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HYPERCOMPLEX ALGEBRAS, HYPERCOMPLEX ANALYSIS
AND CONFORMAL INVARIANCE

John Ryan

Abstract

In this paper we use spherical harmonics to deduce conditions under which a generalized,
first order, homogeneous Cauchy-Riemann equation possesses a homotopy invariant,
Cauchy integral formula. We also deduce conditions under which the solutions to these
equations are invariant under Môbius transforms in Cn.
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Introduction

The study of function theories over Clifford algebras has been developed
and applied by a number of authors [3-9,11,12,14,16-23]. These func-
tion theories contain nautural generalizations of many aspects of one
variable complex analysis [1]. Each function theory involves the study of
solutions to generalized Cauchy-Riemann equations, and contains a

Cauchy theorem, Cauchy integral formula, and Laurent expansion theo-
rem. Moreover, the classes of solutions to the generalized Cauchy-Rie-
mann equations are invariant under generalized Môbius transforms [18].
The study of these function theories is referred to as Clifford analysis [3].

Many of the results obtained in Clifford analysis rely on the existence
of the generalized Cauchy kemels, and associated integral formulae.
However, in recent work [17] the author has shown that many results in
Clifford analysis, not associated with the generalized Cauchy kernels,
may also be obtained over arbitrary complex, finite dimensional, associa-
tive algebras with identity. This observation leads naturally to the

question ’what properties does an algebra require to admit a hypercom-
plex function theory, together with a homotopically invariant Cauchy
integral formula?’ In this paper we use spherical harmonics to deduce
that a complex, associative algebra with identity admits a hypercomplex
function theory with a real analytic Cauchy kernel and associated

homotopy invariant Cauchy integral formula if and only if it contains a
subalgebra which is isomorphic to a Clifford algebra.
We refer to algebras admitting these types of hypercomplex function

theories as hypercomplex algebras. As an example of such an algebra one
may consider the k-f old symmetric tensor product of a complex Clifford
algebra with itself. In this case the associated hypercomplex analysis
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reduces to a study of the half integer spin massless fields considered in
[4,10] and elsewhere.

Despite the presence of an isomorphic copy of a Clifford algebra
within each hypercomplex algebra, it does not automatically follow that
the associated function theory is as rich as the ones studied so far in
Clifford analysis. As an example we construct a hypercomplex algebra
algebra which does not admit any non-trivial solutions to its generalized
Cauchy-Riemann equations. We conclude by deducing that a hypercom-
plex algebra admits conformally invariant classes of hypercomplex func-
tions if and only if the subalgebra generated by the algebraic elements
arising in the generalized Cauchy-Riemann equations is isomorphic to a
Clifford algebra. The paper includes a number of examples of algebras
admitting generalized Cauchy integral formulae, and some of the rela-
tions between these theories is described.

Preliminaries

Suppose that E and F are two real, finite dimensional vector subspaces
of a space K. Suppose also that E and F are of equal dimension, that
there is a quadratic form Q : E X E - R and that there is an isomor-
phism L: E - F, such that on the intersection of E with F the map L is
the identity map. Let A be the minimal subspace of K containing E U F
and let

be the tensor algebra over A. Let 11(Q) be the two sided ideal generated
by the elements x ~ y - Q(x, x ) where x E E, y E F and y = L ( x ).

DEFINITION 1: The quotient algebra T(A)/I1(Q) is called a pre-Clifford
algebra, and it is denoted by P1C(E, F).

In the case where E = F the algebra is a universal Clifford algebra of
dimension 2n, and the above construction corresponds to the one given
in [2]. We denote the universal Clifford algebra by C(E). It follows from
our construction that each pre-Clifford algebra is associative. We define
iQ: A - P1C(E, F) to be the canonical map given by the composition
A ~ T(A) ~ P1C(E, F). It is not difficult to verify that the linear map
iQ: A ~ PIC(E, F) is an injection. In the cases where E =1= F it may be
observed that for each x ~ E - ( E~F ) and each y~F-(E~F) the
elements {iQ(x)p, iQ(y)p}~p=1 are independent elements of the algebra
P1C(E, F). It follows that in these cases the pre-Clifford algebra is
infinite dimensional. Let 0: A - A’ be a linear map into an algebra A’,
with unit 1, such that for all x ~ E and Y E F with y = L ( x ) the identity
~(x)~(y) = Q(x, x )1 is satisfied. Then it follows from our construction



