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0. Introduction

Let G be a connected reductive algebraic group defined over R, and let
G - G(R) be its points over R. Work of Shelstad [11, 12, 13, 14] has
established several cases of functoriality with respect to L-groups of the
tempered spectra of such groups G. In [2], Arthur has conjectured analogues
that should be true for a wide class of non-tempered but conjecturally
unitary representations. All of this, of course, was motivated by consider-
ations involving the trace formula [10]. This paper describes the extent to
which we have verified these conjectures for a certain class of derived functor
modules (which are known, [19, 20] to be unitary). These results were
announced in [1].
For most of this paper we assume, for simplicity of statement, that G

has relative discrete series. (This assumption is only a convenience, and
is removed at the end of the paper.) In this introduction, for ultimate
simplicity, we assume further that G is connected.

In the Langlands classification of irreducible admissible representations,
they (or their equivalence classes) are partitioned into finite sets, called

L-packets. For example, the set of discrete series representations with a
given infinitesimal (and central) character forms an L-packet. All of the
representations in an L-packet are tempered or else none of them are: if they
all are, then the L-packet is said to be tempered. Trace formula consider-
ations have brought to the fore the notions of stability and L-indistinguish-
ability. Two irreducible representations are L-indistinguishable if they occur
in the same L-packet. If 03C0 is an irreducible representation, let 8n denote its
character. A stable distribution is any element of the closure of the space
spanned by all distributions of the form 03A303C0~03A0 8n for n any tempered
L-packet. This is a natural definition to make for many reasons, for
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example, as an analytic function, such a distribution is invariant under con-
jugation by elements of G(C) (when this makes sense) and not merely G.
Such distributions can be transferred to inner forms of G (via the matching
of stable orbital integrals, [11, 1 ]), whereas unstable distributions cannot be.
Furthermore, the vector space spanned by {039803C0: n e 03A0} is spanned by
{03B80, ..., 0398n} where 00 = 03A303C0~03A0 039803C0 is stable (for G ); and each 8i, i  1,
is the transfer via L-functoriality to G of a stable tempered distribution on
a smaller, endoscopic, group Hi.
For non-tempered L-packets all of the above fail. In [2], Arthur has

conjectured that in certain cases, a non-tempered L-packet II can be

enlarged to a finite set of irreducible unitary representations fi ;2 II,
and that this enlarged packet will enjoy stability and tranfer via func-
toriality, analogous to Shelstad’s results for tempered representations. Let
LG = LG0  WR be the L-group of G (see section 1, or [4]). Special
unipotent representations (see [3]) are associated in a natural way to

unipotent orbits in LG0, and are conjecturally unitary. They come in

enlarged packets etc. Further enlarged packets should be produced by
cohomological induction from these unipotent representations on proper
subgroups of G. This paper verifies all but one of Arthur’s conjectures for
certain enlarged packets of this type. The remaining conjecture, inversion,
vis. that {03980, ... , 0398n} spans ~03C0|03C0 E fi) holds in many cases, but seems to
fail in many interesting cases - for example Sp(2). We do not treat inversion
in this paper.
The enlarged packets which we will study are described as follows, at least

under the simplifying assumption that G is connected. Let q = 1 E8 u be a
0-stable parabolic subalgebra of g = go 0p C, where go is the Lie algebra
of G and 0 is the Cartan involution of g [16]. Let L be the stabilizer of q in
G, then L is the stabilizer of a compact torus, so L is also a connected
reductive group. Let T ~ L be a compact Cartan subgroup of G. If 03C0 is a

one dimensional representation of L, set Rq(03C0) = R1/2 dim (/~)q(03C0) as in [16],
p. 344. We assume 03C0 unitary and make additional technical hypotheses on
03BB E t*, the highest weight of n, to guarantee, writing A(03BB) = Rq(03C0), that
A(À) is an irreducible unitary representation (cf. 2.10). Since L is connected,
03C0 is determined by 03BB. There is an action of the Weyl group W = W(g, t) on
the datum (q, L, 03BB), denoted w - (q, L, 03BB) = (qw, Lw, wÀ). Then A(w03BB) is also
irreducible and unitary, meaning fdlqlt (wÂ), and we define 03BB = {A(w03BB):
w E W}. Our main results are that Îl,, satisfies Arthur’s conjectures (except
for inversion). We state this more precisely below.
An important special case, and the only one in which every A(w03BB) is

tempered, is obtained when L = T. Then fi). is just an L-packet of discrete
series. In general, A(03BB) is in the discrete series if and only if L is compact.
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The sets fi;. are not disjoint, for example fi;. may contain some non-tempered
and some discrete series representations.
The set fl = fi;. satisfies the following properties. It contains an ordinary

L-packet. Let S = W (G, T)BW(g, t)/W(I, t) (cf. 2.9). Then A(w03BB) depends
only on the coset of w in S, and we may write  = {A(w03BB): w ~ S}. For
w E S we will define an integer y(w) in 2.12. Identifying a representation with
its character, we have

THEOREM (2.13). ’LwES ( - 1)03B3(w) A(w03BB) is stable.

Let H be an endoscopic group for G which contains a group isomorphic to
L, called L. The definitions in this introduction of enlarged packets only
make sense, so far, for connected groups, so assume H is connected. (This
is a simplifying assumption which will be removed in the body of the paper.)
Let TranGH denote the transfer via L-functoriality of stable tempered distri-
butions on H to tempered distributions on G [14]. In section 4 we extend this
to non-tempered stable distributions, at first formally. Given (q’, L, 03BB’) a
datum for H, we have then ’ = {A(w03BB’): w E SI, where S’ is defined in an
analogous way to S, an enlarged packet for H. We give a formula, 2.20,
giving as a function of the given À’ such that

THEOREM 2.21. TranGH 03A3w~S’ (-1)03B3’(w)A(w03BB’) = 6 LWES (-1)03B3(w)k(w)A(w03BB)
where y’ is defined analogously to y, e = + 1, and K: S - {± 11 is part of the
endoscopic datum for H.

Although we do not make full use of it, these results are most naturally
stated in the language of L-groups. We discuss this without proofs in
Section 3. Let W. be the Weil group of R. An ordinary L-packet 11, is

associated to an admissible homomorphism 0: WH ~ LG. Arthur considers
homomorphisms factoring through LPGL2(R), that is,

Here § corresponds to the trivial representation of PGL2(R). Arthur’s
conjectures seek enlarged packets ~ ~ 11, satisfying stability and transfer-
via-L-functoriality properties.
Now LPGL2(R) ~ SL2(C) x WR and |SL2(C) corresponds (via the

Jacobson-Morozov Theorem) to a unipotent orbit of LGO. Suppose
(C*) ~ center (LGO) x WR. If G is quasisplit then 0 is admissible and
certain n E 11, are said to be special unipotent representations. In particu-
lar if |SL2(C) corresponds to the principal unipotent orbit of LG0, then
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~ = 03A0~ = {03C0}, where 03C0 is a single one-dimensional representation. If G is
not quasisplit we define one-dimensional n in section 2 (where L plays the
role of G ).
We verify Arthur’s conjectures for 0 of the following form. Given L ~ G

as above, assume that one can embed LL LG (although we omit the proof
of this). We assume

a. ~ factors through LL, that is, 0: WR  LL ~ LG.
b. ~L defines a one-dimensional representation 03C0 of L by the preceeding

discussion; i.e.

and L|SL2(C) corresponds to the principal unipotent orbit of LL0.
(Condition a is analogous to the condition, cf. [4], that 0 factor through

IM g LG, M a real Levi factor.)
Given 0 we construct q, L, 03BB = niT and A(03BB) (cf. Section 3). Let

~ = {A(w03BB)}. That ~ satisfies Arthur’s conjectures is the content of

theorems 2.13 and 2.21. The endoscopic groups H we consider are those
satisfying LL - LH ~ LG. This condition precludes in many cases any
inversion theorem for ~ (cf. [2], 1.3.5): there may fail to be enough endo-
scopic groups H to separate the characters of ~. See Section 3. It is of
course not the case that the operation of transfer preserves the class of
derived functor modules to which we confine our attention in this paper. The
two hypotheses, 2.16 and "(-admis sibili ty " (in the discussion preceding
2.21) are introduced to allow us to so confine our attention.

