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Introduction

Let M be a connected, smooth, orientable, paracompact, n dimensional
manifold. Let,&#x3E; be a Riemannian structure and 03C9 a volume form on M.
Let U be a compact, semi-simple Lie group and let G be the group of all
smooth mappings of M into U that equal the identity outside of a compact
set with pointwise multiplication. Let B denote an Ad(U)-invariant inner
product on u, the Lie algebra of U. Then certain "non-local" unitary
representations, T = T,&#x3E;,B,03C9, of G were introduced in [1] for U = SU(2)
and in [GGV, I, II], [AKT] for general U (see §5).
Our main results on these representations are

(1) If n  3 then T is irreducible.
(2) Let n = 2. Write m = Vol,&#x3E; (Vol,&#x3E; a volume element of M with

respect to , &#x3E;). Fix b a maximal abelian subalgebra of u and let
~···~B denote the norm on * corresponding to B. If ~03B1~B &#x3E; (803C0|(x)|)1/2
for x E M and all roots a of u relative to 4 then T is irreducible.
Whenever one has , ), B, ev as above then one has an inner

product (,), &#x3E;,B,03C9, on, 03A91c(M; u), the compactly supported smooth one
forms on M with values in u (see §6).

(3) If dim M = 2 then assume that , ), B, cv satisfy the condition in (2).
If dim M  2 then T, &#x3E;,B,03C9 and T, &#x3E;1,B1,03C91 are either equivalent or
disjoint. They are equivalent if and only if (,), &#x3E;,B,03C9 

= (,),&#x3E;1,B1,03C91.
Condition (2) can be made to hold by varying o and or B. (1), (3) for n  5
and U = SU(2) and 03C9, 03C91 the Riemannian volume elements are due to [I]
(as are the main "algebraic" ideas in the proof of the general case). (1), (2),
(3) without any conditions are asserted for n  2 and M non-compact in
[GGV, I]. But that paper is severely flawed. In [GGV, II] there is a proof of
(1), (3) for n  4 if M is the interior of a compact manifold with boundary
although it is not clear if this condition is necessary to their proof, since finite
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volume and non-compact seem to be enough) for the Riemannian volume
elements. In [AKT], (1) is proved for n  3 as is (2) and a slightly weaker
form of (3) for ~03B1~B &#x3E; (3203C0|(x)|)1/2, x E M for the same class of manifolds
as in [GGV, II] (since they refer to this paper for the details of the proof of
irreducibility). They also indicate the likelihood that the 32 can be replaced
by 8. We note that slight modifications of the original argument are necess-
ary in the case of compact M. Thus the new results in this paper involve

establishing the validity of (1), (2), (3) for general manifolds, replacing a 32
by an 8 and a stronger criterion for disjointness.

In this paper, the first four sections contain technical results on Gaussian
measures. The representation theory is in Sections 5 and 6. We suggest on
first reading that the reader start with Section 6 and refer back to the
necessary preliminaries.
As indicated above the main line of the proof of irreducibility is contained

in [I] and [GGV, I]. The différences involve precise results on uniform
mutual singularity of measures on spaces of distributions (our results can be
found in §3 and §4). We give a complete proof of the "algebraic" aspects of
the proof of irreducibility in §5, 6 for several reasons. One is that [GGV, I,
II] and [AKT] make use of undocumented "well known" results on direct
integrals (which are essentially proved in §5). Secondly, there is a rather
subtle argument regarding singularity of convolutions in [AKT], Lemma
3.2, for the case when n = 2 that we don’t understand (this of course, is not
meant to imply that it is wrong). We avoid this argument (which also
appears in [GGV, II], however there seems to be no problem with it if

n  3). Thirdly, the details of our argument are necessary in order to prove
(3). Fourthly, we fix a minor error in [GGV, II]. Finally, our proof should
be accessible to novices to quantum field theory and probability theory.