63

that there exists a unique homomorphism : PLC(E, F)~A’ such that
·iQ=~.
DEFINITION 2: [2] Suppose that E = F and ~: E - A’ is a linear map
into an algebra A’, with identity 1, such that for all x E E the identity
O(X)2 = Q(x, X)l is satisfied. Then the minimal subalgebra of A’ con-
taining the space 0 (E) is called a Clifford algebra.

Clearly each universal Clifford algebra is a Clifford algebra.
Although we have that iQ(x)iQ(L(x)) = Q(x, x)1 for each x ~ E, it

does not follow that iQ(L(x» - iQ(x» = Q(x, x)l for each x ~ E.

LEMMA 1: Suppose that E n F =1= E, and that the quadratic four : (E -
(EnF)), (F-(E~F))~R is nondegenrate. Then for each non-zero
xE E - (E n F) the element L(x) 0 x - Q(x, x) e T(A) is not a mem-
ber of the ideal I1(Q).

PROOF: For simplicity we shall place L(x)=y. Suppose that y~x -
Q(x, x)~I1(Q) then there exists a positive integer N, and elements
Xl,..., XN’ y1,..., YNE T(A) such that

Now consider the two sided ideal, I2(Q) of T(A), generated by the
elements

with u E E, v E F and v=L(u),
and

with x~E-(E~F) and y=L(x).
The quotient algebra B(E, F ) = T(A)/12(Q) is well defined, associa-

tive, and has an identity. Also, we have a canonical injection jQ : A~
B(E, F ) given by the composition A - T(A)~ B(E, F).

It follows that

where 1 is the unit of the algebra B(E, F). However, if the identity (1)
is valid we also have
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Hence,

Equation (2) contradicts our assumption that the quadratic form Q is
non-degenerate on the space E - (E ~ F). The result follows.
We now introduce the following algebra:

DEFINITION 3: For the two sided ideal, I3(Q) of T(A), generated by the
elements x ~ x - Q(x, x ) and y ~ x - Q(x, x ), where x E E, y E F
and y = L ( x ), the quotient algebra PC(E, F ) = T(A)/I3(Q) is called a
pseudo-Clifford algebra.

Again, in the case where E = F the pseudo-Clifford algebra is the
universal Clifford algebra C(E). As in the case for the pre-Clifford
algebras these algebras are associative, and there is a canonical injection
kC: A ~ PC( E, F ) given by the composition

In the cases where E ~ F it may be observed that for each x E E - ( E ~
F ) and each y~F-(E~F) the elements {kQ(x)p, kQ(y)p}~p=1 are
independent elements of the algebra PC(E, F). It follows that in these
cases the pseudo Clifford algebra is infinite dimensional. Let ~: A - A’
be a linear map into an algebra A’, with unit 1, such that for all x E E
and y E F with y = L(x) the identity ~(x)~(y) = ~(y)~(x) = Q(x, x)l
is satisfied. Then it follows from our construction that there exists a

unique homomorphism (p: PC(E, F) - A’ such that kQ = ~.
For the rest of this paper we shall restrict our attention to the cases

where the quadratic form, Q, is negative definite.
Suppose that the dimension of E is n and the dimension of E ~ F is

q, where 0  q  n. Then from our constructions we may choose bases

and

of the spaces iQ(A) and kQ(A) respectively, such that
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where er ~ iQ(E), fr~iQ(F-(E~F)), e’r~kQ(E), f’r~kQ(F-(E~
F)).