In the special case where G and H are connected, the conclusions of
Theorems 2.13 and 2.21 can be verified, and constitute theorems 7.2 and
7.12. Here, their proofs proceed by expressing A(03BB) in terms of coherent
continuation of discrete series representations (cf. 7.7). Since coherent con-
tinuation preserves stability (cf. 6.1) Theorem 7.2 follows from Shelstad’s
results on discrete series L-packets. This theorem was known to Zuckerman
in 1978. Furthermore transfer commutes with coherent continuation

(cf. 6.5) and Theorem 7.12 similarly follows.
A large portion of this paper is involved with the technicalities due to

disconnected groups. First of all if G is not connected Lw may fail to be
connected, so the one-dimensional representation nw of Lw may fail to be
determined by w03BB = 03C0w|T. We will later choose 03C0w consistently (following
Lemma 2.5), and write A(w03BB, 03C0w) = Rqw(03C0w).
Furthermore Zuckerman’s character formula for A(03BB, 03C0) may fail; we

obtain a weaker formula for 03A3l A(03BB, 03C0i) where each 03C0i|T = 03BB. To distinguish
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these components we used in addition a character formula for A(03BB), due to
one of the authors [7], valid for disconnected groups. This formula describes
A(03BB) in terms of standard (induced from real parabolic) representations,
instead of coherent continuations of standard representations. A combi-
nation of the two techniques proves the Theorem in general. (Section 9.)
The paper is organized as follows. Section 1 recalls the material on

L-groups which we shall need. In Section 2 we state without proof the
stability (2.13) and transfer (2.22) properties of A(wÀ, 03C0w). This is done

largely independently of L-group considerations. In Section 3 this is restated
in term of L-groups, material which we do not use but include for the
sake of completeness, and which allows comparison with Arthur’s original
formulation. Section 4 defines transfer in the necessary generality. In Section
5 we discuss results of [ 13] on the transfer of discrete series representations
(5.6 5.8) which, applied to Levi subgroups, yields the transfer of standard
modules (5.10). The role of coherent continuation is discussed in Section 6.
We prove the weak versions (which, for connected groups, are equivalent to
2.13 and 2.21) of the main results, in Section 7. Section 8 uses the resolution
of A(wÀ, 03C0w) in terms of standard modules, valid for disconnected groups,
to prove Theorem 2.13 and nearly prove Theorem 2.21. This is completed
in Section 9 by a combination of the two preceding sections.
We then indicate the relation of this formal definition of Tran to the

matching of orbital integrals (this is routine). Finally, we show how to
remove the assumption that G possesses (relative) discrete series.

1. L-groups

We collect some material concerning L-groups which we will use repeatedly.
Let G be a connected reductive linear algebraic group defined over R,
G = G(R). We follow [9], see also [4] and [15]. Let a be the non-trivial
element of Gal(C/R); 03C3 acts on G and various objects associated to G. This
action is denoted a G or simply if there is no danger of confusion. Let G*
be a quasisplit inner form of G, 03C8: G ~ G* an inner twist: 03C8 is an iso-

morphism (over C) such that 03C3G(03C8-1)03C8 is inner. Fix T* a Cartan subgroup
of G* and B* a Borel subgroup containing T*, both defined over R. If T is
a Cartan subgroup of G, X*(T) (respectively, X*(T)) is the lattice of rational
characters (respectively one-parameter subgroups) of T, and A(G, T) 5;
X*(T) (resp. 0" (G, T) 5; X*(T)) is the set of roots (resp. coroots) of T in
G. Also let A (resp. A~) be the root lattice (resp. coroot lattice) of T in G.
There is a pairing ~,~ between X*(T) and X*(T), and also between A and
^~. The triple (G*, B*, T*) defines a datum (X*(T*), A, X*(T*), 0394v) where
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A = A(B*, T*). Conversely, such a datum defines a triple (G, B, T) defined
over C. Let (LG°, LB0, LT0) be defined by (X*(T*), 0394v, X*(T*), A). Thus
X*(LT0) = X*(T*), X*(LT0) = X*(T*), etc. Now Gal(C/R) acts on this
datum, hence on LG° . Let WR be the Weil group of R: WR = C* ~ 03C4C*,
i2 - - 1, 03C4z03C4-1 = z, and there is a surjection WR  Gal(C/R). Via this
map let LG = LGO  WR. Note that LG (but not its isomorphism class)
depends on the choice of (G*, B*, T*) and 03C8.
We need to pass between objects for G and for LG° . This is accomplished

(non-canonically) as follows ([14]). Let q be a pseudo-diagonalization ( p-d.)
of T = T(R): q is an isomorphism T ~ T* of the form Ad(g) 03BF 03C8 (g e G*).
This induces isomorphisms also denoted ~:

Here W(G, T) is the Weyl group of T in G, etc.
Let D be any Cartan subgroup of G, with Galois action 03C3. Then the

characters of D are given as follows (cf. [13], Section 4.1). Suppose 03BC, 03BB E
X*(D) 0 C satisfy t(f.1 - 03C303BC) + (Â + 03C303BB) E X*(D) or both (03BC - ap) e
X*(D) and 1 2(03BC - 03C303BC) - (03BB + 03C303BB) E X*(D). Define

X(f.1, À) (eX) = e1/2~03BC,X+03C3X~+~03BB,X-03C3X~ (X E X*(D) ~ C ~ b) (ex E D).

Then /(p, 03BB) = ~(03BC’, 03BB’) if and only if f.1 = f.1’ and À = À’ + 6 + (fi - 03C303B2)
for some 6 E X*(D), fi E X*(D) Q C. In particular, if D is compact,
6 - - 1 and  ~ X*(D). Write D = D0F wheref = {e03C0iX|X ~ X*(D),
6X = X}. Note that X(f.1, 03BB)|D0 is independent of 03BB and /(p, 03BB)|F is inde-

pendent of p. Let M be the centralizer of the maximal R-split torus of D;
then W(M, D) acts on D and WX(f.1, 03BB) = X(Wf.1, 03BB).

2. Définitions, results, and some lemmas

We make some definitions and state the main results on stability and
transfer properties of {A(w03BB, 03C0w)}, Theorems 2.13 and 2.21. Here we remain
as algebraic as possible. In the next section we give a reformulation in terms
of L-homomorphisms and Arthur’s conjecture [2]. Some lemmas are

included in this section as well.



277

Let G be a reductive group over R satisfying the conditions of section 1.

Thus G is a connected reductive linear algebraic group defined over R,
G = G(R). Furthermore, we assume G contains a compact Cartan sub-
group T which we fix. We fix K a maximal compact subgroup, K ;2 T, and
its Cartan involution, 0. Let go be the Lie algebra of G, g = go Q C. We
work in the category of (g, K) modules [16].

Let L be the stabilizer in G of a compact torus. After conjugating by G
we assume L is the stabilizer under the coadjoint action of 03BB0 E X*(T) Q
C ~ t* ~ g* (embedded via the Killing form). We write L = L(03BB0); L
satisfies our hypotheses, T ~ L, and L is connected if G is.

Let q be a 0-stable parabolic subalgebra of g [16] satisfying L = Stabc(q)
(stabilizer of q in G). Write q = 1 E8 u (Levi decomposition). For a E t* a
root of t in g write get for the corresponding root space. There exists 03BB0 E t*
such that 1 = t E8 03A3~03BB0,03B1v~=0 get, u = 03A3~03BB0,03B1v~&#x3E;0 get. We write q = q(Ào). Let
03C0 be an (1, L n K) module. Then for i = 0, 1, 2, ... ,

Riq(03C0) is defined in [16], definition 6.3.1. (2.1)

This is a (g, K) module. We always assume i = (1/2) dim (t/l n f), and
define Rq(03C0) = R(1/2)dim(/~)q(03C0).

Identify the infinitesimal character of a representation of L or G with (the
Weyl group orbit of) an element in t* via the Harish-Chandra homo-
morphisms. If V z g is a sum of weight spaces get for t, write A(V) =
{03B1|g03B1 ~ V}. If V satisfies 03B1 ~ 0394(V) ~ -03B1 ~ 0394(V) write (V) = 1/2
03A303B1~0394(V) 03B1. If 03C0 has infinitesimal character y, Rq(03C0) has infinitesimal character
03B3 + (2(u).

Let n be a one-dimensional representation of L, and 03BB = 03C0|T. Thus 03BB

determines 03C0 if L is connected.

2.2. DEFINITION: A(03BB, ?L) = 9lq (n).
Choose A+ a system of positive roots for A(I). Let (I) = 1/2 03A303B1~0394+i a,

q = (I) + (u). Then A(03BB, 03C0) has infinitesimal character 03BB + q.
Now W(G, T) acts on this data as follows. Since T is compact W(G, T)

acts on T and T. We identify A(G, T) and A(g, t), also W (G, T) and W (g, t).
For w E W(G, T), let
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If nw is any one-dimensional representation of Lw satisfying nw IT = w03BB, we
put

For given À and 03C0 as above we will later define nw a one-dimensional

representation of Lw satisfying nwlT = wÀ, for any w E W (G, T). Before we
can do this we need the following lemma; it relates the various Lw to each
other and shows how a one dimensional representation may be defined by
a character of a maximally split Cartan subgroup.

2.5. LEMMA:

1. All the Lw are inner forms of each other. Furthermore, if G is quasisplit then
there exists w E W(G, T) such that Lw is quasisplit.

2. Let T, be a maximally split Cartan subgroup of G, and let y = ~(03BC, 03BD) E 1:
(cf. Section 1). Assume ~03BC, 6) = 0 for ail £5 E A(G, T,), and that

~03BD, 8) = 0 for aU 8 E A(G, T,) such that a8 = 8. Then there exists a

unique one-dimensional representation n of G such that nlTJ s ~ 03B3.
3. Let y, n be as in 2. Let T’ ~ G be any Cartan subgroup of G and let g E G

satisfy ad(g): Ts ~ T’. Then

4. Let n be any finite dimensional representation of G, and let T’ ~ G be a
Cartan subgroup. Suppose g E G and x E T’are such that ad(g)x E T’.
Then 03C0(x) = 03C0(gxg-1). That is, finite dimensional representations are
stable.