1. Gaussian measures

Let V be a locally convex, separable, topological vector space over R. Let
( , ) be a continuous, positive definite, symmetric, bilinear form (inner
product for short) on V. Let H be the Hilbert space completion of V with
respect to ( , ). If W is a topological vector space then we use the notation
W’ for the space of all continuous linear functionals on W endowed with the
weak topology.

If W is a finite dimensional subspace of V and ifQisa Borel set in W’ then
we set Zwn = {03BB E V’ : À1w E 03A9}. ZW,03A9 is called a cylinder set. Let A w be the
isomorphism of W onto W’ given by AW(v)(u) = (u,v). Let d wx denote the
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Lebesgue measure on W corresponding to an orthonormal basis of W
relative to ( , ). If dim W = n then we set (cf. [GV], IV, 3.1)

Let B = R(V’) denote the 6-algebra of sets generated by the cylinder sets.
We assume that 03BC = 03BC(,) has a countably additive extension to f!4. In this
case y is a probability measure which is called the Gaussian measure
associated with ( , ).
The following simple lemma will be used often in this paper.

LEMMA 1.1. Let v E V be such that (v, v) = 1. Then if r  1

Proof. By definition, the measure of the indicated set is

We now record two results. The first will be used later. The second is
standard but it gives a simple instance of the technique that we will use to
prove singularity of measures.

LEMMA 1.2. Let S, T ~ V’. Suppose that for each e &#x3E; 0 there exists Xe c- -4
such that 03BC(X03B5)  1 - e, Xe + À = Xe for À E T and 03BC(X03B5 + 03BB)  e for
À E S. Then there exists Y c- 4 such that 03BC(Y) = 1, Y + À = Yfor À E T
and J.1( Y + À) = 0 for À E S.

Proof. Set Zn - X2-n. Put Y = nk 1 ~~n=k Zn.

If h E H then we define Àh E V’ by 03BBh(v) = (v, h). If À E V’ then we say
03BB ~ H if 03BB = Àh for some h E H.

LEMMA 1.3. If À E V’. À ft H then there exists X E f!4 such that 03BC(X) = 1 and

J.1(X + À) = 0.
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Proof. Since À ft H there exists for each n  1, vn E V such that 03BB(vn)  n
and (vn , vn ) = 1. Set Zn = {03BE ~ V’: lç(vn)1  n/2}. Then Zn + 03BB c V’ - Zn.
So Lemma 1.1 implies that

and

Now apply the previous lemma with S = {03BB}, T the empty set.

2. Some observations about the first Sobelev space

We first prove a simple lemma which will be adequate to prove our results
on Gaussian measures for n  3. If q is a 1-form on Rn, 17 = 03A3~i dxi then
set

We use the notation B(x; r) for the open r-ball with center x in Ild". ~··· ~
will denote the usual Hilbert space norm on Rn.

LEMMA 2.1. Assume that n  3. Then there exists C(n) &#x3E; 0 depending only
on n such that for each 0  03B5  1/2 there exists f E Cx (B(0; 1)) with
(1) Iidh ~ = 1,
(2) f03B5(x)  03B5-n/2+1C(n) for llxll  c.

Proof Let h E C~(R) be such that h(x) = 1 for x  1 and h(x) = 0
for x  2. Set (as usual) r(x) = Ilxll. Put 9,(x) = h(r(x)le). Then

cpr E C~c(B(0; 1)) if 0  e  1/2 and d~03B5 = h’(r/03B5)dr/03B5. Let Qn denote
the volume of the n - 1 dimensional Euclidean sphere. Then

Set

and put
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We now prove an analogous result for n = 2. In this case one can show (as
was pointed out to us by Roger Nussbaum) the estimates are best possible.

LEMMA 2.2. Let n - 2. Given 0  C  1 there exists for each 0  8  1,
h,c E C~c (B(O; 1)) such that
(1) ~df03B5,C~ = 1.
(2) f03B5,C(x)  (C/(203C0)1/2)|log 811/2 for ~x~  8.