In the case where E = F the elements 1, el, ... , en, ele2, ... ,
en-1en, ... , el ... en form a basis for the algebra C(E). A general basis
element of C( E ) is denoted by ej1 ... ejr, where 1  r  n and jl  ...
 jr. From this basis it may be observed that the vector space C( E ) is
canonically isomorphic to the vector space A(E), where A(E) is the
alternating algebra generated from E. As in [2] and [15, Chapter 13] we
observe that there are two natural automorphisms acting on C(E). First
we have

and second

For each u E C( E ) we denote - ( u ) by û and - ( u ) by û. Moreover, we
have uv = vû and uv = vû, for each v E C(E).
A general vector u of C(E) may be written as

where uo, Ul’ Un, uj1... jr, ul... n E R.
It may be observed that the vector space

is a subalgebra of C( E ). It is called the even subalgebra of C( E ). Each
even subalgebra is isomorphic to a Clifford algebra. This may be seen
from the following construction [2]:

CONSTRUCTION: Suppose El and E2 are real vector spaces with El ç E2
and the dimension of E2 - El is one. Then the linear map ~: C(E1) ~
C+(E2) given by ei ~ eien+1 is an algebra isomorphism.
We now give some examples of Clifford algebras [2]:
A. In the case where the dimension of E is one the algebra C(E)

corresponds to the complex field C.
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B. In the case where the dimension of E is two the algebra C(E) is
spanned by the vectors eo, el, e2, ele2l and the multiplication of
these vectors satisfy the same relations as the basis elements of the
quaternion algebra H, as is illustrated in [17]. It follows that the
algebra C( E ) is isomorphic to the quaternionic division algebra.

C. In the case where the dimension of E is three the algebra C( E ) is
spanned by the vectors eo, el, e2, e3l ele2l ele3l e2e3l ele2e3.
Moreover, the vectors (e0+e1e2e3) and (e0-e1e2e3) satisfy the
relation ( eo + e1e2e3)(e0 - e1e2e3) = 0. It may be deduced [2] that
the vectors ( eo ± e1e2e3), ej(eo ± e1e2e3), where j = 1, 2, 3, span
two subalgebras of C(E), and each of these subalgebras is isomor-
phic to the quaternion algebra. It follows that in this case

From now on we shall consider the complex algebras

and

obtained by taking the symmetric tensor product of C with the real
algebras C(E), P1C(E, F) and PC( E, F) respectively. We shall denote
these algebras by CC(E), P1CC(F, F) and PCC(E, F) respectively. In
the case where the dimension of E is two it may be observed, [22] by
making the identifications

that the complex quaternion algebra (H(C) = CC(E)) is canonically
isomorphic to the algebra M(2, C) of two by two complex matrices. It
follows that in the case where the dimension of E is three that

It is straightforward [2] to deduce that when the dimension of E is n,
and n = 3 mod 4 the elements eo ± el ... en commute with each element
of the algebra CC(E) and (e0+e0...en)(e0-e1...en)=0. It follows
that the sets CC(E)+ = Cc(E)(eo + el ... en) and Cc(E)- = Cc(E)(eo-
el ... en ) are two mutually annihilating two sided ideas of the algebra
CC(E) and CC(E) = CC(E)+ ~ CC(E)-. Also, it may be deduced that
when the dimension of E is n, and n = 1 mod 4 the elements eo ± iel ... en
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commute with each element of the algebra CC(E), and ( eo +
ie 1 ... en)(e0 - ie 1 ... en) = 0. It follows that the sets CC(E)+,i =
CC(E)(e0+ie1...en) and CC(E)-,i=CC(E) are two

mutually annihilating two sided ideals of the algebra CC(E), and CC(E)
=CC(E)+,i+CC(E)-,i. It may be observed that the ideals CC(E)+,
CC(E)-, CC(E)+,i, CC(E)-,i are examples of Clifford algebras.