Proof.- For 1, we first note that the Lw are real forms which possess Cartan
subgroups which are isomorphic over R, e.g., the compact Cartan. So they
are inner forms. Next we assume G is quasisplit and begin to reduce the
result to a scholium about root systems. For a group to be quasisplit it must
be the case that for D any Cartan subgroup, not all the imaginary roots are
compact (for the image, under a Cayley transform, of the maximally split
torus of a quasisplit group necessarily has a non-compact imaginary root).
Suppose no Lw is quasisplit. Then let D - L(wÀ) be of maximal split rank
among all Cartans of all Lw. (Replacing 03BB by w-1 03BB if necessary, we assume
D ~ L(03BB).) Then D has all imaginary roots compact, and in particular
has a, a compact imaginary root in 0394(L(03BB), D). We may assume that
D = Cay(T) = sq ···· sn T where si is a Cayley transform through the
root a, of 0394(L(03BB), T) and that {al} is a strongly orthogonal set of noncom-
pact imaginary roots.
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Now it suffices to show that there exists w E W(G, T) such that a) WLi¡ is
noncompact imaginary in 0394(Lw, T) for all i, and b) if w is regarded as an
element of W(G, D) then wa is noncompact imaginary in 0394(Lw, D’) where
D’ is the Cayler transform of T through the roots {w03B1l}. For condition a)
ensures that the definition of D’ makes sense and that we may take w03BB for
03BB and D’ for D in the preceding paragraph. But condition b) ensures that we
can Cayley transform D’ through wa, a contradiction.
The sub-root-systems of 0394(G, T) and 0394(L(03BB), T) which consist of all roots

orthogonal to {03B1i} correspond to some groups G’ and L’(03BB’) with all hypoth-
eses holding again. By induction on dim G we are then reduced to the case
dim G’ - dim G. In this case {03B1i} is empty so condition a) is vacuous.

So we are reduced to the following scholium: if G is quasisplit and a is any
compact imaginary root in A(G, T), then W(G, T) - a does not consist solely
of compact roots.

This is clear if g is simply laced. The remaining cases are reduced to the
rank two case, which is clear. We thank D. Garfinkle for this proof, which
we omit.

For 2, we first note that the assumption implies that 03B3|Ts~Gder is trivial. But
G = TsGder, so 2 is immediate.
For 3, let T’ = F’T’° and T, = FsT0s as in Section 1. We may assume g

is a Cayley transform. Then adg(f.1), adg(v) define a quasicharacter of T’
which agrees with on: the center of G, T’° , and F’ ~ F,.
Four follows from the analogue of the B.-G.-G. resolution of a finite

dimensional representation by stable sums of standard modules ([7], [8]), see
also Section 8 of this paper. Q.E.D

We now define 03C0w. Assume first that G is quasisplit. Varying our given
within its Weyl group orbit if necessary, we assume L = L(03BB) is quasisplit
as well. We are given a one-dimensional representation of L such that
niT = 03BB. For any w E W(G, T), choose Tw ~ Lw a maximally split Cartan
subgroup of Lw and g E G representing w-1. Then there exists e e L such
that ad(lg)|Tw is defined over R; let T:, = ad(lg)Tw ~ L. Define 03C0w(t) =
03C0(ad(lg)t) for any t E Tw. Then the conditions of Lemma 2.5.2, hold, and
so 03C0w extends uniquely to a one-dimensional representation, also denoted
03C0w, of Lw. By part three of this lemma, 03C0w depends only on 03BB, 03C0 and w. (Note
that 03BB must be chosen such that L(03BB) is quasisplit.) Furthermore, nwlT = w03BB.

To complete the definition, we have only to deal with the case where G is not
quasisplit.

If G is not quasisplit let 03C8: G ~ G* be an inner twist. After conjugating
by g E G* we assume 03C8|T is defined over R, let T’ = 03C8(T). Given L ~ G, let
L’ = 03C8(L); as above we assume L’ is quasisplit. Given 03C0’ a one-dimensional
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representation of L’, define 03C0 a one-dimensional representation of L as
above. That is, choose e e L" such that ad(l)03BF03C8|Ts is defined over R for T,
a maximally split Cartan subgroup of L. Let Ts be the image of Ts. Define
03C0 by specifying 03C0|Ts:

Similarly define 03C0w for Lw. Then {(Lw, 03C0w)} depends only on (L’, 03C0’); if

Â = niT then 03C0w|T = w03BB.

For later use we note the following. Suppose D ~ Lw is a Cartan sub-
group of Lw, g ~ G represents w-1, and ad (g-1)|D is defined over R. Let D’
be the image of D and further assume D" g L. Suppose niD’ = ~(03BC, v),
03BC, 03BD E X*(D) ~ C.

2.6. LEMMA: 1rwiD = X (ad(g-1)03BC, ad(g-1)03BD). In particular suppose D n
K ~ T, w E W(M, D) - W(G, T) where M is the centralizer of the split
part of D. Then 03C0w|D = X(Wf.1, v).

Proof.- First suppose G is quasisplit and L is quasisplit. Choose Tw ~ Lw, g,
l; Ts, T’w ~ L as in the definition of 03C0w. Choose x E L, ad (x) : Ts ~ D’,
Y E L, ad ( y): Ts ~ T’w.

Suppose niTs = X(8, y). By Lemma 2.5

(here 03C3 = Galois action of D’).
Thus by Lemma 2.5
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and

by 2.8, using the fact that ad (g-1)|D’ is defined over R, and Section 1. This
completes the proof for G quasisplit. The proof is similar for general G, we
omit the details. The second part follows from the first, noting

2.9. DEFINITION: S = W (G, T)B W (G, T)/ W (L, T).
Now Vogan and Wallach have shown (cf. [16], [19] Theorem 1.3, [20]):

2.10. LEMMA: Assume that the real part of ~03B1, À + ~  0 for all a E A(u, h).
Then:

1. A(wÀ, nw) is irreducible, unitary, with infinitesimal character À + .
2. A(wÀ, 03C0w) = A(w’À, 03C0w’) if and only if

W(G, T)w W(L, T) = W(G, T)w’ W(L, T).

Thus it makes sense to write A(wÀ, 03C0w), w E S.

2.11. DEFINITION: fi = {A(w03BB, 03C0w)|w ~ S}, an "enlarged packet for G".

2.12. DEFINITION: For w E W(G, T), y(w) = (1/2) dim (Lw/L» n K). This
depends on L, and is well defined on S.

2.13. THEOREM: 03A3w~S ( - 1)03B3(w)A(w03BB, 03C0w) is stable. (Recall we identify
A(wÀ, nw) with its character.)

This is proved in Section 8.
A special case of 2.13 is L = T. Then fi is an ordinary discrete series

L-packet. In this case y(w) = 0, and this reduces to [14]. We note that
A( w À, 03C0w) is a discrete series representation if and only if Lw is compact. If
L is compact and non-abelian, fi contains some discrete series representa-
tions and some non-tempered representations.
We turn now to transfer for fi. We follow [14], see also ([12], Section 5).

Recall ^v ~ X*(T) is the coroot lattice of T in G; T is compact so
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Note K takes values + 1. We restrict ourselves to these K because the
character of A(wÀ, nw) has support on T, hence the endoscopic groups H we
construct must "share" T with G.

So define an endoscopic group, denoted H(T, K), attached to (T, K) as in ([14],
Section 2.3). Since T is fixed we write H" - H(T, x). At the same time we
make some choices which will be necessary later. Thus we have the following.
2.15:

(a) H is a quasisplit group satisfying our assumptions.
(b) H ;2 BH ;2 TH are chosen Borel and Cartan subgroups respectively.
(c) We assume TH = T* as complex groups (with possibly différent Galois

actions); so

Also

LHO = (centralizer in LG° of s)o, for some s E LTO.

(d) LH = LH0  WIR. Here the action of WR is given as follows. Let 03C4(t) =
t-1 for t E LT° . Then aH: LH0 ~ LH0 is defined uniquely by 03C3H|LT0 =
WoT, for some w E W(LW, LT° ) and 03C3H(LB0H) = LBO. (Note that r
equals the transfer of 6T to LT° .)

(e) Choose g E G* such that TH - T* F G* is defined over R. Let TN
be the image. By modifying 03C8 we assume LH is in standard position with
respect to TN (cf. [13]).

(f) We choose a framework of Cartan subgroups (cf. [ 13]). That is, choose
(i) {T’0, TI, ... , TN - Tl representatives for all conjugacy classes

of Cartan subgroups of H. We assume T’ is standard with respect
to T’N, i.e. S(T’i) ~ S(T’N) where S( ) denotes maximal R-split
subtorus. We assume T’0 is compact and write it T’c.

(il) {T0,..., TN} standard (with respect to T*) Cartan subgroups of
G*. Write1:. = To .

fM= centralizer in H of S(T’l)(iii) Set M - centralizer in G* of S(Tj), Choose 03C8j:  T H -
T*  Tj isomorphisms/R, for some m’j E M;, ml’ E Mj.

(iv) If for some g E G*, 03C8-1 03BF ad (g)|Tj is defined over R choose TGj ~ G:

03C8Gj = 03C8-1 03BF ad(g): T, ~ Tj’
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defined over R. We say T’ originates in G. We assume TG is our given
compact Cartan subgroup G, and write TGc = TG0. Let g be the Galois
action of T.’, T or TGj.

See ([13], Section 2.3) for a proof that all of the above choices are possible.
We impose one additional assumption (2.16). All such choices will ulti-
mately be irrelevant.

(g) We choose a transfer Tran G of stable distributions on H to G:
(i) We assume an admissible embedding 03B6: LH ~ LG exists and has

been chosen. Following [13], such an embedding is defined by
03BC*, 03BB* e X*(T*) Q C, and written 03B6(03BC*, 03BB*). We write 03BC*, 03BB* E
X*(Tn) 0 C also for ad(m-1n)(03BC*), ad(m-1n)(03BB*). If the embedding
doesn’t exist, our results are still valid whenever the results of [14]
hold.

