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Abstract. Let T be a G extension of a measure preserving transformation To, where G is a
compact non-abelian group. The maximal spectral multiplicity of T is greater than or equal
to the supremum of the dimensions of the irreducible representations of G; i.e., non-abelian
extensions have nonsimple spectrum. As a partial converse we show that generically (in an
appropriate topology) abelian extensions have simple spectrum. Generalizations, corollaries
and applications are discussed.
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1. Introduction

One important method for producing examples in ergodic theory is the
compact group extension construction. Given a measure preserving trans-
formation To of a Lesbesgue probability space (Xo, po), a compact metriz-
able group G, and a measurable function ~: Xo - G, this construction yields
a new transformation T with the property that it commmutes with a free
measure preserving action of G. Conversely, any transformation T which
commutes with such an action is the G extension of some transformation To.
Along with the many specific examples which have been constructed by

this method (cf. e.g., [BFK], [Fu], [J], [MwN]), the general properties of
compact group extensions have also been studied (cf. e.g., [P], [Ru1], [Ru2],
[R4], [N]). In this paper we will consider the general question of what
spectral multiplicity properties a compact group extension can have.
For a measure preserving transformation T of (X, 03BC), the spectral multi-

plicity of T is definned to be the spectral multiplicity of the corresponding
induced unitary operator UT on L2 (X, 03BC). In the context of operator theory,
it follows from the spectral theory that a unitary operator U has nonsimple
spectrum if and only if it has a non-abelian commutant. If T commutes with
a free measure-preserving G action, then UT commutes with the unitary

1980 AMS Subject Classification; 28D05, 28D20.
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representation of G induced on L2(X, /1) by this G action. When G is

non-abelian we get that UT has nonsimple spectrum, which implies (by
definition) the same for T. This shows that non-abelian group extensions
have nonsimple spectrum.

Actually, we are able to obtain better estimates of the multiplicity than
just this. In Proposition 1 we show that lower bounds on the multiplicity
function are given by the dimensions of the irreducible representations of G.
In particular (Theorem 1) the maximal spectral multiplicity M, satisfies the
estimate MT  DG, where DG denotes the supremum of the dimensions of
the irreducible representations of G.
For groups G with a finite upper bound on the dimensions of the irreduc-

ible representations, this inequality gives a finite lower bound on the multi-
plicity. In particular, such an estimate always holds for finite non-abelian
group extensions. This fact is interesting because it is one of the very few
general conditions known to imply finite lower bounds on the spectral
multiplicity of a transformation T. In fact, for many years the question of
the existence of any transformations with nonsimple spectrum of finite
multiplicity remained open. Although there are now several constructions
for such transformations (cf. [O], [RI], [R2], [R3], [K], [G] (multiplicity 2
only) and [MwN]), with the exception of the construction of Katok, [K],*
lower bounds on the multiplicity have usually been obtained by ad hoc
methods. In contrast, there are several well known general conditions which
imply a finite upper bound on the multiplicity (cf. Lemma 1 below).
Complementing the results for non-abelian extensions, we also study the

spectral multiplicity of G extensions where the group G is abelian. Even if
To has simple spectrum it is possible for an abelian extension T of To to
have nonsimple spectrum (or even infinite spectral multiplicity). However,
typically this does not happen. In the natural topology on the space of all
abelian G extensions T, the set of those T with simple spectrum is generic
(i.e., has a dense G, subset).

2. Définitions and other preliminaries

Let T be a measure preserving transformation of a Lebesgue probability
space (X, /1) and let UT be corresponding the induced unitary operator on
L2(X, 03BC), (defined UTf(x) = f(T-1 x)). By the Spectral Theorem (cf. [K]),
UT is determined up to equivalence by a spectral measure class u and a