In the cases where the dimension of E is n and n is even the Clifford

algebras CC(E) are simple [2].
We shall denote the complex subspace of CC(E) spanned by the

vectors {ej}nj=1 by C n, where n is the dimension of E, and a vector

z1e1 + ... + znen E en shall be denoted by z. Moreover, we shall denote
the complex subspace of CC(E) spanned by the vectors {ek}nk=0 by
Ceo + Cn, and a vector z0e0+z1e1 + ··· + znen ~ Ce0+Cn shall be
denoted by z. It may be observed that for each z ~ cn and each
z ~ Ceo + C n we have z2 ~ C and zz ~ C. We shall also denote the real
space spanned by vectors {ej}n1 j=1 ~{iek}nk=n1+1 by Rn1,n2, where 0  n1,
n2  n and n 1 + n 2 = n. The set {z ~ Cnz2 = 0} is denoted by S, and is
called the null cone of C n. Similarly the set {z ~ Ceo + Cn : z · z = 0} is
denoted by S’, and is called the null cone of Ce0 + en. It may be
observed that each z ~ cn - S and each z ~ ( Ceo + cn) - S’ is invert-
ible in the algebra CC(E); their inverses are -z(z2)-1 and z(zz)-1,
respectively.

Using these inverses we may introduce the following groups [18]:
A. PinC(Cn)={Z~CC(E):Z=z1...zp, where p~Z+, and for r E
Z+ with 1  r  p the element zr E Cn - S}. This group is a complex
Lie group, and its dimension is 1 2(n2 - n+2). Moreover, it may be
deduced from the construction we gave of the Clifford algebra C(E) that
for each Z ~ PinC(Cn) we have that

(The Lie algebra pinC(Cn) of PinC(Cn) is spanned by the vector eo and
the bivectors elen, ... , en- len ).
B. SpinC(Cn) = {Z ~ Pin(Cn) : Z = zl ... zp and p is even}.
C. Spoinc(Cn) = {Z E C(E) : Z = z’1... z p, where p E Z+, and for r E
Z+ with 1  r  p the element zr ~ (Cen+Cn)-S’}.
It may be observed from construction 1 that

Hypercomplex f unctions and generalized Cauchy intégral formulae

In [17] we introduce the following class of functions:

DEFINITION 4: Suppose that A’ is a complex, associative algebra and W
is a complex, finite dimensional subspace spanned by the vectors {kj}pj=1.
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Then, for U a domain in W, a holomorphic function F : U - A’ is called
left regular with respect to the vectors {kj} if it satisfies the equation

for each Z E U.

OBSERVATION 1: It may be deduced [17] that a holomorphic function
J" : U - A’ is left regular with respect to the vectors {kj}p if and only if
the differential form DZJ"(Z) is closed where DZ = L (-1)jkj d zl

j=l
A ... dzj-1 A dzj+1... A dzp. From observation 1 we have:

THEOREM A (Cauchy theorem) [17]: Suppose F : U - A’ is a left regular
function with respect to the vectors ( kj 1, and M is a real p-dimensional,
compact manifold lying in U. Then

From theorem A we observe that equation (6) may be regarded as a
generalization of the Cauchy-Riemann equations [1].
We now give some examples of generalized Cauchy-Riemann equa-

tions :
1. From the basis elements eo, el, e2, ele2 of the quaternions we say
that a holomorphic function f, : U1 ~ H(C), where Ul is a domain in

H(C), is complex quaternionic left regular if it satisfies the equation

Equation (7) is a holomorphic extension of the Cauchy-Riemann_Fueter
equation studied in [7,8,13,23]. Properties of solutions to equation (7)
have previously been studied in [12,22].

2. for U2 a domain in C" we say that a holomorphic function
f2 : U2 ~ CC(E) is Pinc(Cn) left regular if it satisfies the equation

for each z E U2.
Equation (8) is a holomorphic extension of the homogeneous Dirac

equation studied in [5].
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3. For U3 a domain in Ce. + en we say that a holomorphic function
f3:U3~CC(E) is SpoinC(Cn) left regular if it satisfies the equation

for each z’ E U3.
In the case where n = 3 equation (9) is a holomorphic extension of the

Weyl neutrino equation studied in [9] and elsewhere. Properties of

solutions to equation (9) have previously been studied in [3,6,16,19-21].
Using notation used in construction 1 we may deduce the following

relation between the spaces of SpoinC(Cn) and PinC(Cn+1) left regular
functions.