(ii) Choose a set of transfer factors [14]. This amounts to the following:
for all pairs (D,11), D a Cartan subgroups, 11 a p.d. of D, satisfying
(D, q) E TH(G) ([14], Section 31.) we are given ë,(D, q) = ± 1. Con-
ditions on ë,(D, q) imply there are only two choices for {03B5(D, ~)}.

Given the choices in i) and ii). TranGH( ) of stable (tempered) distributions
is defined [12]. We extend this to non-tempered distributions in Section 4.
Let ’ = {A(w03BB’, 03C0’w)} be an enlarged packet for H. Here 03BB’0 E X*(T’c) Q C,
q’ = q(03BB’0), 03C0’ ~ L’etc. have been chosen for H. Since H is quasisplit we may
and do assume L’ - L(03BB’0) is quasisplit.

Given IT and an admissible embedding LH ~ LG (cf. 2.15 g) we define
fi for G. First assume G = G * is quasisplit. Let 03C80:T’c ~ Tc be as in 2.15 f.

Let 03BB0 = 03C80(03BB’0) E X*(Tc) Q C, L = L(Ào ). We assume

2.16. L is isomorphic to L’ (over C).
That is we require

Without this restriction, the transfer may not be a linear combination of
modules induced (cohomologically) from one-dimensional representations
of a 0-stable parabolic, e.g., let G = Sp(2, R), H = SO(2, 2), and consider
the trivial representation of H, i.e., q = 1 = g.
Note that then L’ and L contain Cartan subgroups isomorphic over

R(T’c ~ Tc). It follows that L and L’ are inner forms. Since G is quasisplit
we assume (using Lemma 2.5) (by modifying 03C80)that L is quasisplit (hence
L’ " L).

Let q = q(03BB0). To define fl we need only define 03C0, a one-dimensional
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representation of L; then IÎ for G is defined as in 2.11 (recall this uses first
2.5 for G quasisplit and then an inner twist for general G). We proceed to
define 03C0.

For this (and for later use) it is convenient to impose the following
condition on the framework of Cartan subgroups.

2.18.

(i) Assume 7§’ z L’ if T’is conjugate within H to a Cartan subgroup of L’.
(ii) If T’, T’J ~ L’, assume m’-1l mi E L’. Thus the diagram

commutes, where ~’ = m’-1im’j ~ L’.
(iii) Similarly for L: assume Tj ~ L if T is G* conjugate to a Cartan

subgroup of L; assume mi-1mj E L if T, Tj ~ L.
It is easy to see (cf. [13], Section 2.3) such choices are possible. Now

choose T’ = T’n ~ L’ a maximally split Cartan subgroup of L’. Choose 0394’+l’
a system of positive roots for 0394’l’ = 0394(I’, t’). Let

Let

as usual. Let

and let 0+ - A+ u 0394u,  = I + u.
Given any 0-stable Cartan subgroup D of G with Galois action 03C3 we will

have occasion to use the following (cf. [16], Section 6.7.1). Given A+ =
A+ (g, b), let B z A+ be a set of complex roots satisfying
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Let (B, AI) = 1 03A303B1~B a. Note that 2Q(B, 0394+)|D~K is independent of the
choice of B, and is a character of D n K.

Suppose 03C0’|T’n = X(f.1’, v’), f.1’, v’ E X*(T’) ~ C as in section 1. We carry
notation from Tn to T, via t/1n without change in notation: e.g. write 03C0’|Tn for
03C8n(03C0’|T’n).

2.19. DEFINITION: The one-dimensional representation x of L is defined by

The reason for this definition, and that in fact this does define a one-
dimensional representation of L, will be seen in Section 8 (Lemma 8.13). It
is then straightforward to see 03C0 is independent of the choice of B ç 0394’+,
0394’+, and {(Lw, 03C0w)} depends only on (L’, 03C0’) and 03B6.
We recapitulate and state the theorem on lifting.
Let H = H" be an endoscopic group containing a compact Cartan

subgroup T’c. Given 03BB’0 E t* let L’ - L(03BB’0), q’ = l’ ED u’. We assume L’
is quasisplit. Let 03C0’ be a one-dimensional representation of L’; 03BB’ = 03C0’|t’C.
Then fi’ = {A(w03BB’, 03C0’w)} is defined, depending only on (L’, 03C0’). We let
Ào = 03C80(03BB’0) ~ t*c; we assume L(03BB0) ~ L(03BB’0). Then given an admissible
embedding 03B6: LH ~ LG, we obtain fi = {A(w03BB, 03C0w)} for G*, depending
only on fi’ and 03B6. We impose a compatibility condition on À’ and (to ensure
that the representations A(wÀ, 03C0w) are irreducible. We require that À’ be
what we shall call "03B6-admissible", that is, 03BB’ satisfies the hypothesis of 2.10
(relative to u’) and 03BB satisfies the same hypothesis (relative to u). Via 03C8:
G ~ G* we obtain fi = {A(w03BB, 7rw)l for G depending only on fi and (.
Given transfer factors, TranGH( ) is defined. This was called "LiftG( )" in
[14]. This is the "setting of Theorem 2.21". We define e, = + 1 in 5.5.

3. L-group formulation

In this section we interpret the main theorems in terms of L-homomor-
phisms. We do not use this in the sequel and so are very brief. This is

Arthur’s formulation of his conjectures [2]. Given L 9 G as in Section 2, fix
a pseudo-diagonalization q of T. Then LL° embeds in LG° : L L° is generated
by LT° and {~(03B1)|03B1 E A(L, T)}. Write E°: LL0 ~ LGo. A homomorphism
LG1 ~ LG, is said to be admissible if it commutes with projection to WR.
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3.1. LEMMA e’ extends to an admissible embedding e: LL ~ LG.

We omit the proof of this lemma, but note that it uses the congruences of
[13] to produce the embedding, and the results of Section 8 to solve the
congruences (lemma 8.13).

Fix 8. Given 1: WR ~ LG, assume:

3.2. Image (~) ~ LL, and

3.3. WR  LL corresponds to a one-dimensional unipotent representation
as in the introduction.

That is, 0 factors:

where

L(C*) ~ center (LL° )  WR and L|SL2(C) corresponds to the principal
unipotent orbit of LL° . Let Ccp = centralizer of (SL2(C) x WH) in LG° ,
G~ = C~/C0~ Z(LG0)WR.
We consider the conjectures of [2] for such 0. We construct ~ as follows.

Let L* be the quasisplit inner form of L, so OL is admissible for L*, and
03A0~L = {03C0*}, 03C0* a one-dimensional representation of L*. If L is not quasis-
plit 03C0 is obtained from 03C0* by the procedure following 2.5. Let 03BB = 03C0|T. We
suppose there exists q ;2 1 such that 2.10 is satisfied. Thus A(03BB, 03C0) is defined.
This applies to all Lw (since LLw ~ LL ), and the above construction yields
A(wÀ, 03C0w). Define ~ = {A(w03BB, 7r,,)I. Conjecture 1.3.2 of [2] holds for l’Îç
by [19] or [20], and Theorem 2.13 verifies conjecture 1.3.3 (ii) in this case.
As in [14] §5.2 there is a map ~ ~ Wj which may however fail to be an

injection. See the discussion below of inversion.
We note without proof that if L is quasisplit the L-packet II containing

A(03BB, 03C0) is contained in fl, . In particular if G is quasisplit, L is quasisplit ~
is admissible and IÎcp ;2 110 . More generally if L is the "most quasisplit"
among {Lw} then IÎcp ;2 II for II the L-packet containing A(03BB, 03C0).
Now given x E rtlcp we define an endoscopic group H = Hx as in [14]. Then
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H satisfies LL0 ~ LW. Fix (: LH ~ LG ; then there exists ~’ satisfying 3.2
and 3.3 (for H) which lifts to ~:

Applying the above procedure to H we obtain ~’ = {A(w03BB’, 03C0w’)}. Then
Theorem 2.21 verifies conjecture 1.3.2 (iii).
We discuss inversion. Given x E G~ H = Hx as above, let Ox be the

virtual character given by Theorem 2.21. Then inversion ([2], 1.3.5) requires
A(wÀ, nw) may be expressed in terms of {0398x}x~G~ i.e. (Z~{0398x}~ =
Z~{A(03C903BB, 03C0w)}~. However |G~|  |~ 1 = ISI in some cases, so this may not
be possible. The failure of [2], 1.3.5 arises as follows. Given x, K : S ~ + 1
as in Theorem 2.21 is obtained from x as in [14], §5.2; write K = kx. Now

~  S and the pairing Ùç x 6ç - + 1 is defined by ~w, x) = xx (w).
This defines the map ~ ~ Wj which may fail to be injective.

4. Pseudo L-packets and transfers

We collect some information we need later. Given ~: WR ~ LG an admiss-
ible homomorphism, Hç its (ordinary) L-packet, let

If 0 is tempered this is stable ([11], lemma 5.2). If 0 is not tempered this
may fail. Now {03C0} are obtained as subquotients of (Ind)x (D 1|03C0 E 03A0M~}.
Here P = MN is a cuspidal parabolic subgroup of G, 0 factors through
LM ~ LG, and 03A0M~ is an L-packet of discrete series representations. Follow-
ing [5] we define:

4.2. DEFINITION: ~ = {IndGMN03C0 Q 1|03C0 E 03A0M~} a "pseudo L-packet",

Thus ~ = ~~ if 0 tempered.
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We refer to ([2], definition 1.2.1), and [11], Section 5 and 5.1) for the
definition of a stable distribution.