* A. Katok [K] has shown that in general if T if the Cartesian k’th power of a transformation
To then MT  K!.
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{+ oo, 1, 2, ... } valued multiplicity function m on the circle. The set of
essential spectral multiplicities of T (cf. [K]), is the set of all u essential values
of m. We denote this set by The maximal spectral multiplicity, MT, is
defined MT - sup MT (cf. [K]). The transformation T has simple spectrum
if MT = 1, or equivalently, if MT = {1}- Otherwise, T has nonsimple
spectrum. When T is not ergodic it automatically has nonsimple spectrum for
a trivial reason, so we will usually only be concerned with the ergodic case.
Throughout this paper G will denote a compact metrizable group. In

particular, G may be finite. Suppose that .2 = {Lg}g~G is a measurable

measure preserving left action of G on (X, 03BC). The action .2 is called

(p-almost) free if

The transformation T is said to commute with L if

for all g E G and for y almost all x. If (1) and (2) hold, G is said to be in the
commutant of T.

Given a transformation T and an action Ef of G satisfying (1) and (2), let
(Xo, 03BC0) be the Lebesgue space generated by the partition of (X, J1) into G
orbits. Let To be the factor transformation induced on (Xo, 03BC0) by T. Up to
sets of measure 0, we can write (X, J1) = (X x G, 03BC0  y), where y is Haar
measure on G. It follows from (1) and (2) that there exists a measurable
function 9: Xo - G so that

and

In general, a transformation T obtained from another transformation To by
(3) is called a group extension (or G extension) of To. The function ~ which
appears in (3) is called the cocycle of the extension (cf. [K] for an explanation
of this terminology). Clearly, every G extension T commutes with the G

action {Lg}. This shows G is in the commutant of T if and only if T is a G
extension of some transformation To.
Now let us consider the following generalization of (3). Let To be a

transformation of (Xo, 03BC0). Let K be a closed subgroup of G. We define
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(X, Il) = (Xo x G/K, po x y,), where YK denotes Haar measure projected
to K. Let (p: Xo - G be measurable and define a measure preserving
transformation T on (X, Il) by

Because T acts isometrically on the compact homogeneous "fibers" of the
extension (5), it is called an isometric extension of To.
We note: if To is ergodic then there always exist cocycles ~ so that the G

extension (3) and isometric extension (5) are ergodic.

3. Lower bounds on multiplicity

We begin by recalling some basic facts from the representation theory of
compact groups (cf. [M1]). The left action of G on G/K by translation gives
rise to a quasi-regular representation of G on L2(G/K, y,), namely:
W’gf(yK) = f(gyK). When K is the trivial subgroup that is the regular
representation of G, which we denote by Ui. It follows from the Peter-Weyl
Theorem (cf. [Ml]), that the regular representation W decomposes into
an orthogonal direct sum of finite dimensional irreducible unitary represen-
tations :

where Wj,kg = Wg|Hj,k, and

In addition, t  + ~ (with t  + oo if and only if G is finite),
g = dim Hj,k  dj+1, and Wj,k is equivalent to Wj’k’g if and only if j = j’.
Furthermore, every irreducible unitary representation of G appears in this
decomposition, its multiplicity being equal to its dimension.
For K nontrivial, by the theory of induced representations (cf. [M1 ]), the

quasi-regular representation g’ is the representation obtained by inducing
the one dimensional identity representation IdK of K to G. Applying Peter-
Weyl Theorem again, we obtain a decomposition:
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From the Frobenius Reciprocity Theorem (cf. [M1]), we have that 0 
mJ  d, = dim Wj,k  + 00. Thus W’ is a subrepresentation of Wg -
The following proposition is a generalization of a lemma which is well

known for compact abelian extension transformations. It is the main tech-
nical ingredient for all of the results of this paper.

PROPOSITION 1. Suppose a transformation T of (X, /1) is an isometric extension
of a transformation To of (Xo, 03BC0) by GIK, where K is a closed subgroup of a
compact metrizable group G. Let t and m, be as in (8). Then there exists a UT
invariant orthogonal decomposition

where UT|XJ,k and UT|XJ,K are equivalent under conjugation by a unitary
isomorphism.

