_{2k}$ if and only if $C_{2k}(t)$ is odd and $0 \leq C_{2k+1}(t) < \varepsilon N^2$.

For large r, E_m is contained in a union of K basic intervals of A_{2r} , where

$$K = O(1) \sum_{n=0}^{\left[\delta r\right]} {\binom{r}{n}} \left(\frac{\varepsilon N^4}{2}\right)^n \left[\left(1 - \frac{\varepsilon}{2}\right) N^4 \right]^{r-n}$$

 $= O(1) M^{4r}$, with a constant M < N.

This may be seen as follows. Fixing $m, r \ge m$, and $0 \le n \le \delta r$, we consider those $t \in E_m$, so that n(r, t) = n, i.e., those $t \in E_m$, such that the event $t \in B_{2k}$ occurs for exactly *n* values of *k*, $0 \le k \le r$. These *n* places can be chosen in $\binom{r}{n}$ ways. When $t \in B_{2k}$, the number of choices for C_{2k} and C_{2k+1} is $(\varepsilon/2)N^4$; when $t \notin B_{2k}$, the number of choices for C_{2k} and C_{2k+1} is $N^4 - (\varepsilon/2)N^4$. This yields the first estimation for *K*.

To obtain the second estimation, we use Stirling's formula $n! \approx n^n e^{-n} \sqrt{n}$, for large *n*. The largest term occurs when $n \sim \delta r$ (since $\delta < \varepsilon/2$) and is approximately $N^{4r} \eta^r$, where $\eta = \delta^{-\delta} (1 - \delta)^{-(1-\delta)} (\varepsilon/2)^{\delta} (1 - (\varepsilon/2))^{1-\delta}$. Now η depends on δ , and increases up to $\eta = 1$ when $\delta = \varepsilon/2$. Especially $\eta < 1$ when $\delta < \varepsilon/2$. From the definition of Hausdorff dimension, we conclude that $\bigcup_{i=1}^{\infty} E_m$ has dimension at most log $M/\log N < 1$. (Apart from the details introduced to make the σ -algebras match up, the method is due to Besicovitch [1]; certain choices of successive digits in the expansion occur with a frequency different from – in fact, less than – the natural frequency. This pushes the dimension below 1.)

Therefore the domain $\{x < F(t)\}$ so constructed has all the properties promised at the beginning.

Acknowledgements

The authors acknowledge valuable comments from the referee.

This work was partially supported by the National Science Foundation.

References

- 1. A.S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, (On sets of fractional dimensions II), *Math. Annalen* 110 (1934–35) 321–330.
- E.G. Effros and J.L. Kazdan, On the Dirichlet problem for the heat equation, *Indiana* Math. Jour. 20 (1971) 683–693.
- 3. R. Kaufman and J.-M. Wu, Singularity of parabolic measures, *Compositio Math.* 40 (1980) 243–250.
- 4. R. Kaufman and J.-M. Wu, On the snow flake domain, Arkiv Mat. 23 (1985) 177-183.

- 5. J.T. Kemper, Temperatures in several variables: kernel functions, representations and parabolic boundary values, *Trans. Amer. Math. Soc.* 167 (1972) 243-262.
- N.G. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. (3) 51 (1985) 369-384.
- 7. I.G. Petrowsky: Zur Ersten Randwertaufgaben der Warmeleitungsgleichung, *Compositio Math* 1 (1935) 383–419.
- 8. S.J. Taylor and N.A. Watson, A Hausdorff measure classification of polar sets for the heat equation, *Math. Proc. Camb. Phil. Soc.* 97 (1985) 325–344.
- 9. J.-M. Wu, On parabolic measures and subparabolic functions, *Trans. Amer. Math. Soc.* 251 (1979) 171–186.