The factoriality of Zariski rings
Compositio Mathematica, Tome 63 (1987) no. 3, p. 273-290
@article{CM_1987__63_3_273_0,
     author = {Lang, Jeffrey},
     title = {The factoriality of Zariski rings},
     journal = {Compositio Mathematica},
     publisher = {Martinus Nijhoff Publishers},
     volume = {63},
     number = {3},
     year = {1987},
     pages = {273-290},
     zbl = {0631.13017},
     mrnumber = {909383},
     language = {en},
     url = {http://www.numdam.org/item/CM_1987__63_3_273_0}
}
Lang, Jeffrey. The factoriality of Zariski rings. Compositio Mathematica, Tome 63 (1987) no. 3, pp. 273-290. http://www.numdam.org/item/CM_1987__63_3_273_0/

1 P. Blass: Zariski Surfaces. Dissertations Mathematicae 200 (1980). | MR 564489 | Zbl 0523.14027

2 P. Blass: Some geometric applications of a dinerential equation in characteristic p > 0 to the theory of algebraic surfaces. Contemp. Math. A.M.S. 13 (1982). | Zbl 0561.14018

3 P. Blass: Picard groups of Zariski Surfaces I. Comp. Math. 54 (1985) 3-86. | Numdam | MR 782383 | Zbl 0624.14021

4 P. Blass and J. Lang: Picard groups of Zariski Surfaces II. Comp. Math. 54 (1985) 36-39. | Zbl 0624.14021

5 R. Fossum: The Divisor Class Group of a Krull Domain. Springer-Verlag, New York (1973). | MR 382254 | Zbl 0256.13001

6 H.W. Gould: Combinatorial Identities. Morgantown, W. Va (1972). | MR 354401 | Zbl 0241.05011

7 R. Hartshorne: Algebraic Geometry. Springer-Verlag, New York (1977). | MR 463157 | Zbl 0367.14001

8 I. Kaplansky: Commutative Rings. Allyn and Bacon, Boston (1970). | MR 254021 | Zbl 0203.34601

9 J. Lang: An example related to the affine theorem of Castelnuovo. Michigan Math. J. 28 (1981). | MR 629369 | Zbl 0495.14021

10 J. Lang: The divisor classes of the hypersurfaces zpn = G(x1, ..., xm) in characteristic p > 0. Trans A.M.S. 278 2 (1983). | MR 701514 | Zbl 0528.14018

11 J. Lang: The divisor class group of the surface zpn = G(x, y) over fields of characteristic p > 0. J. Alg. 84, 2 (1983). | MR 723398 | Zbl 0528.14017

12 J. Lang: The divisor classes of the surface zp = G(x, y), a programmable problem. J. Alg. 100, (1986).

13 J. Lang: Locally factorial generic Zariski surfaces are factorial. J. Alg., to appear. | Zbl 0643.14023

14 M. Nagata: Local Rings. John Wiley & Sons, Inc. (1962). | MR 155856 | Zbl 0123.03402

15 M. Nagata: Field Theory. Marcel Dekker, Inc. (1977). | MR 469887 | Zbl 0366.12001

16 Stohr and Voloch: A formula for the Cartier operator on plane algebraic curves. Submitted for publication.

17 P. Samuel: Lectures on Unique Factorization Domains. Tata Lecture Notes (1964). | MR 214579 | Zbl 0184.06601

18 R. Walker: Algebraic Curves. Princeton University Press, Princeton, (1950). | MR 33083 | Zbl 0039.37701