On the Siegel modular function field of degree three
Compositio Mathematica, Tome 63 (1987) no. 1, p. 83-98
@article{CM_1987__63_1_83_0,
     author = {Tsuyumine, S.},
     title = {On the Siegel modular function field of degree three},
     journal = {Compositio Mathematica},
     publisher = {Martinus Nijhoff Publishers},
     volume = {63},
     number = {1},
     year = {1987},
     pages = {83-98},
     zbl = {0632.10027},
     mrnumber = {906380},
     language = {en},
     url = {http://www.numdam.org/item/CM_1987__63_1_83_0}
}
Tsuyumine, S. On the Siegel modular function field of degree three. Compositio Mathematica, Tome 63 (1987) no. 1, pp. 83-98. http://www.numdam.org/item/CM_1987__63_1_83_0/

1 F.A. Bogomolov and P.I. Katsylo: Rationality of some quotoent varieties. Math. USSR Sbornik 54 (1986) 571-576. | Zbl 0591.14040

2 G. Frobenius: Über die Beziehungen zwischen den 28 Doppel-tangenten einer ebenen Curve vierter Ordnung. J. Reine Angew. Math. 99 (1886) 275-314. | JFM 18.0696.01

3 J. Igusa: On Siegel modular forms of genus two. Amer. J. Math. 84 (1962) 175-200. | MR 141643 | Zbl 0133.33301

4 J. Igusa: On Siegel modular forms of genus two (II). Amer. J. Math. 86 (1964) 392-412. | MR 168805 | Zbl 0133.33301

5 J. Igusa: Modular forms and projective invariants. Amer. J. Math. 89 (1967) 817-855. | MR 229643 | Zbl 0159.50401

6 J. Kollár and F.O. Schreyer: The moduli of curves is stably rational for g ≦ 6. Duke Math. J. 51 (1984) 239-242. | Zbl 0576.14027

7 H. Maass: Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Mat. Fys. Medd. Vid. Selsk. 38, 14 (1964). | MR 171758 | Zbl 0244.10023

8 M. Ozeki and T. Washio: Explicit formulas for the Fourier coefficients (of Eistenstein series of degree 3). J. Reine. Angew. Math. 345 (1983) 148-171. | MR 717891 | Zbl 0512.10022

9 M. Ozeki and T. Washio: A table of the Fourier coefficients of Eistenstein series of degree 3. Proc. Japan Acad. Ser. A 59 (1983) 252-255. | MR 718614 | Zbl 0522.10018

10 S. Raghavan: On Eisenstein series of degree 3. J. Indian Math. Soc. (N.S.) 39 (1975) 103-120. | MR 414493 | Zbl 0412.10020

11 B. Riemann: Zur Theorie der Abel'schen Funktionen für den Fall p = 3. In: Math. Werke. Teubener, Leipzig (1876) 456-476.

12 R. Sasaki: On the equations defining curves of genus three and the moduli (Japanese). In: Around theta functions and Siegel modular forms. RIMS Kokyuroku 447 (1982) 17-31.

13 G. Shimura: On the zeta function of an abelian variety with complex multiplication. Ann. Math. (2) 94 (1971) 504-533. | MR 288089 | Zbl 0242.14009

14 G. Shimura: On the field of rationality for an abelian variety. Nagoya Math. J. 45 (1972) 167-178. | MR 306215 | Zbl 0243.14012

15 G. Shimura: On the real points of an arithmetic quotient of a bounded symmetric domain. Math. Ann. 215 (1975) 135-164. | MR 572971 | Zbl 0394.14007

16 C.L. Siegel: Einführung in die Theorie der Modulfunktionen n-ten Grades. Math. Ann. 116 (1939) 617-657. | JFM 65.0357.01 | MR 1251 | Zbl 0021.20302

17 C.L. Siegel: Moduln Abelscher Funktionen. Nachr. Akad. Wiss. Gòttingen 25 365-427. | MR 166196 | Zbl 0122.32102

18 C.L. Siegel: Topics in complex function theory, Vol. 3. Wiley-Interscience, New York, (1973). | MR 476762 | Zbl 0257.32002 | Zbl 0184.11201

19 S. Tsuyumine: On Siegel modular forms of degree three. Amer. J. Math. 108 (1986) 755-862;Addendum, ibid., 1001-1003. | MR 853222 | MR 853217 | Zbl 0602.10015

20 H. Weber: Theorie der Abel'schen Funktionen vom Geschlecht 3. Berlin (1876). | JFM 08.0293.01