Proo. f : For each j, k, let Si,k: Hj,k ~ H,,, be the unitary intertwining operator
for (8) satisfying

For each j, we choose an arbitrary orthonormal basis {e1j,1,..., edJj,1} for HJ,1,
and define

Then

forms an orthonormal basis for L2(G/K, YK)-
We define Ytf,k to be the set of all f e L2(X, tl) of the form

where br (x) E L2 (Xo , po ) for r = 1, ..., mj, and y E G/K. Note that

/G ejk if and only if for Jlo a.e. x E Xo, f(x,  ) ~ Hj,k. It follows that the

subspaces ejk are orthogonal and span L2(X, 03BC).
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and since HJ,k is W~(x) invariant,

where the functions ws,r(~(x)) are matrix elements for Wj,k~(x). Thus,

with

The fact that cs E L2 (Xo , 03BC0) follows from the fact that the matrix elements
wr,s are continuous, and therefore bounded on G.
To finish the proof, we define a unitary operator R: Xj,k1 - Xj,k2 by

Thus,
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Let us denote by DG/K the set of multiplicities m, of the irreducible represen-
tations occurring in the quasi-regular representation associated with GIK. Let

DG/K = sup DG/K. For the regular representation of G we use the notations
DG and DG.

THEOREM 1. Let G be a compact group. Suppose that T is a G extension, or
equivalently, that T commutes with a free measure preserving G action. If G
is non-abelian then MT  DG &#x3E; 1. In particular, T has nonsimple spectrum.

Proo, f : Since K = {id}, (9) holds with ml = d, for all j. Since G is non-
abelian, not every irreducible unitary representation is one dimensional, so
d,  1 for some j. Letting Kj = ~dJk=1 Xj,k, we note that the spectral multi-
plicities of UT|KJ is a multiple of di, 

In the general case, Proposition 1 and the proof of Theorem 1 really gives
a bit more information about the multiplicities.

COROLLARY 1. For an isometric extension T, the essential values of the spectral
multiplicity function of UI, are multiples of m,.

We conclude this section by describing sufficient conditions for an isometric
extension (which is not in general a group extension), to have nonsimple
spectrum.

PROPOSITION 2. Let G be a compact metrizable group and K be a closed

subgroup. Suppose there exist closed subgroups K, and K2, with

K  K1  K2  G, where K, is normal in K2, and K2 IK, is non-abelian. Then
there is at least one irreducible representation of G which appears with multi-
plicity greater than 1 in the quasi-regular representation associated with G 1 K.

Proof. The quasi-regular representation has a subrepresentation equivalent
to the regular representation of K21KI. Il

We call an isometric extension by G/K which satisfies the hypotheses of
Proposition 2 properly non-abelian. Note that since we do not require K to
be normal in K, , or K2 to be normal in G, this condition is rather weak. We
do not know whether it is also a necessary condition for the existence of

multiplicity in the quasi-regular representation.

PROPOSITION 3. If T is a properly non-abelian isometric extension of some
transformation To, then MT  DKt/K2 &#x3E; 1.
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Note. Any properly non-abelian isometric extension T of To has a factor T2
which is itself a K2 /Kl extension of some other isometric extension Tl of T2.

4. Upper bounds and the abelian case

In this section we show how additional assumptions on T. and G can
sometimes be used to eliminate the (real) possibility that MT = + oo . The
following lemma lists some well known conditions which imply finite upper
bounds for MT .

LEMMA 1. If T admits a good r-cycle approximation (c, f : [R1 ]), or has rank  r
[C], or may be realized as an interval exchange transformation involving
 r + 1 intervals [0], then MT  r.

For convenience, in any of the three cases above (or in any other situation
where we have an a priori upper bound r on MT), we will denote r by RT.
Note that RT = 1 implies that T is ergodic.
A combination of Lemma 1 with the results of Section 3 yields the

following.

COROLLARY 2. Suppose T is a properly non-abelian isometric extension. Then
RT  DK1/K2 &#x3E; 1. In particular, if T commutes with a free action of a compact
metrizable non-abelian group G, then RT  DG &#x3E; 1, (i.e., T is not rank 1).

