BRUCE W. JORDAN
RON A. LIVNÉ

On the Néron model of jacobians of Shimura curves

Compositio Mathematica, tome 60, no 2 (1986), p. 227-236

<http://www.numdam.org/item?id=CM_1986__60_2_227_0>
ON THE NÉRON MODEL OF JACOBIANS OF SHIMURA CURVES

Bruce W. Jordan and Ron A. Livné *

Let \(\mathcal{B} \) be an indefinite rational quaternion algebra of discriminant \(\text{Disc} \mathcal{B} > 1 \) and denote by \(V_{\mathcal{B}} = V_{\mathcal{B}}/\mathbb{Q} \) the corresponding Shimura curve. \(V_{\mathcal{B}} \) has bad reduction exactly at the primes \(p \) dividing \(\text{Disc} \mathcal{B} \); fix such a prime \(p \). Let \(\mathcal{J}/\mathbb{Z}_p \) be the Néron model of the jacobian of \(V_{\mathcal{B}} \times _{\mathbb{Q}} \mathbb{Q}_p \). Denote by \(\mathcal{J}_p^0 \) the connected component of the special fiber \(\mathcal{J}_p = \mathcal{J} \times _{\mathbb{Z}_p} \mathbb{F}_p \) and by \(\Phi = \mathcal{J}_p/\mathcal{J}_p^0 \) its group of connected components.

The following problems are relevant to many arithmetic questions concerning \(V_{\mathcal{B}} \):

1. Determine the structure of \(\mathcal{J}_p^0/\mathbb{F}_p \).
2. Determine the group of connected components \(\Phi \).

It is the purpose of this paper to solve these problems.

To describe the answer we obtain, let \(\mathcal{B} \) be the rational definite quaternion algebra of discriminant \(\frac{1}{\text{Disc} \mathcal{B}} \). Denote by \(m(\mathcal{B}) \) the mass \(\frac{1}{2} \sum _{q \mid \text{Disc} \mathcal{B}} (q - 1) \) of \(\mathcal{B} \). Let \(B = B(p) \) be the Brandt matrix of degree \(p \) for \(\mathcal{B} \) relative to a fixed ordering of the ideal classes of \(\mathcal{B} \). \(B \) is an integral \(h \times h \) matrix for which \(p + 1 \) is an eigenvalue, where \(h \) is the class number of \(\mathcal{B} \). Hence we can write the characteristic polynomial \(P_B(x) \) of \(B \) as

\[
P_B(x) = (x - p - 1) \prod _{i=2}^{h} (x - \lambda_i).
\]

In response to Problem 2 we establish the

Theorem (2.3):

Let

\[
e_2 = \prod _{q \mid \text{Disc} \mathcal{B}} \left(1 - \left(\frac{-4}{q}\right)\right), \quad e_3 = \prod _{q \mid \text{Disc} \mathcal{B}} \left(1 - \left(\frac{-3}{q}\right)\right).
\]

* Bat-Sheva Foundation Fellow.
Then

\[|\Phi| = \frac{p + 1}{m(\hat{\mathcal{B}}) c(\hat{\mathcal{B}}) 2^2 3^3} \left| \prod_{i=2}^{h} (\lambda_i - (p + 1))(\lambda_i + (p + 1)) \right|, \]

where \(c(\hat{\mathcal{B}}) = 8 \) if \(\text{Disc} \hat{\mathcal{B}} = 2 \), \(c(\hat{\mathcal{B}}) = 3 \) if \(\text{Disc} \hat{\mathcal{B}} = 3 \), and \(c(\hat{\mathcal{B}}) = 1 \) otherwise.

In fact, we explain how to describe \(\Phi \) in terms of the Brandt matrix \(B \). In Theorem 3.1 we describe the connected component \(\mathcal{J}_p^0 \).

By the results of Raynaud [8] and Deligne-Rapoport [1], questions 1 and 2 are reduced to computations in linear algebra if one has a description of a regular model of \(V_{\mathfrak{p}} \). In our case, Drinfeld [2] has constructed a scheme \(M_{\mathfrak{p}}/\mathbb{Z} \) whose fiber over \(\mathbb{Q} \) is the Shimura curve \(V_{\mathfrak{p}} \). Moreover he has given a description of \(M_{\mathfrak{p}} \times \mathbb{Z}_p \) in terms of Mumford uniformization. By resolving singularities one obtains a regular scheme \(M_{\mathfrak{p}} \times \mathbb{Z}_p \) over \(\mathbb{Z}_p \). In Section 1 we give the intersection matrix of the special fiber \((M_{\mathfrak{p}} \times \mathbb{Z}_p)_0 \) in terms of the Brandt matrix \(B \). Then in Sections 2 and 3 we carry out the computations necessary to answer our questions. The case where the interchanged algebra \(\hat{\mathcal{B}} \) has discriminant 2 was treated by Ogg in [7].