PROPOSTION 1: Suppose that fA(U2, C+(E2)RC) denotes the right
module, over C+(E2)RC, of PinC(Cn+1) left regular functions, f2 : U2
- C+(E2)RC c CC(E2), and 0393B(U3, CC(E1)) denotes the right module
over CC(E1), of SpoinC(Cn) left regular functions f3 : U3 ~ CC(E1). Sup-
pose also that a point zlel + ... + znen + zn+1en-1 E U2 if and only if the
point Zn+leo + zlel + ... Zne,, E U3. Then the modules rA(U2,
C+(E2)RC) and 0393B(U, CC(E1)) are canonically isomorphic.

PROOF: Consider the linear map

and suppose that f3:U3~CC(E) is a SpoinC(Cn) left regular function.
Then it follows from observation 1 that the form Dz’f3(P(z)) is closed.
It now follows from construction 1 that the form

is also closed. Consequently the form en+1~(Dz’)~(f3(P(z))) is closed.
However, on replacing the variable Zo by zn+1 the form en+1~(Dz’) now
becomes Dz. It now follows that the function f4(z) = ~(f3(P(z))) is an
element of the module rA ( U2, C+(E2)RC).

It is straightforward to verify that the above constructions yields a
canonical isomorphism between the modules 0393A(U2, C+(E2)RC) and
0393B(U3, CC(E1). ~

In the case where n = 3 there is also a relation between the spaces of

SpoinC(Cn) left regular functions and spaces of complex quaternionic
left regular functions.
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PROPOSITION 2: Suppose that ’¥A(Ul, H(C)) denotes the complex vector
space of pairs of complex quaternionic left regular functions (fI, f2)
defined ovèr the domain Ul and ’¥B(U3, CC(E3)) denotes the complex
vector space of Spoinc( C3) left regular functions defined over the domain
U3. Suppose also that a point zoeo + zlel + z2e2 + z12ele2 lies in Ul if and
only if zoeo + zlel + z2e2 + z12e3 is in U3. Then the complex vector spaces
’¥A(Ul, H(C)) and *B(U3, CC(E)) are canonically isomorphic.

PROOF: As the two sided ideals CC(R3)(e0 ± e1e2e3) are canonically
isomorphic to the algebra H(C) and the elements 2(eo ± ele2e3) are
idempotents of the algebra CC(R3) with

it follows that for each Spoinc(C3) left regular function f3 : U3 ~ CC(R3)
the functions

and

satisfy the equations

and

Moreover, equations (10) and (11) are equivalent to equation (7). It is

now straightforward to deduce that the construction of the functions f3
f-3 given above yields a canonical isomorphism between the spaces
’¥A(Ul, H(C)) and ’¥B(U3, CC(R3)). ~

Besides the generalized Cauchy-Riemann equations given in examples 1,
2 and 3 we may also consider the Clifford algebra valued operators:
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and

for n = 1 mod 4
and

for n = 3 mod 4.
Each of the hypercomplex function theories associated with equations

(7), (8) and (9) and expressions a, b, c and d has a generalized Cauchy
integral formula [3-9]. We shall now give the following classification of
generalized Cauchy-Riemann equations whose associated hypercomplex
function theory admits a generalization of the Cauchy integral formula
given in [1].

THEOREM 1: Suppose that A is a complex, associative algebra with an
identity 1, and V is a complex, finite dimensional subspace of A, spanned
by the vectors {kj}nj=1. Suppose also that VR is the real subspace of V
spanned by the vectors ( kj 1. Then for each point zo E V there exists a
unique real analytic function

such that for each left regular function f : U c V ~ A, with respect to the
vectors {kj}, we have

where M is a real n dimensional, compact manifold lying in Uzo, with

zo E M, if and only if there exist vectors {lj}nj=1 lying in A and satisfying
the relations

and



72

PROOF: Suppose that there exist elements {1j}nj=1 E A which satisfy the
relations (12) and (13) then the function

where wn-1 is the surface area of the unit sphere, 5’" B lying in R n,
satisfies the equation

Moreover, the function W(z-z0) is well defined, and real valued, on the
set ( YR + z0) - {z0}. It now follows from equation (14) that for each left
regular function f:U~V~A, with respect to {kj}, and for each

zo E U and each real n-dimensional, compact manifold M’ c ( YR + z0)
c U with zo E M’ we have