Before we give the proof we recall some well known (or easily proved)
sophomore calculus results. If f is a continuous function on R2 then we say
that ôflax = u and ~f/~y = v in L2 if u and v are square integrable and
whenever g E C~c(R2)

Under this condition we write df = udx + vdy and we say that df exists in
L2.
The following assertion is an easy calculation using Stoke’s theorem.

(1) Let h be a piecewise smooth function on R with supp h c (- 00, a],
a  00, such that h is constant in a neighborhood of 0. Set

f(x) = h(r(x)). Then df exists in L2 and df = h’(r)dr.
If f ~ LI (R2) and if g E L2(R2) then we set (as usual)

The following result is also standard.
(2) Let f be continuous on R2 with supp f c B(0; 1 - q) for some

0  q  1 and suppose that df exists in L2. Then given e &#x3E; 0 there

exists 0  £5  ~ and 9 E C~c (B(O; £5)) such that

Indeed, the first inequality is true for any non-negative 9 with L1-norm one
without any assumption on £5, and the second is an easy consequence of
uniform continuity.
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We now give the proof of Lemma 2.2. For each 0  £5  1 - e define h,,ô
by

Set qJe,b(Z) = h03B5,03B4(r(z)) for z E R2. If we apply (1) above we have

Set C(E, b)2 = 2n/11 - (log (1 - 03B4))/log 03B5|. Let 03BC &#x3E; 0 be given. Then (2)
above implies that there exists U E C~c (B(0; ~)), 0  ~  ô, with u  0 and

i u = 1 such that

and

Put and

Now lim03B4,03BC~0(1 - 03BC)C(03B5, b)-l = (2n)-1/2. So we can takeh,c = g03B5,03B4,03BC for ô
and J.1 sufficiently small.
The following simple covering Lemma is sufficient for our purposes.

LEMMA 2.3. Let n  2. If 0  8  1/4 then there exist zl , z2, ..., zN E

B(O; 5/4) with N  (2n + 1)n/03B5n such that B(O; 1) c UNj=1B(zj; e).
Note. B(zj; 1) c B(O; 5/2). 
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Proof. This is standard. For each x E B(0; 1) let mi E Z be the unique
element that satisfies mi  xin/03B5  Mi + 1. Put m(x) = (ml , ... , mn).
Then ~ x - 03B5m(x)/n~ II  8. Also |mi|  n/03B5 + 1. Take the zj to be an
enumeration of the set {03B5m(x)/n: x E B(0; 1)}. Clearly, there are at most
2(n/03B5 + 3)n such points.

3. Singularity of translates of Gaussian measures

Let M be a smooth, orientable, paracompact, connected manifold of dimen-
sion n. Let W be a finite dimensional vector space over R. If M is non-

compact set V = C~c (M; W), the smooth compactly supported functions on
M with values in W. If M is compact then we fix once and for all a base point
xo E M and set V = {f ~ C~(M; W):f(x0) = 01. If K is a compact set in
M set CK (M; W ) equal to the smooth functions from M to W that equal
0 outside of K. We endow C:(M; W) with the topology of uniform conver-
gence with all derivatives. If M is non-compact then we endow V with
the "union topology" (cf. [GV], p. 330). If M is compact then we use
the topology of uniform convergence with all derivatives. Then V is either
a nuclear space or a "union of nuclear spaces" (cf. [GV], p. 330). Let
03A91(M; W ) denote the space of all 1-forms on M with values in W. Let ,&#x3E;
be a Riemannian structure on M, B an inner product on W and 03C9 a

volume form on M. If 03B1,03B2 E 03A91(M; W) then ax, Px e HomR (TMx , W).
We write (a, P)x for the Hilbert-Schmidt inner product of ax with 03B2x.
That is, (a, 03B2)x = Tr(f3: llx). If f, g E V then we set

(1, g) = (df, dg)x w.

Let 03BC denote the corresponding Gaussian measure on V’ (§1). Then y is
countably additive ([GV], Theorem 6, p. 333).