4.3. LEMMA: ~ is stable.

Proof.- The arguments of ([11], Lemmas 5.1 and 5.3) for tempered 0 carry
over exactly to ~. The main point is that ~~, if 0 is tempered, or more
generally ~, is a sum of full induced representations for which one has an
explicit formula. We omit the details.

Let H be an endoscopic group for G. Let P( ) denote the Schwarz space
of a group. Given the choices of 2.15 g the transfer from P(G) to P(H) is
defined in [14] via matching of orbital integrals. Its inverse is the transfer,
written TranGH( ), of stable tempered distribution on H to tempered distribu-
tions on G. We seek to extend this to non-tempered distributions.

Unfortunately it is not known that C~c(G) ~ C~c(H) under the above
map (C(OO = COO -functions with compact support). This precludes (for the
moment) defining transfer of distributions as above. Alternatively, as in [2]
we define TranGH(0398) for 0 a stable virtual character without reference to
orbital integrals by extending the main result of [14]. See below.

There are two other possibilities which are compatible. In [5] a transfer by
matching is defined from C~c(G)K-finite ~ C~c(H)KH-finite. This is enough to
define TranGH(0398). Alternatively ([2], theorem 1.1.1) says {039803C0|03C0 irreducible,
tempered} is dense in the space of all invariant distributions. (A continuity
argument is then needed to define TranGH( ) more generally.)

Formally, let 0 be a stable virtual character, i.e., a finite sum with integral
coefficients of characters of irreducible representations. Let P = MAN be
the Langlands decomposition of a cuspidal parabolic of G. Here A is

connected. For our purposes we make the following:

4.4. DEFINITION: A standard module X ( P, 03C0, v) is X ( P, 03C0, v) = IndGMAN03C0 ~
ev Q 1 for 03C0 a limit of a discrete series representation of M, v E a*, ev E Â,
with v chosen so that X( P, 03C0, v) is isomorphic with one of the representa-
tions of 6.5.2 [16].

Now 0 may be written as a sum of standard characters, i.e. characters of
standard modules ([16], 6.6.7). So it is enough to define TranGH(0398) for 0 a
stable sum of standard modules. These are obtained preciesly as sums of
terms ~; so it is enough to define TranGH(~). For 0 tempered, TranGH(~) =
TranGH(~~) is already defined, and a main result of [14] is the following.

Let cjJ’ be tempered, and let Let MA be a Levi subgroup of G;
then L(MA) ~ LG canonically. Suppose L(MA) is a minimal Levi
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subgroup of LG satisfying Im((~) ~ L(MA). If MA ~ G we say ~ is relevant
to G (cf. [4]). Let 03A0MA~ be the L-packet of (relative) discrete series representa-
tions of MA defined by ~. Then 03A0MA~ = {03C0l Q ev|03C0l some discrete series
representations of M all having the same infinitesimal and central charac-
ters, v e ia*0}. Define N as usual.

4.6. THEOREM: ([14], theorem 4.1.1) : Given ~’ tempered,

Here 03B5(03C0) = ± 1, 03B5l = ± 1 are defined in [14].

Now suppose cp’ is not tempered, but satisfies all the other conditions of the
preceding paragraph. Thus 03A0MA~ = {03C0i Q ev|03C0i some discrete series of M,
v e a*}. Now v ri iat. Let Im(v) be the ia0*component of v. Choose an admiss-
ible homomorphism ~’0 such that with ~0 = 03B6 03BF ~’0, 03A0MA~0 = {03C0i ~ eIm03BD|03C0l and
v as above}. We define TranGH(~’) by deforming v to Im(v) and using 4.6:

4.7. DEFINITION: Given cp’, if ~ = 03B6 03BF ~’ is relevant to G, let

03A0MA~ = {03C0i ~ ev} as above. Let

The signs 6i = + 1 are defined as follows. By theorem 4.6, Tran’
Li Ei IndG (ni ~ eIm03BD ~ 1), Bi defined in [14]. Let £5i = ei.

4.8. LEMMA: Lemma 4.2.4 of [14] holds in this context.

Proof.- This is immediate since both the right-hand side of 4.7 and the right
and side of 4.2.4 of [17], are analytic in v.
Thus we could have used the cited lemma as a definition of TranGH( ). The

next results follows exactly as in [14].

4.9. LEMMA: If n has infinitesimal character À E X*(TH) Qx C, then TranGH(03C0)
has infinitesimal character ~-1 (À + 03BC*).
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5. Discrète series

All of our transfer problems reduce to transfer of discrete series represen-
tations. We formulate the necessary results of [14] in our terms. Similar
results hold for limits of discrete series.
We parametrize the discrete series of G as follows. Let A+ be any system

of positive roots for A(G, T) with (2 = 1/2 03A303B1~0394+ a e X*(T) (D C. Recall
(Section 1) our canonical identification of t with X*(T) Q C, t with X*(T),
etc. Suppose 03BB E t* ~ X*(T) @ C is regular, i.e. L(03BB) = T. Let q = q(03BB) =
t ~ u(03BB) (u(03BB) = 03A3~03BB,03B1v~&#x3E;0 g03B1 as usual). Let Ai = 0394(u(03BB)), 03BB = 1/2 Y-,, A, 1 a.

5.1. DEFINITION: Given 03BB E X*(T) +  regular, the discrete series represen-
tation 03C0(03BB) is defined to be

and

The infinitesimal character of 03C0(03BB) is À, 03C0(03BB) ~ 03C0(03BB’) if and only if w03BB = À’
for some w e W(G, T). Consider 8i as a function on the regular elements Treg
of T. Then if eh e Treg, h e X*(T) Q C,

This follows from [16].
We compare this with the notation of [14]. Let q be a p-d. of T. Given

f.1 E X*(LT0) 0 C regular, let A’ and Q, E X*(LT0) (D C be defined anal-
ogously to At and (2).. Let (2’ be one half the sum of the positive coroots of LT°
in LG° in any order.

5.3. DEFINITION: Given 03BC ~ X*(LT0) + (2’ regular, ~-1(03BC) ~ X*(T) + , so
define 03C0(03BC) = 03C0(~-1(03BC)).
Now the discrete series representations 03C0(w, 0394+03BC) with characters

0398(w03BC, 0, w0394+03BC) are defined in ([14], page 406). From 5.2 we immediately
obtain:

These depend on q.
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We describe transfers. Suppose we are given H = H" and a transfer
TranGH( ).We change notation and let 0394+ = 0394v(LB0, LT0), 0394’+ = 0394v(LB0 ~
LH0, LT0), with corresponding (2 and (2’. Suppose y’ e X*(LTO) + (2’ is

regular. Recall (2.15 g ii) f.1*, v* defining the embedding (. By ([13], Theorem
3.4.1) if y = y’ + 03BC* then y e X*(LT°) + (2. Assuming y is regular these
define discrete series representations of H and G respectively.
We may assume y’ is 0394’+ dominant. Given such an element we define

BK = ± 1 as follows. Let w* be the unique element of W(LG°, LT0) such that
w*y’ is 0394+ dominant. Choose ~ a p-d. satisfying (T, YI) e TH(G).

5.5. DEFINITION: 03B5k = E(T, YI) sgn (w*). This depends on our choices of
YI, {03B5(T, ~)} and 03B6. Let S = W(G, T)BW(G, T), S’ = W(H, T’)BW(H, T’).

5.6. PROPOSITION: TranGH(03A3w~S’ 03C0(w03B3’)) = 03B5k LWES k(w)03C0(w03B3).
This is merely a restatement of ([14], 4.1.1) in our terms. This is independent
of ~ ([14], 4.4.5).
Now suppose we are in the setting of Theorem 2.21. Then dÀ’ + (2’ is

regular, dÀ +  is regular, so 03C0(w(d03BB’ + (2’)) and 03C0(w(d03BB + )) are defined.

5.7. COROLLARY: TranGH(03A3w~S’ 03C0(w(d03BB’ + ’))) - Ex LWES k(w)03C0(w((d03BB + )).

We use this to transfer standard representations from H to G. By [14], if 03B6:
LH ~ LG is given, then for all j, 03B6|LM’j: LM’j ~ LMj, and TranMjM’j( ) is defined.
Let P’ = M’jN’j be a parabolic subgroup of H, P; 2 BH . Similarly let

P*j= MJNj ~ G*, P*J ~ B*. If T’J originates in G let PJ = MGJNGJ = 03C8GJ(P*J).
Let 8’ be the sum of characters in a discrete series L-packet for M’J.

5.8. PROPOSITION:

TranGH(IndJP’J(0398’ Q 1))

6. Coherent continuation

For later use we prove that transfer commutes with coherent continuation.
This is used in ([14], Lemma 4.4.8).
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Given T 5;; G (T compact), A 5;; X*(T) the root lattice of G with respect
to T, which is the lattice of differentials of weights of finite dimensional
representations of the adjoint group of G. Let 03BE e X*(T) @ C, and suppose
{03C003BE+03BB|03BB e ^} is a coherent family of (virtual) G-modules (cf. [16], definition
7.2.5).