This proves the first part of the theorem. Now suppose that we have a
real analytic function

such that for each left regular function f : U c V~A, with respect to

{kj}nj=1m we have

for each real n-dimensional, compact manifold lying in (VR+z0) ~ U,
with zo E M. It follows that

and consequently

for each real, n-dimensional, compact submanifold of (VR + z0) - ( zo 1.
From Stokes’ theorem we have
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where dxn is the Lebesque measure of the manifold M’. As the identity
(16) is valid for each real, n-dimensional, compact submanifold of

(VR + zo) - ( zo 1 it follows that

By considering the integral appearing on the left hand side of equation
(15) to be taken over M and Mr, where r ~ R+ and for each point
z E M we have that r(z - z0) + zo E Mr, it may be observed from the

uniqueness of the function Wz0 that it is homogeneous of degree - ( n -1)
with respect to the point z., It follows from [19] that on the unit sphere

we have

where each function Pn(z) is an A0RCC(VR) valued harmonic poly-
nomial homogeneous of degree p with respect to the point zo. If we now
consider the homogeneous function

we may observe from the homogeneity of the function Wz0(z) and
expression (18) that

for each z E (VR + z0) - {z0}. It follows that

It follows from expression (18) that

where  and is homogeneous of de-
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gree one with respect to the point zo* Thus, from equation (17) we have
that the function G(z) satisfies the equation

As the right hand side of equation (19) is homogeneous of degree two it
follows that the function

is homogeneous of degree zero. Direct calculation now reveals that this is
only possible if the polynomials Pp ( z ) are identically zero for p = 0 and
p &#x3E; 1. Thus

for some elements Ii E A. It now follows from the identity (19) that the
elements {lj} and {kj} satisfy the relations (12) and (13). This completes
the proof. D

OBSERVATION 2: It may be deduced from relations (12) and (13), and
definition 2 that the minimal complex subalgebra of A containing the

elements {l1kp}np=2 is a complex Clifford algebra.
From observation 2 we have the following refinement to theorem 1.

THEOREM 1’: Suppose that A is a complex, associative algebra with an
identity. Then A admits a generalized Cauchy-Riemann equation, of the
type givien in definition 4, together with a generalized Cauchy integral
formula, of the type given in the statement of theorem 1, if and only if the
algebra A contains a complex subalgebra which is isomorphic to a finite
dimensional Clifford algebra.

EXAMPLES:

1. Consider the complex pre-Clifford algebra PlC(E, F)- RC, then it
may be observed that the minimal complex subalgebra containing the
elements {e1fj}nj=2, where el and fi are given in expression (3), is a

complex, 2""dimensional Clifford algebra. It follows that the gener-
alized Cauchy-Riemann operator
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has an associated Cauchy integral formula of the type described in
Theorem 1.

2. Also, for the complex pseudo-Clifford algebra, PC(E, F)RC, it
may be observed that the minimal complex subalgebra containing the
elements {e’1f’j}nj=2, where el and fl’ are given in expression (4), is a
complex, 2n-1 dimensional Clifford algebra. It follows that the gener-
alized Cauchy-Riemann operator

has an associated Cauchy integral formula of the type described in
theorem 1.

3. Suppose that A1,...,Ak are complex associative algebras with
identities ij,...,ik. Then, for the complex associative algebra
CC(E)CA1C... 0 cAk the generalized Cauchy-Riemann operators

and

have associated Cauchy integral formulae of the type given in theorem 1.
A special example of this case has previously been discussed in [5].

Although a generalized Cauchy-Riemann operator might admit an
associated Cauchy integral formula it does not necessarily follow that the
solutions to the generalized Cauchy-Riemann equation are nontrivial.

THEOREM 2: For the complex pre-Clifford algebra P1C(E, F) Re, with
E n F = {0}, the only solutions to the generalized Cauchy-Riemann oper-
ator (20) are constants.

PROOF: Suppose that F(z) is a solution to the operator (20) then it
follows that it also satisfies the equation

As the elements of 1, -e1f2,..., -e1fn are elements of a Clifford

algebra it follows from [5 theorem 13] that in a neighbourhood U(Z0) of
a point Zo there is a power series expansion