If v E W’ and if x E M (x ~ xo if M is compact) then we set

vx(f) = v(f(x)) for f ~ V. Then vx ~ V’andvx = 0 if and only if v = 0. We
set ~v~B = supB(w,w)=1 Iv(w)I . We also write cv = o Vol,&#x3E; as in the introduc-
tion. If it is necessary to indicate the dependence of (, ) and J.1 on , &#x3E;,
B, m then we write ( , ), &#x3E;,B,03C9 and 03BC, &#x3E;,B,03C9.

PROPOSITION 3.1. Let v 1 ..., vd E W’ - (0). Let ( , &#x3E;i, Bi, 03C9i be as above
for i = 1, 2. Set 03BCi = 03BC, &#x3E;,Bl,03C9l. If n  3 there is no additional condition. If
n = 2 we assume
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Then if n  2 there exists X E f!4 such that 03BCi(X) = 1 and P2(X + L(vJx) =
0 for x1,..., xd E M (M - xo if M is compact) with xi ~ Xj if i ~ j.

We will derive this result from a lemma which will also be used in §5.

LEMMA 3.2. Let 03BCi, i = 1.2 be as in Proposition 3.1. Assume that

v E W* - {0} and if dim M = 2 that ~v~B1 &#x3E; (803C0|1(x)|)1/2 for x ~ M. If U
is an open subset of M (not containing xo if M is compact) then there exists
Y E f!4 such that 03BC1 (Y) = 1, Y + qJy = Y for y E M - U, ~ E W*, and

03BC2(Y + vx) = 0 for x E U.

We first show that Lemma 3.2 implies Proposition 3.1. So assume it. Set
Md = {(x1, ... , xd) E xdM: xi ~ Xj if i =1= j(xi ~ xo if M is compact)}.
(1) If X E Md then there exists an open neighborhood, Ux , of x in Md and

Yx ~ B such that J.11 (Yx) = 1 and M2 ( Yx + 03A3(vj)yj) = 0 for y ~ Ux.
Let us show how (1) implies the proposition. Then we will use Lemma 3.2
to prove (1). Clearly, Md is separable. There is therefore a countable sub-

covering {Uxj} of {Ux}x~Md. Set Uj = Uxj and Y = Yxj. Then

Take X = ~Yi.
We now derive (1). Let x = (xl , ..., xd) . Let Wi, i = 1, ..., d be an

open neighborhood of xl such that W n W = 0 if i ~ j and Xo ft W if M
is compact. Let Ux = W, x ... x Wd. Let Yx be the " Y" of Lemma 3.2 for
U = Wl and v = VI. Then J.11 (Yx) = 1. If Y = (y1, ..., yd) E Ux then Yi E
M - W1 for j  2. Thus Yx + 03A3j2(vj)yj = Yx. Thus 03BC2(Yx + 03A3j1(vj)yj) =
0 for y e Ux. 
We are left with the proof of Lemma 3.2. As above the following "local"

assertion implies the lemma.
(2) If x E U then there exist a neightborhood, Ux, of x in U and Yx E f!4

such that 03BC1(Yx) = 1, Yx + ~y = Yx for 9 E W*, y E M - U and
,u2(Yx + Vy) = 0 if y ~ Ux.

We are left with the proof of (2). Since the proof in the case of n  3 fairly
simple and contains most of the essential ideas for the more delicate case of
n = 2, we will now give the complete proof for the case n  3. It would be
worthwhile to read this even if there is only interest in the case n = 2 which
we will prove in the next section.

Let x E U. Let (U1, W) be a chart for U such that x E U1 and
(i) 03A8(U1) = B(O; 3),
(ii) BP(x) = 0.
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Set V, = (03A8)-1(B(0; 5/2)). On Rn we use the usual Riemannian structure
and Lebesgue measure for the volume element. We will write ~···~i for the
pointwise norm on Hom (TM*, W ) corresponding to ,&#x3E;i and Bi. We fix
an arbitrary inner product, B, on W * and write ~ ~ Il for the norm on

(Rn)* Q W* corresponding to the usual inner product tensored with B.
(A) There exist constants D1, D2 &#x3E; 0 such that if f ~ C~c(V1; W ) then

Let {y1, ... , yn} be the local coordinates on U, corresponding to W. Set

g,,,,i(z) = dyp, dYq&#x3E;i,x, z E U1.