6.1. LEMMA: Suppose 03C0 = 03C003BE is stable. Then so is 03C003BE+03BB for ail À E A.

Proofi. There exists a sequence of virtual finite dimensional representations
{Fl} and projections Pi onto infinitesimal characters 03BBi (cf. [21]) satisfying.

6.2: 03C003BE+03BB = Pn(Fn Q ( Pn-, (... P1(F1 Q 03C0))... ), see [6], proof of Lemma
3.39. Each step of the process preserves stability (cf. Lemma 2.5), proving
the lemma.

Given 03BE e X*(T) (x) C regular, 7c a virtual module with regular infinitesimal
character 03BE, suppose w e W(G, T) satisfies w03BE = 03BE + À, for some À e A.
Let W(ç) be the set of such w. There exists a unique coherent family
{03C003BE+03BB|03BB e ^} satisfying nÇ = n, so define

6.3. DEFINITION: w03BE · 03C0 = 03C0w-103BE (cf. [16], 7.2.16).

This depends on 03BE (not just its W(G, T) orbit). This defines a group action
on the space of virtual modules with infinitesimal character 03BE, preserving the
subspace of stable modules.

Let H be an endoscopic group for G, with the choices of 2.15, so in
particular TranGH( ) is defined.
Given 03C0’ a stable virtual module for H, with regular infinitesimal charac-

ter 03BE’ e X*(T’) Q C, let {03C0’03BE’+03BB’|03BB’ e ̂ ’} be the coherent family satisfying
03C0’03BE’ = 7T’. Let 03BE = 03C80(03BE’) + 03BC*. Suppose À = 03C80(03BB’) ~ ^ for some À’ e A’.
Let 03BE+03BB = TranGH(03C0’03BE’+03BB’). Let 03C0 = 03BE = TranGH(03C0’03BE’).

6.4. PROPOSITION: 03BE+03BB = 03C003BE+03BB, i.e. {TranGH(03C0’03BE’+03BB’|03BB’ ~ ^’)} is ( part of ) a
coherent family.

Proof: This follows immediately from lemma 4.2.4 of [14], since, as can be
seen by inspection, the character formula there for TranGH preserves
coherence. (Lemma 3.4.4 of [6] gives a useful characterisation of coherence,
which we use here. Note that the proof of 4.3.2 of [14] uses the Schmid
identities to prove an analogous form of coherent continuation to a wall.)
Embed W(H, T’) in W(G, T) via t/10.
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6.5. COROLLARY : Let 03C0’ be a stable module for H with infinitesimal character
03BE’. Then for w E W(03BE),

7. An intermediate result

We prove Theorems 7.2 and 7.12, which are weak versions of Theorems 2.13
and 2.21, respectively. In the special case where G is connected (or, for 2.21,
where both G and H are connected), these are equivalent, and 7.2 is due to
Zuckerman. (In general, we will use 7.2 and 7.12 as intermediate results in
the proof of 2.21.)
The principal tool here is a character formula due to Zuckerman for

A(w03BB, nw) (where îrw may be a direct sum of one-dimensional represen-
tations). In this section we assume G has a compact Cartan, but there are
analogous results in the general case.

Let fi = {A(w03BB, 03C0w)} be as in Section 2. Recall the definitions of Â, Lw,
qw, 03C0w, etc. In particular, 7[wlT = w03BB. Here we consider all possible choices
of 03C0w satisfying 03C0w|T = w03BB. Given a group G with compact Cartan subgroup
T let GI = TGO = TGO,,. Now w03BB defines a unique one-dimensional
representation, also denoted w03BB, of G~.

7.1. DEFINITION: (w03BB) = Rqw (IndLwL~w[w03BB)). Note that IndLwL~w(w03BB) is a direct
sum of one-dimensional representations. 

Thus Ã(wÀ) = A(wÀ, 03C0w) if Lt w = Lw in which case nw is uniquely deter-
mined.

Suppose we are in the setting of Theorem 2.13. Let nw = |Lw/L~w| =
|W(Lw, T)/W(L~w, T)|.

7.2. THEOREM (Zuckerman): LWES (-1)03B3(w) 1/(nw)Ã(w03BB) is stable.

We prove a series of lemmas. Recall Definition 5.1 of the discrete series

representation 03C0(03BB). Suppose 03BB E T defines a one-dimensional representation
03BB of Gt (i.e., 03BB|G0der = 1). In this section only, to conserve notation, we identify
Â E T with its differential d03BB E X*(T). Then (with A+ and Q as preceding
Definition 5.1) if 03BB + (2 E X*(T) +  is regular, 03C0(03BB + ) is defined.

Let 03C3 · be the coherent continuation action based at 03BB + (2 (cf. Section 6.)



294

7.3. LEMMA (Zuckerman):

The following proof is due to Vogan.

Proof.- Let 81 (resp. 02) be the character of the left (resp. right) hand side
of 7.4. A priori 02 is only a virtual character.

Case l: G = G0der. Then A = 1 and 0, is the trivial caracter. The character
formula for 7r(/. + ) is (5.2), a. 03C0(03BB + Q) has the same formula with
a(A + ) in place of 03BB +  but (2;.+Q and 0394+03BB+ left fixed:

Summing over 6 E W (G, T) we immediately have 8IIT. = 821T.. Let a be
any simple root of 0394+ , s03B1 the reflection through a; then s03B1 · 02 - - 02 . A
simple application of ([ 16], corollary 7.3.19) shows that if X is an irreducible
consituent of 02 then ex E 03C4(X) for all simple roots a ([16], definition 7.3.8).
This implies that each such X is a finite dimensional representation; by its
infinitesimal character we see 0, is a multiple of the trivial representation.
Since 03982|Treg = 0398l|Treg we are done with this case.

Case 2: G = G’. Now 0398l is one-dimensional, essentially a character of the
center of G. The preceding argument applies with minor changes.

Case 3: Any G. Apply Case 2 to G’ and induce both sides to G. Note that
IndGG~ (03C3 · 03C0(03BB + )) = 03C3 · IndGG~(03C0(03BB + )) (by [16], proposition 0.4.7).
Essentially by definition (of 0,;e or of the discrete series as in [11], p. 17),
IndGG~(03C0(03BB + )) = x(À + ) for G, and we are done.

Given E t defining a one-dimensional représentation of L~, q = 1 ~ u

satisfying ~03BB, 03B1~ &#x3E; 0 for all a E A(u). Let A+ be any system of positive roots
for A(l), with corresponding (I), and (2q = g(1) + (u).

7.5. COROLLARY (Zuckerman):
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(Here a. is the coherent continuation action based at 03BB + q). In par-
ticular, in the setting of Definition 7.1,

(Here 03C3 · is the coherent continuation action based at w(03BB + q)).

Proof: Apply Lemma 7.3 to L, and apply f!/lq to both sides. We note (cf. [16]
Propositions 7.4.1 and 7.4.3b):

Furthermore,

This follows by induction by stages ([16], Corollary 6.3.10) upon writing
03C0(03BB + (I)) (for L) as Rb(03BB) (b = t Cf) u, a Borel subalgebra of 1). This
proves (7.6) and (7.7) follows immediately.

Proof of Theorem 7.2: By (7.7) we have

Now 03C3w(03BB+q) = 03C3’03BB+q for 03C3’ = w-103C3w E W (L, T). Thus (7.10) equals

Replacing S by W(G, T) changes the constant to one independent of w,
and we obtain



296

The term inside the brackets is a (multiple of) the sum of the elements in a
discrete series L-packet, hence is stable ([11], lemma 5.2). The entire sum is
stable by Lemma 6.3, proving the theorem.
Now consider transfers. Suppose we are in the setting of Theorem 2.21.

Define Ã(wÀ), Ã(w03BB’) by 7.1, and let n’w = |L’w/L’~w|.

7.12 THEOREM: TranGH (03A3w~S’ (-1)03B3’(w) 1/n’w Ã(w03BB’) = BK LWES (-1)03B3(w) 1/
nw k(w)Ã(w03BB).

Pro of. Write the sum on the left-hand side as in (7.11) with H in place of G
to obtain:

Now À + q = 03C80(03BB’ + (2q’) + 03BC*. Hence we use corollary 6.5 to commute
TranGH( ) past 03C303BB’+q’. Then apply proposition 5.8 to obtain (transferring K to
W(G, T)): 

Working backward from (7.11) to (7.10) on G, with K(w) at each step, we
get

proving the theorem.
Note that we can also push both sides of 7.12 to a wall and have equality.

8. Résolutions by standard modules

In this section we first prove Theorem 2.13 on the stability of

LWES (-1)03B3(w)A(w03BB, 03C0w). Next we consider Theorem 2.21. We obtain a par-
tial result: the set of standard modules occurring on the left-hand side of 2.21
is contained in the set occurring on the right-hand side. One each side these
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have multiplicity + 1. This is proved using the character formula of [7]
which holds for disconnected groups. In the next section we combine this
with the results of Section 7 and a simple counting argument to prove
Theorem 2.21. In this section, the arguments go through, substantially,
without the assumption of equal rank for G. For simplicity however, we
retain this assumption.
We recall results of [7] on the resolution of A(À, 03C0) via standard modules.