Recently J. King [Ki] has shown that if T is rank 1 then the comutant C(T )
of T is abelian. As we noted in the introduction, a non-abelian comutant is
already enough to imply nonsimple spectrum. Thus, applying Lemma 1, we
obtain another proof of King’s result. * Notice that the compactness
assumption in Corollary 2 was not needed. An interpretation of Corollary 2
in terms of C(T) is that the rank RT imposes restrictions on what compact
subgroups C(T) can have. As the next result shows, even finite rank (i.e.,
RT  + oo ) has implications for C(T).
For many infinite compact groups G there are irreducible unitary rep-

resentations of G of arbitrarily high dimension, i.e., DG = + 00. We will call
such a group large. An example of a large compact group is the group SU(2)
of complex 2 x 2 unitary matrices with determinant 1.

COROLLARY 3. Suppose T commutes with the action o, f a large compact group.
Then RT = + oo. In particular, T does not have finite rank.

* We wish to thank the referee for pointing out the connection between our results and King’s.
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C. Moore [Mo] has shown that a locally compact group G satisfies a finite
upper bound on the dimensions of its irreducible representations if and only
if G contains an open subgroup of finite index. It follows that a compact
metrizable group is large unless it satisfies this condition.

Next, we discuss a simple example of a situation where these results can
be applied to construct an interesting class of transformations. Let T. be an
irrational rotation on the circle, viewed as an interval exchange transfor-
mation on [0, 1] involving 2 intervals. Let a denote the point of a discontinuity
(i.e., To has rotation number 2n(1 - 03B1)). Let G be a finite non-abelian group
with card (G) = s and DG = r &#x3E; 1. Let 9: [0, 1] - G be a piece-wise
continuous function with t - 2 discontinuities, all of which occur at ration-
al points in [0, 1]. Also suppose that Im(~) generates G. Let T be the G
extension of To with cocycle 9. This situation has been studied by Veech [V],
who has shown that if a is poorly enough approximated by rationals (i.e.,
if it has bounded partial sums in its continued fraction expansion), then T
is ergodic. Now clearly T is an interval exchange transformation with
RT  st. Thus we have:

COROLLARY 4. The transformation T constructed above is an ergodic interval
exchange transformation with 1  r  MT  st  + 00.

Corollary 4 provides a recipe for constructing many examples of ergodic
interval exchange transformations with nonsimple spectrum of finite multi-
plicity. Specific examples showing that there exist interval exchange trans-
formations arbitrary finite MT appear in [RI].
The next theorem concerns the theory of the typical properties of abelian

group extensions.

DEFINITION 1. Let 03A6 denote the set of measurable functions 9: X0 ~ G, and
let dG be the translation invariant metric on G of diameter 1. The L’ -topology
on 0 is the topology given by the metric

A property of 9 ~ 03A6 is called generic if it holds for all 9 belonging to a dense
G03B4 subset 03A60 of 03A6. A partition 03BE of (Xo, tlo) is a finite collection of disjoint
subsets of (Ao, po) with equal measure and total measure 1. A transfor-
mation T preserves 03BE if TE ~ 03B6 whenever E e 03BE. A sequence 03BEn of partitions
is said to be generating, denoted Çn - e, if for any set E, there exists a union
En of elements of 03BEn with 03BC0(E 0394 En) ~ 0 as n - oo.
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DEFINITION 2 (cf. [K]). A transformation To admits a good cyclic approxi-
mation (To,n , 03BE0,n), where To,n is a transformation preserving the partition 03B60,n,
if (i) 03BE0,n ~ E, and (ii)

where E E 03BE0,n , and q, = card ÇO,n’

THEOREM 2. If G is abelian and To admits a good cyclic approximation, then
for a generic set of qJ ~ 03A6 the corresponding G extension T has simple
spectrum, and in particular T is ergodic.

Note. Since the condition that To admits a good cyclic approximation is
generic in the weak topology on the set of all measure preserving trans-
formations (cf. [K]), an alternative statement would be that the generic
compact abelian group extension has simple spectrum. Furthermore, the
theorem can be strengthened to say that the generic compact abelian group
extension is, in fact, weakly mixing but not mixing.