Then there exist 03B1i, 03B2i &#x3E; 0 such that if z E Closure (V1) then

Also, coilu, = ui dY1AdY2A ... Adyn . There exist y; , 03B4i &#x3E; 0 such that

There exist Mi, mi &#x3E; 0 such that

Take Dl = min {03B3i03B1imi}, D2 = max {03B4i03B2iMi}. (A) now follows.
Note. We will also use this result in our proof in the case n = 2.
Set Ux = 03A8-1(B(0; 1)).

(B) There exist E, F &#x3E; 0 such that if 1/4 &#x3E; s &#x3E; 0 there exists an open
covering W, i = 1, ... , N  E03B5-n, of Ux with W ~ V1 and there exist
fi,03B5 ~ C~c(V1) such that
(a) ~dfi,03B5~ = 1 and
(b) fi,03B5(z)  F03B5-n/2+1 1 for z ~ Wi.

Indeed, let f03B5 be as in Lemma 2.1 and z, , ... , zN be as in Lemma 2.3. Set
W = 03A8-1(B(zi; 03B5)). Put gi,03B5(y) = f03B5(03A8(y) - zi) if y ~ V1 and 0 otherwise.
Then ~dgi,03B5~1  (D2)1/2 by (A) and gi,03B5(y)  C(n)03B5-n/2+1. Set f,E -
gi,03B5/~dgi,03B5~1, F = C(n)/(D2)1/2 and E = (2n1/2 + 1). This proves (B).
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Let w E W be such that B1(w, w) - 1 and v(w) = ~v~B1. Set

03B1i,03B5 = h,£ ~ w. Then Il d03B1i,03B5 Il = 1. If u E W then

with C = F~v~B1.
Set Zj@,, = (À E V’: IÀ(aj,e)1  C03B5-n/2+1/2}. Then Lemma 1.1 implies that

If Y ft U then 03B1j,03B5(y) = 0 so Zj,03B5 + qJy = Zj,, for ç E W*. Also, if u E Ux
then

Hence Lemma 1.1 implies that

(A) implies that /1 03B1j,03B5 Il 2  (D21D1 )1/2. Set 03BE = C2D1 /8D2 . Take Z, = ~JZj,03B5.
Then

if U E Ux and Z03B5 + ~y = Z03B5 if ~ ~ W* and y ~ M - U. Since

lim03B5~003B5-ne-C203B5-n+2/8 = 0 this implies that given 8 &#x3E; 0 there exists

Y, c- A such that 03BC1(Y03B5) = 1, Y03B5 + ~y = Ye for 9 E W*, y E M - U and
03BC2(Y03B5 + vu ) = 0 for u E Ux . This combined with the argument in the proof
of Lemma 1.2 completes the proof of (2) in the case n  3.

4. The proof of Lemma 3.2 for n = 2

In this section we assume that n = 2, otherwise the assumptions and
notation are as in §3. To simplify notation, we denote , &#x3E;1, B1, úJ1 by the
same symbols without the subscripts. We will be using some elementary
Riemannian geometry. For this we refer to [H], Chapter 1. Let d(x, y) be the
Riemannian distance on M. If m E M then we denote by ~v~m the norm of
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v E TMm relative to , &#x3E;m. Put B(m; x; r) = {v E TMm : Ilv - xllm  rl
for x E TMm. If x E M we set Bx(r) = {y E M: d(x, y)  m}. For m ~ M,
let expm be the (geodesic) exponential map of M at m. For each m E M
let Sm &#x3E; 0 be such that expm : B(m; 0; sm) ~ Bm(sm) is a surjective
diffeomorphism.