In this section we wish to allow T to take on new meaning, so to specify the
compact Cartan subgroup we write T,. Given D any 0-stable Cartan
subgroup of G, write D = TA (direct product): T = D n K, A a vector
group. It is important to note A is not necessarily the maximally split
algebraic subgroup of D - for example A is connected and may fail to be an
algebraic group. Let MA be the centralizer of A in G. Now MA is an
algebraic group, by abuse of notation we write it as M.
Given A+ = A+ (G, D)let(2 = (0394+) and Q(B, 0394+) be as preceeding 2.19,

AM = A+ n A(M, D), M = (0394+M). Here we change notation slightly
from Section 5. If y E T and dy + (2M is dominant and regular for 0394+M, let

a discrete series representation of M with infinitesimal character dy + (2M’
Here b = t Cf) 03A303B1~0394+M m03B1.

Length of a standard module (having regular infinitesimal character) is
defined in [16], 8.1.4. But see a correction in 12.1 of [18]. It is constant on
pseudo L-packets. Such modules have unique submodules.

8.2. THEOREM: [7] If A(À, n) has regular infinitesimal character, then it has a
resolution by standard modules {IndGMAN(03C0M((2(B, 0394+) Q9 03C0)|T, OM ) Q9
( Q 03C0)|A ~ 1)} where
1. D runs over all conjugacy classes of Cartan subgroups of L (with MAN

cuspidal; N is chosen as in [7]).
2. A+ runs over all 0394+ ~ A(u, b).

Furthermore, letting y = 1/2 dim (L/L n K), there is an exact sequence

where Xi is the direct sum of those standard modules as above with length j.

We rewrite this as
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It follows from [7] that XI is a standard module with A(03BB, 03C0) as Langlands
submodule. Similarly, write

(Note that if A(03BB, 03C0) is a push-to-a wall, we have a similar formula involving
limits of discrete series. Then 6.4 allows us to reduce to the case of regular
infinitesimal character.)
Now suppose 03C0|D - X(f.1, v). Then it follows from the definitions that the

pseudo L-packet containing the standard module

is

such that z E W(M, D)I. (8.7)

Recall Theorem 2.13 claims 03A3w~S ( - 1)03B3(w)A(w03BB, 03C0w) is stable. This will

follow from the next lemma.

8.8. LEMMA: Given A(wÀ, 03C0w) and a standard module X occurring in the

resolution of A(wÀ, 03C0w), let X’ be any other standard module in the same

p,seudo L-packet as X. Then there exists w’ E W(G, Tc)’ such that X’ occurs
in the resolution of A(w’À, nw’)’ Furthermore, the double coset W(G, Tc)w’
W(L, T() is uniquely determined by this condition.

Proof: Suppose 03C0w|D = X(f.1, v), so X is given by 8.6 and X’ is given by 8.7.
Conjugating by G we assume T g Tc. Then z E W(G, Tc), take w’ = zw.
Then D ~ L(w’03BB). By Lemma 2.5 03C0w’|D = X(zf.1, v) and the first part of the
Lemma follows from Theorem 8.2 applied to A(w’ À, nw’)’ The second part
follows from Theorem 8.2 upon noting w’0394+ ~ A(uw, b) implies
z = ww-i E W(L, Tc).

8.9. COROLLARY: 03A3w~S ( - 1)1(w) A (wÂ, 03C0w) may be written as a sum of standard
modules 03A3i 03B5lXi, El = + 1, Xl ~ X if i ~ j.

(If a module 7r is written 03C0 = L; = 1 ajXj, a, ~ 0 we say "X occurs in the
resolution of 03C0.")

In fact, one sees by inspection of 8.6 that if X = IndGMAN(03B4i Q 1), and



299

X = IndGMAN(03B4J 0 1) both occur in the sum of 8.9, then either X and X are
L-indistinguishable or else the infinitesimal characters of 6¡ and 6j differ.

Proof of Theorem 2.13 : Let 0 = LWES (-1)03B3(w) A(w03BB, 03C0w). By the preceding
Lemma the standard modules occurring in the resolution of 0 have multi-
plicity + 1 and are a union of pseudo L-packets {~l|i = 1, ... , nl (cf.
definition 4.2). Recall ~l= 03A303C0~~l n. The sign with which a given standard
module X occurs is 

which is constant on pseudo L-packets. Hence 0 = 03A3ni=1 03B5i~l, 03B5i = + 1

which by Lemma 4.3 proves Theorem 2.13.
We turn now to a partial proof of Theorem 2.21 which will be completed

in Section 9. Suppose we are in the setting of that theorem, in particular
{A(w03BB’, 03C0’w)} and {A(w03BB, 03C0w)} have been defined. Let O’ be the term in
parentheses on the left hand side of 2.21, i.e.,

Let

First assume G is quasisplit, L is quasisplit. Recall T’n ~ L’ and Tn ~ L,
maximally split Cartan subgroups of L and L’ have been chosen, and t/1 n:
T’n ~ Tn . Recall 03C0|Tn is defined by 2.20. Let other notation be as in that
definition.

8.13. LEMMA: 03C0 extends to a one-dimensional representation, also denoted n,
of L.

Proof: Write T’n = T’A’, other notation as in 8.2; let

By Theorem 8.2 X’ occurs in the resolution of O’ and has A(À’, 03C0’) as
Langlands submodule. By a direct calculation using Section 1, we see
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Let x’ be the sum of the representations in the pseudo L-packet fi
containing X’. Let

(here we have transferred data to Tn via t/1n). By [14] (here 4.7 and 5.7 but
in the notation of 8.1), letting T, = TA etc.,

occurs in the resolution of Tran£(1’). By Theorem 7.12 there exists 03C0, a
one-dimensional representation of L, and w such that X occurs in the
resolution of A(w03BB, 03C0w) (03BB = 03C0|Tc). Applying 8.2 to A(w03BB, nw)’ we see that
a standard module occurring in its resolution is of the form induced from
the following representations of MAN:

for some positive system for G, A+, as in 8.2. Now applying the analogue of
8.15 (for G and A+ instead of H and SI ) to this, we have that the represen-
tation of MAN is of the form nM((nw (D X(Q - (2M’ (B, 0+ )))IT., OM) (D
(w ~ ~( - (2M’ (B, 0394+)))|A 0 1 .

Assuming that w = 1 does not change the pseudo-L-packet of the stan-
dard module we are considering, and we know that TranGH(~’) is stable, so
we may put w = 1. We may also take A+ to be related to S 1 as in the

hypotheses of formula 2.20, since this will still satisfy the hypotheses on 0+
given in Theorem 8.2; the point is that the Z/2Z character data (a triple)
containing 0394’+ has maximal length among all those in 8.2 for H, but Tran’
preserves the inequalities of lengths, so any triple including any A+ deter-
mined by 8.17 also has maximal length among all such data occurring in the
(appropriate sum of) formulas 8.2 (for G) (corresponding to formula 7.12).
Comparing this representation of MAN to the one occurring in the

formula 8.17, and using 8.16, we see that, again up to the action of an
irrelevant Weyl group element, we have

so by 2.20 03C0|Tn = 03C0|Tn, proving the Lemma.
Now let X’ be any standard module occurring in the resolution of 8’, i.e.

in the resolution of A( w À’, 03C0’w) for some w. Let ~’ be the sum of the modules
in the pseudo L-packet containing X’. Let X be any standard module
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occurring in the resolution of TranGH(~’). As in the proof of the preceding
lemma X occurs in the resolution of A(z03BB, nz) for some z and some one-
dimensional representation n- of L satisfying 03C0|L0 ~ nILO. The main result we
need in Section 9 is

8.19. PROPOSITION: X occurs in the resolution of A(zÀ, 03C0z).

Proof.- The argument is similar to the proof of Lemma 8.13 carried out on
any Cartan subgroup of L. By Theorem 8.2 choose D’ = T’ = T’A’ ~ L,
0394’+, etc. such that

First assume G is quasisplit. By Theorem 8.2 we may take D = T = TA
and write

It is enough to show

where by the comments preceding the proposition we know

Suppose 03C0z|D = X(MI v), nID = x(J1, v). It is enough to show

for some £5 E X*(D), 03B2 E X*(D) Q C, a = uj the Galois action of D. We
abbreviate 8.24 by writing v ~ v.

First assume w = z = 1. Since X occurs in the resolution of TranGH(X’)
by 8.15, 8.20, 8.21 and [14] :

where in the presence of several Cartan subgroups we write (2(B, 0394+) =
(2(B, A, D) to specify D.



302

By the definition of 03C0 (2.20):

where T’n, T, are as in the proof of Lemma 8.10. Also e E Mn n L’, ad (~):
T§ - T’J, as in 2.18, ad 0394+(H, T§) - 0394+(H, T;) similarly t. Hence by
the definition of t/1 n (2.15f):

i.e. the following diagram commutes:

Comparing 8.25 and 8.26 it is enough to show

Recall A+ = 0394+l ~ 0394u, 0’+ = 0394’+l ~ 0394’u’. Write (B,0394+,Tn) = (B, 0394+I, 7,) +
(B, 0394u, Tn ) etc. with the obvious notation. Then 8.29 is clear for the

terms involving AjB Furthermore ad(~)(B, 0394u, Tn ) - (B, 0394u, D)  0,
ad(~’)(B, 0394’u’, T’n) - (B, 0’u. , D) ~ 0 since if a e A. and a is complex,
then ad(t)a is either imaginary or complex (similarly for t’); we leave the
details to the reader. This proves 8.29.

This completes the proof in case G is quasisplit and z = w = 1. For

general z, w the proof is similar using Lemma 2.6. For general G the same
holds, incorporating 03C8 at each step. We omit the details.

Recall 0 = Tran’(O’).

8.30. COROLLARY: X occurs with multiplicity + 1 in the resolution of 0.

Proof.- We first remark that 8.9 implies that any standard module occurs in
the resolutions of the right hand side of Theorem 2.21 at most once.