Proof Since G is abelian, all of its irreducible representations are 1 dimen-
sional characters, each of which occurs with multiplicity 1 in the regular
representation. We denote these characters by Xj( y), y ~ G, 1  j 
t  + oo. The decomposition (9) becomes

where Xj = {xjf:f~L2(X0, 03BC0)}.
Now T is approximated by To,n which cyclically permutes the partition ÇO,n

of (Xo, ,uo). Let 03A6n denote the set of functions in 03A6 which are constant on the
elements of ÇO,n’ For ç E 03A6, ~n E 03A6n , k  0, we define

and

By the cyclicity of To,n , ~’n(qn, x) = ~"n = constant. Given any g e G, we
can modify qJn, within 03A6n, by changing its value on just one element of ÇO,n
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to make ~"n = g. From the fact that 03BE0,n ~ 03B5, it follows that for any ~ e 03A6,
g e G, m &#x3E; 0, there exists n sufîicientty large and qJn’ depending on qJ, g, and
m, with d(~n , ~)  11m and ~"n = g.
For any pair 0  j  j’  t there exists g( j, j’) E G so that

xJ(g(j, j’)) ~ xj’, (g(j, j’)). Let 03B4 = 03B4(j,j’,qn) be such that |xj(y) - 1|  1/q2n
and IXi’ (y) - 1|  1/q2n whenever dG(y, id)  03B4.

We denote N0(~) = { e 03A6: d( qJ, cp)  03B8} and define

Clearly (Do is dense G03B4 in 03A6.

Now ~ E 03A60 if and only if for each pair j, j’ there exists a sequence
n(k) ~ ce as k - oo and ~n(k) E 03A6n(k) such that

and

In particular, (16) is already enough to show that for each j, UT|XJ has simple
spectrum. The argument, which follows, is similar to Theorem 5.1 in [KS].
We pass to a subsequence n (k) satisfying (16) (which for convenience we just
denote by n). Then we fix an element Co,n of 03BE0,n and let Cr,n = Tr0,n C0,n,
r = 0, ..., qn - 1. Given 0  8  1, it follows that for n sufhciently
large, there exist subsets Br,n of C,,n with

and

for all x E Bs,n, r, s - 0, ... , qn - 1 (cf. e.g., [KS] or [R3]).
Let h = xjf ~ Yfj with ~h~2 = 1. Since E0,n ~ 8, for n sufficiently large,

there exists h’ - xj f’ E Yfj, with f’ constant on each element of 03BE0,n,
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~ h’112 = 1, and ~ h - h’ ~  8. Let T1,n denote the extension of To,n obtained
by substituting qJn for 9 in (3). Then

where 1 C0,n is the characteristic function of CO,n’ Let

We have by (18), (19), and (20),

So II h - h"~2  03B5 + (303B5)1/2, and h" belongs to the cyclic subspace generated
by xi 1B0,n. To complete the proof that the spectrum is simple, we assume that
it is not and apply [KS] Lemma 3.1 to obtain a contradiction.
To show that UT|XJ and UTI;r., have mutually singular spectral types, let

hn - xjfn c- Yf, and h’n = xj,f’n, with f,, and f" constant on the elements of
03BE0,n. Choose a subsequence n(k) ~ oo, satisfying (16) and (17) (again for
convenience denoted by n). Then it follows from (3) and the cyclicity of To,n
that

and
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where Â = xj(g(j, j’)) ~ 03BB’ = xj’(g(j, j’)). As in the proof of [KS]
Theorems 3.3 and 3.4, we obtain a further refinement n(m) and disjoint sets
0393jn(m) and 0393j’n(m) consisting of small intervals around the qn(m) ’th roots of À and
03BB’ respectively. Letting o and (2’ denote, correspondingly, measures of
maximal spectral type for U, on 1%J and XJ’, we have limm~~ (0393jn(m) = 1

and limm~~ ’(0393jn(m)) = 1. This implies o 1 0’.