If we identify T(TMm)v for v E TMm with TMm in the canonical way then
d(expm)0 = I for m E M. This implies that for each ô &#x3E; 0 there exists

0  11m(b)  sm such that if f ~ C~c (Bm(~m(03B4)) then

Here d,,x is the Lebesgue measure on TMm corresponding to an ortho-
normal basis relative to  , &#x3E;m.

Fix x E U. Choose s &#x3E; 0 such that Bx(3s) c U. Put r(03B4) =
min {s/3, ~x(03B4)/3}. Set U1 = Bx(3r(03B4)), VI = Bx(5r(03B4)/2), W1 = Bx(r(03B4)). We
now prove the assertion of (2), §3, for Ux = W, if à is chosen to be

sufficiently small. Let 0  03B6  1, and let f03B5,1-03B6 be as in lemma 2.2. Set
ue,,(x) = f03B5,1-03B6(x/r(03B4)). Then ~u03B5,03B6~ = 1 (here we are using the norms as in
§2) and

Let Zl, ... , ZN (N  (1 + 2/2)203B5-2 = Ee-2) be as in Lemma 2.3 for
e &#x3E; 0. Put Zi(03B4) = expx(B(x; r(03B4)zi; r(03B4)03B5)). Define 03BEi,03B5,03B4,03B6 ~ C~c(V1) by
03BEi,03B5,03B4,03B6(y) =0 if y ~ V1 and 03BEi,03B5,03B4,03B6(expx (y)) = u03B5,03B6(y - r(03B4)zi) for y E
B(x; r(03B4)zi; r(03B4)03B5). Put fi,03B5,03B4,03BE = 03BEi,03B5,03B403B6/~d03BEj,03B5,03B4,03B6~. Then (*) implies that

fi,03B5,03B4,03B6(Z)  (1 - 03B6)|(log e)/27r(l + £5)e(x)11/2 for z E Zi(03B4). (**)

Let w e W be such that v(w) = ~v~B and B(w, w) = 1. Put

Then ~d03B1i,03B5,03B4.03B6~ Il = 1 and if u ~ Zi(03B4) then

Our assumption on v implies that IlvllB &#x3E; (803C0|(x)|1/2. Thus we can choose
03B6 and £5 so small that
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for some y &#x3E; 0. Fix thèse values of £5 and (. Set 03B1j,03B5 = 03B1j,03B5,03B4,03B6 and Ux = W1.
Set Zj,03B5 = {03BB E V’ : |03BB(03B1j,03B5)|  (2 + y)llog 03B5|1/2}. Then lemma 1.1 implies

that

If u E M - U and ~ E W then ~u(03B1j,03B5) = 0 so Zj,e + gu = Zj,03B5. Also if u E
Zj then Zj,03B5 + (v)u ~ (À E V’: 03BB(03B1j,03B5 /~d03B1j,03B5 ~2)  y(2 + y)llog 03B5|1/2/~d03B1j,03B5 ~2}.
Thus, if we set çj = (y(2 + 03B3)/ ~d03B1j,03B5 112)212 then Lemma 1.1 implies that

Now §3 (A) implies that there exists a constant D &#x3E; 0 independent of j, e
such that Il d03B1j,03B5 Il  D. Thus if we set 03BE = y/2D2 then çj &#x3E; ç. Hence if u E Zj
then

Put Z03B5 = ~jZj,03B5. Then

Z03B5 + ~u = Z03B5 for ço E W*, u E M - U and

Thus given 03B5 &#x3E; 0 there exists Y, E f!4 such that 03BC(Y03B5)  1 - 8,

Y03B5 + ~y = Y03B5 for y ~ M - U, ~ ~ W* and 03BC2(Ys + vu)  03B5 for u ~ Ux.
The result now follows from the argument in the proof of Lemma 1.2.