Furthermore, if X does occur, by 2.13 so does (X), by which we denote
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the pseudo-L-packet containing X. Hence Ù(X) occurs at most once. Now
write X as in 8.21 and suppose X occurs in 0. Then X occurs in the right
hand side of 2.21. But then, by 8.20, we must have

(we regard this as a statement about the occurrence of certain characters in
others, up to + so that K is irrelevant), for some M’, 0394’+, and 03C0’w. Clearly
M’ is uniquely determined by this condition, as is ’|A’. But the infinitesimal
character A’ of 03C0M’A’(2’(B, 0394’+)|T 0 03C0’w ~ ’|A’, 0394’+M) is also fixed, and so,
putting Aim as the infinitesimal character of 03C0M’(2’(B, 0394’+ )|T’ ~ 03C0’w|T’, 0394’+M),
^’im is also determined. But then 8.9 implies there is only one pseudo-L-
packet occurring in the resolution of 8’ with ^’im and ’|A’ satisfying these
conditions.

9. Proof of Theorem 2.21

In the setting of Theorem 2.21 we claim

By Theorem 7.12 we are done if G and H are connected. In general by
Section 8, the two sides of 9.1 are sums of the same standard modules, with
multiplicities + 1. We use Section 7 to check the signs. The proof is just book-
keeping : the signs are independent of whether nw or 7ù,,, occur in 9.1, provided
03C0w Li = 03C0w ILI and Theorem 7.12 may be thought of as 9.1 summed over all
such 03C0w.

Let 03C0’ = 03C0’1, the given one-dimensional representation of L’ (L’ is quasi-
split and contained in H). Let N = |L’/L’~|, and let 03C0~1,..., 03C0~N be the
inequivalent irreducible representations of L’ satisfying 03C0~i|L’+ ~ 03C0’|L’+.
Let {03C0’l,w|w E S’}, {03C0l,w|w E S} be the corresponding representations of
{L’w|w E S’} and {Lw|w ~ S}. The 03C0’i,w are not recessarily all distinct (similarly
03C0l,,w).

9.2. LEMMA: Fix w.
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Proof: Suppose n is a one-dimensional representation of Lw satisfying
03C0|L~ ~ wÀ. Then 03C0 ~ 03C0i,w for some i. The lemma follows immediately.

Let

Then 9.1 is equivalent to

9.6. LEMMA: 03A3Ni=1 Xi = TranGH (EN X’i).

Proof: This follows immediately from Theorem 7.12 and Lemma 9.2.
Write

as in 4.4. Here 03B5(A, n, v, i ) = + 1 or 0 by Corollary 8.9. Let

or 0 by Corollary 8.30. Then 9.5 is equivalent to

Fix A, n, v; write gi = E(A, n, v, i), ôi = 03B4(A, n, v, i). We know

by Lemma 9.6,

by Proposition 8.19,

by 8.4.
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That ei = 03B4i, i = 1, ... , N follows by a simple counting argument,
proving 9.9 and Theorem 2.21.

10. Some concluding remarks

For convenience we have assumed in the statements of theorems 2.13 and

2.21, that G has possessed (relative) discrete series. We now remove this
restriction. We do this by reduction to the equal rank case. In this section
we also explain in Theorem 10.3 and Proposition 10.4, how to relate our
formal definition of transfer, in 4.7, to the matching of orbital integrals.
Transfer of tempered stable distributions is defined by duality to this match-
ing (see 3.1.1 and 4.0.1 of [14]). We show that our formal definition for
non-tempered distributions satisfies this same duality.

Let Tc be a 0-stable fundamental Cartan subgroup of G, we assume H is
a (Tc, x) group ([12]), so that H shares Tc with G. Let Tc = TA be the
decomposition with respect to 0, and let M = GA and M’ = HA. Now M
and M’ satisfy the hypotheses of Sections 7 and 9, so we have available all
the results of Section 9 with M and M’ playing the roles of G and H.

Let W(g, tC)O denote those elements of the Weyl group which commute
with 0. Given 03BB E itô, L, n, q as usual, put

It is useful to note that, by lemmas of Vogan and Knapp (3.12 and 4.16 of
[18]) we may represent w E S by w E W(m, tc). Since w commutes with 0,
w03BB E itri and Lw and qw are still 03B8-stable. The proof of Lemma 2.5 need not
be changed.

Since w ~S can be represented by w E W(m, tc), the enlarged packets for
G and for M have the same cardinality.
The proofs of Section 8 hold now with only linguistic changes, except for

Lemma 8.13 which relies on 7.12. But n, initially a character of Tn , extends
to a one-dimensional representation of L n M by Lemma 8.13, (applied to
an appropriate packet for M’). By inspection of formula 2.20 we see that the
differential of n is orthogonal to all roots of L. Then n is trivial on Lder n M.
Since L = (L n M) · L0der, 03C0 extends uniquely to a one-dimensional

representation of L.
To finish the proof of 2.21 we need only prove 9.9 without using Sec-

tion 7 (although a generalization of the results of 7 is possible). Now this is
essentially checking that the sign with which a standard module occurs in the
right hand side of 9.1 is the same as that with which it occurs in the left
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hand side. Explicitly, if

is the sum over a pseudo L-packet of standard modules occurring in the
resolution of 0’ (notation 8.11) then

by 9 of [1] (or 4.7), and so

for {03C0lw} an appropriate L-packet of discrete series for Ml and Bi defined as
in 4.6 for 03B6: LM’l ~ LM, the restriction of

Hence the sign with which X, a typical standard module occurring in the
resolution of 0, occurs in the right hand side of 9.1 is

if X = IndGMlNl(03C0w ~ 1), and in the left hand side,

here ~(X’) is the length of any standard module contained in the pseudo-L-
packet X’, and e(X) is the length of X (which does not depend on w).

So we wish to prove

assuming 10.1’s holding for M’ and M, i.e.

with the obvious notation, where Y and Y’ are standard modules from

analogous packets for M and M’. (We may assume 10.2 holds since it
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follows from 9.1 which was proved under the hypotheses that G and H
possessed (relative) discrete series.)
We reduce 10.1 to 10.2 in two steps. First, we note that 3.4.2, 4.4.10, and

the fourth and fifth displayed formulas on p. 398 of [14] relate V., for Tran G
and e’ for Tran’, by a constant independent of the pseudo-L-packet. This
completes the first part of the reduction.
The second part of the reduction, which we only sketch, compares the

lengths of standard modules in the respective resolutions of derived functor
modules, between G and M.

For example, if G is complex, A(03BB) is stable, and endoscopy is essentially
trivial: every module in the resolution of A(03BB) is of course stable. Then the
main theorem of this paper is also trivial.

Calculations with the lengths of standard modules parametrized by Lang-
lands data are more easily done in terms of the Z/2Z-character data
parameterization of standard modules (2.2.3, 2.2.4, and 6.7.3 of [ 16]), which
involve positive systems of roots with involution 0. But then this calculation
can be split into that involving imaginary roots and complex roots separ-
ately. So it is easily seen that, in general, if XM is a standard module for M
such that X = IndMN (XM Q 1) occurs in the resolution of A(À, n), the data
for those modules in the resolution, not accounted for by the calculation
involving imaginary roots only, come from choices of positive root system
differing from that of X (or that induced from some XM in the block of XM )
only by complex roots of L. The différences in length also depend only on
these complex roots of L. But these are shared with M’ and H and play the
same role there. We omit the details. This proves 10.1 and thus accomplishes
the reduction to the equal rank case.
For the purpose of this paper, Tran has been formally extended from

stable tempered distributions to non-tempered stable sums of standard
modules by 4.7. We now connect this with the matching of orbital integrals.
Assume we are in the setting of Theorem 2.2.1, and let 0 = TranGH(0398’),
notation as in 8.11 and 8.12.

THEOREM 10.3: If f ~ C~c (G) and f’ ~ C~c(H) satisfy 3.1.1 of [14] (i.e.
"match" orbital integrals) then

Proof: One can proceed from 4.8, and then argue to analytically continue
4.4.6 of [14] or use Harish-Chandra’s transformation of descent as follows.

Write 0 = L + IndGMlNl(03C3i 0 1) for ai a K-unstable sum of tensor
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products of discrete series with (possible non-unitary) characters of the split
component of Mi, and 8’ = S + IndHM’lN’l(03C3’i 0 1). By descent as in 3.4.2. of
[ 14], we have f’M’l E C~c(M’i) and fMl E C~c(Mi) such that we have matching of
orbital integrals for the transfer from Mt to Mi. A well known result of
Harish-Chandra yields

But (TranMlM’l(03C3’i))(fMl) = 03B1l(f’Ml) by duality of matching of orbital integrals
to transfer. Q.E.D.

PROPOSITION 10.4: 0 is the unique distribution satisfying theorem 10.3.

Proof.- Let K be the maximal compact subgroup of G compatible with 8, and
let KH be the analogous maximal compact subgroup of H. Let C~c(G, K)
denote the space of smooth, compactly supported, K-finite functions on
G, similarly for C~c(H, KH). Clozel and Delorme have shown, [5], that if
f E C~c(G, K) then there exists an f’ E C~c(H, KH) satisfying the hypotheses
(matching of orbital integrals as in 3.1.1 of [14]). But C~c(G, K) is dense in
C~c(G) so 0 must be unique. Q.E.D.
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