Clearly, for an extension T of To to have simple spectrum it is necessary for
To to have simple spectrum. We will now show that even in this case there
may exist some abelian extension T of To with nonsimple spectrum. One
(well known) example with this property is the skew shift transformation on
the 2-torus [0, 1]2 defined by T(x, y) = (x + a, x + y) mod 1, where a is
irrational. Here To is just an irrational rotation on the circle. The spectral
multiplicity, which is infinite in this example, comes from a non-abelian
commutant on the operator theoretic level rather than from non-commuting
point transformations in the commutant of T.
Another example more closely related to the theme of this paper is the

following. Let To be an arbitrary measure preserving transformation of
(Xo, 03BC0), let Z/n be a finite cyclic ring, and let 03B2 be a unit of 7L/n with
multiplicative order m. For an arbitrary cocycle glj : Xo - Z/m we construct
the Z/m extension Tl of To defined by

(in additive notation). Then we construct the following Z/n extensions T
of T,,

where t/12: X0 ~ Z/n is arbitrary and 0(y) = 03B2y. An easy computation (cf.
[R1]) shows that for any gl j and t/12’ T has nonsimple spectrum. This fact was
first noticed in the case m = 2, n = 3, 03C83 = 1 by Oseledec [O], who used
it to construct the first example of an ergodic transformation with nonsimple
spectrum of finite multiplicity. The general case was later employed by the
author in [RI], [R2] and [R3] to obtain other examples (cf. below).
Now suppose that To admits a good cyclic approximation. Then it is not

hard to show that for the generic cocycle t/1 the transformation Tl also
admits a good cyclic approximation (cf. [RI]), and it follows that Tl has
simple spectrum. Thus T is an abelian extension of T, that has nonsimple
spectrum. It is fairly easy to explain where the multiplicity comes from in
this example. The transformation Tl already has a nontrivial commutant
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(it contains Z/m), and the extension by Z/n is special; the cocycle 9: Xo x
Z/m - Z/n given by (p(x, y) = 03B8(y)03C82(x) is "anti-symmetric" with respect
to Z/m. Thus the commutant for T1 does not commute with the extension
to T.

A closer look at this example is even more revealing. It turns out that T
is really an extension of To by a certain non-abelian group, namely the
semi-direct product group G = Z/m 0 Z/n. (Recall that this is the

group of pairs ( y, z) E 7L/m x Z/n with the multiplication ( y, z)(y’, z’) =

( y + y’, 03B8(y’)z + z’).) The cocycle ~: X0 ~ G for the extension (21) is

given by cp(x) = (gl j (x), 03C82(x)). This shows that T is the general G extension
of To.
Now let 01, ... , Ok denote the orbits of 0 acting on Z/n by iteration. We

claim DG = {dj: dj = card 0j} . Indeed, it follows from Mackey, [M2] sec-
tion 2.2, Theorems A and B, that corresponding to each orbit 0j there are
m/dj inequivalent irreducible representations, of G, each with dimension dj.
These exhaust the irreducibles.

In [R3] we show how to construct examples of such groups where DG is
subject only to the following conditions: (i) 1 E -9G, (ii) DG is finite, and (iii)
DG is closed under the operation of taking least common multiples. Further-
more, for such groups G one can prove generalization of Theorem 2 (cf.
Theorem 3), which shows that the generic G extension T has MT = DG. This
provides (in [R3], but by a slightly digèrent proof), many new examples of
the possibilities for MT. In particular, this class of transformations includes
the examples with arbitrary finite multiplicity constructed in [RI].
We conclude by stating more general conditions for the generic isometric

extension by G/K to have MT = DG/K. For a linear transformation M,
ev (M) will denote its set of eigenvalues.

THEOREM 3. Suppose G/K has the following properties:
(i) For any two irreducible representations W91 and W2 which occur in the

corresponding quasi-regular representation, there exists go E G such that

ev(W1g0) ~ ev(W2g0) = (p, and

(ii) For each irreducible representation W91 occurring in the corresponding
quasi-regular representation, there exists go E G so that Wô has only simple
eigenvalues.

Also, suppose that To admits a good cyclic approximation.
Then for a generic set of cp E 03A6, the G/K isometric extension T constructed

from To using (p has MT = DG/K.

The proof of Theorem 3 is a generalization of the proof of Theorem 2 (cf.
also the proof of Lemma 3.5 in [R3]). The idea is that the spectrum is simple