5. Some représentation theory

As in §3, let M be a smooth, paracompact, connected, orientable manifold.
Let (W, ( , )) be a finite dimensional real inner product space. Fix a
Riemannian structure, ,&#x3E; and a volume element, co, on M. If M is

compact then fix a base point, xo , set V = C~c (M; W ) if M is non-compact
and V = {f ~ CI (M, W): f(x0) = 01 if M is compact. We set Q( f, g) =
(df, dg) as in §3. Let J.1 be the Gaussian measure on V’ corresponding
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to Q. We define a unitary representation, S, of V on L2(V’, 03BC) by
S(v)f(À) = e

Let VI’ V2, ... be a fixed sequence of non-zero (not necessarily distinct)
elements of W’. If dim M = 2 then we assume that ~vi~ &#x3E; (803C0|(x)|)1/2 for
x e M and all i. If I = (il , ..., id) define for x = (Xl’ ... , xd) e Md (see
§3), 03A8I(x)(f) = 03A3jvij(f(xj)), for f ~ V. Then 03A8I defines a continuous map-
ping of Md into V’ (with the weak topology). It is easily seen that

03A8(Md) ~ B. If E is a Hilbert vector bundle over Md+k for d  0, k  0 and
if úJ1 is a volume form on M then we set L2(E, 03C91) equal to the space of
square integrable cross sections of E (here we use the product measure cvd+k
on Md+k). If f ~ L2(E, 03C91), v e V and I = (i1, ..., id) then we set

Let , &#x3E;1, B1, Mi be respectively a Riemannian structure on M, an inner
product on W and a volume form on M. Let Q1 be the inner product defined
as above on V using ,&#x3E;1, BI and úJ1 in place of  , &#x3E;, B, M. Let MI be
the corresponding Gaussian measure on V’.

LEMMA 5.1. Let d &#x3E; 0. If C is a bounded linear operator from L2(V’, 03BC) to
L2(V’, 03BC1) ê L2(E, 03C91) such that CS(v) = S(v) Qx 03C3I,E(v)C for all v E V
then C = 0. 

Proof. We write 03A8I(x) = 03A8I(x1, ...,xd). Set Q(À) = 1 for all À- E V’. We
note that Closure(span(S(v)03A9)) = L2(V’, Il). Indeed, span {ei·(v):v e V} is
dense in L2(V’, 03BC) (cf. [Gu, §7.2]). This implies that C = 0 if and only if
Cn = 0. Let f = CQ. We assume that f ~ 0 and derive a contradiction.
Then we can look upon f as a function on V’ with values in L2(E). Thus we
can write feÀ-, x) E Ex . Let

Then C is a continuous linear map of L2(V’, 03BC) onto D. On V’ x M’I’ we
put the product measure, J.1 x úJ1+k. Let 0393(03BB,, x) = Â + 03A8I(x)~ v’ for
03BB e V’, x E M’+’. Then F is continous. We define a measure, y, on V’ as
follows:

Thus
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Then the representation of V on D given by the restriction of S 0 03C3I,E
to D is equivalent with the representation, 03B2, of V on L2(V’, y) with
03B2(v)~(03BB) = ei03BB(v) ~(03BB). Thus C induces a continuous linear map, Ci, of
L2(V’, 03BC) into L2(V’, y) such that C1S(v) = 03B2(v)C1, v E V and C1Q = 03A91
(03A91 is the constant function 1 on V’ looked upon as an element of L2(V’, y)).
Now

On the other hand

Set C*103A91 = h. Then

Since both y and h(03BB) d03BC(03BB) are cylinder set measures (finite valued a-additive
measures on f!4), we see that this implies that dy = h(03BB) d03BC(03BB).

Proposition 3.1 implies that there exists X E f!4 such that 03BC(X) = 1

and 03BC1(X + 03A8I(x)) = 0 for all x E Md+k. Thus y(X) = J h(03BB) d03BC(03BB) =

IV1 h(À) d03BC(03BB) = (03A91, 03A91) = ~ f1l2. On the other hand y(X) = 0 by (*). This
is a contradiction, so the lemma follows.

We now assume that vl , ... , vr are distinct and satisfy the hypothesis
above. Let El , E2, ... , Er be Hermitian vector bundles over M. We
define an action of V on each Ei by 03C3j(v)x|(Ej)x = eivj(v(xj)) I. Let

E = E, 0 E2 EB ... EB Er with action ~ 03C3i = a. Let (DE be the d-fold
tensor product bundle over Md with the corresponding tensor product
action of V, ~d03C3. Let Sd, the symmetric group on d letters, act on Md by
permuting the coordinates. We also let s E Sd act on ~dE by el 0 ... Q ed
over (x1,..., xd) goes to s(e1 ~ ... ~ed) = es1 ~ ... ~esd over

(xsl , ... , xsd). Then ~d03C3(v) commutes with the action of Sd.
By our definition of Md the action of Sd is free. We therefore have a

manifold N d = SdB Md. Let 03C0 be the canonical projection of Md onto Nd. We
note that úJd "pushes down" to a measure on Nd. We write L2(~dE) for
L2(~dE, úJd). Let Hd be the space of all f ~ L2(~dE) such that

sf(x1,... , xd) = f(xs1,..., xsd). We define a representation, 03C4, of V on

by 03C4(v)f(x) = ~d03C3(v)xf(x).
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The following result is undoubtedly a very special case of a well known result
that is true for totally discontinuous actions of discrete groups. We include
a proof since it is short.

LEMMA 5.2. There exists an open subset, Fd, of Md such that n is injective on
Fd and Nd - nF d has measure 0.

Proof. Whitney has shown [W] that we may assume that M is a closed analytic
submanifold of RN for some large N. Choose a non-constant real analytic
function,f, on M. Set Fd = {(x1,..., xd):f(x1) &#x3E; f(x2) &#x3E; ... &#x3E; f(xd)}.
Then clearly sFd n Fd is empty if s ~ 1. Set fij(x1, ... , xd) = f(xi) -
f(xj) for i ~ j. Then fij is real analytic and non-constant on Md for i ~ j.
Now, the complement to USEsd sFd is Ul~j{x ~ Md:fij(x) = 01. Since the
zero set of a non-constant real analytic function has measure 0 relative to
any volume form, the result follows.
We will "abuse notation" and think of rc as projecting onto Fd. Also Hd

is, under these identifications, just L2(OdElFd) with the same action of V. Set
~dE|Fd = Ed. Then Ed splits into a direct sum ~EdI over I = (i1,... , id),
1  ij  r and

Let 03C4I,E be the representation of V on L2(Ef) given by 03C4I,E(v)f(x) =
03C4(v)f(x).

LEMMA 5.3. Let U c Nd be open. Let C be a continous linear operator on

L2(V’, 03BC) à L2(Ef) such that C(S(v) ~ 03C4I,E(v)) = (S(v) ~ 03C4I,E(v))C for all
v E V. Then C(L2(V’, 03BC) ê L’(EÎu» c L2(V’, 03BC)  L2(EdIBU).

Proof. Let Z = Nd - U. Then

a direct sum of invariant subspaces under S (D 03C4I,E. Thus we must show
that if C is a continuous linear operator from L2(V’, 03BC) à L2(EdIBU) to

L2(V’, 03BC) é L2(EdIBZ) such that C(S(v) Qx 03C4I,E(v)) = (S(v) (x) 03C4I,E(v))C for
all v E V then C = 0. We first reduce this result to a special case. Let x E U
and let y E Fd be such that 03C0(y) = x. Then there exist open neighborhoods
W , ... , Wd of yl , ... , Yd such that W (-) Wj = 0 if i ~ j and W, =
W, x W2 x ... x Wd c Fd. Now Ux03C0Wx = U. A countable number of
the 03C0Wx cover. Let Px be the projection of L2(EdI|U) onto L2(EdI|03C0Wx) given by
multiplication by the characteristic function of n V£ . If C(I Q Px ) = 0 for all