The theorems we obtain are analogs of the results of Mazur and Rapoport [6] on elliptic modular Jacobians. The arithmetic significance of Theorem 2.3, however, seems more involved. Suppose for simplicity that \(\text{Disc} \mathfrak{p} = pq \) with \(q \) prime. Then \(P_B(x) \) is the characteristic polynomial of the Hecke operator \(T(p) \) acting on the space \(M_2(\Gamma_0(q)) \) of modular forms of weight 2 for \(\Gamma_0(q) \). What is remarkable is that the primes dividing \(|\Phi| \) are essentially the primes of congruence between modular forms in \(M_2(\Gamma_0(q)) \) and newforms of weight 2 for \(\Gamma_0(pq) \), cf. Ribet [9]. Hence \(\Phi \) apparently detects fusion between newforms and old forms.

§1. The intersection matrix

We first recall the description of the special fiber \(M_{\mathfrak{p}} \times \mathbb{F}_p \) provided by Drinfeld [2]. For details see [4] and Kurihara [5]. Fix a maximal order \(\hat{\mathcal{N}} \subset \hat{\mathcal{B}} \) and set

\[
\Gamma_0 = \left(\hat{\mathcal{N}} \otimes \mathbb{Z} \left[\frac{1}{p} \right] \right)^\times / \mathbb{Z} \left[\frac{1}{p} \right]^\times
\]

\[
\Gamma_+ = \left\{ x \in \left(\hat{\mathcal{N}} \otimes \mathbb{Z} \left[\frac{1}{p} \right] \right)^\times : |\text{Norm}(x) \in p^{2\mathbb{Z}}| / \mathbb{Z} \left[\frac{1}{p} \right]^\times \right\},
\]
where \(\text{Norm} : \mathcal{O} \rightarrow \mathbb{Q} \) is the reduced norm. Identify \(\mathcal{O} \otimes \mathbb{Q}_p \) with the algebra of \(2 \times 2 \) matrices over \(\mathbb{Q}_p \). Then \(\Gamma_0 \) and \(\Gamma_+ \) are discrete cocompact subgroups of \(\text{PGL}_2(\mathbb{Q}_p) \). Let \(\Delta \) be the Bruhat-Tits building of \(\text{SL}_2(\mathbb{Q}_p) \) with vertices \(\text{Ver} \Delta \) and edges \(\text{Ed} \Delta \). The groups \(\Gamma_0 \) and \(\Gamma_+ \) act on \(\Delta \) and the quotients are finite oriented graphs with lengths in the sense of Kurihara [5]. The vertices \(\text{Ver}(\Gamma_0 \setminus \Delta) \) correspond to the ideal classes of \(\mathcal{O} \) and we denote them by \(v_1, \ldots, v_h \) with the same ordering used to write \(B \). The weight \(f(v) \) of a vertex \(v \in \text{Ver}(\Gamma_0 \setminus \Delta) \) and the length \(\ell(y) \) of an edge \(y \in \text{Ed}(\Gamma_0 \setminus \Delta) \) are defined as the orders of their stabilizers in \(\Gamma_0 \). The integer \(\ell(y) \) is always 1, 2, or 3. Define \(h \times h \) matrices \(N^k = (N^k_{ij})_{1 \leq i, j \leq h} \) for \(1 \leq k \leq 3 \) by

\[
N^k_{ij} = \text{number of } y \in \text{Ed}(\Gamma_0 \setminus \Delta) \text{ with } v_i = o(y), v_j = t(y)
\]

where \(o(y) \) is the initial vertex of \(y \) and \(t(y) \) the terminal vertex. Set \(F \) equal to the \(h \times h \) diagonal matrix with \(F_{ii} = f(v_i), 1 \leq i \leq h \). Then

\[
B = \left(N^1 + \frac{1}{2} N^2 + \frac{1}{3} N^3 \right) F; \tag{1.1}
\]

see Kurihara [5], (4-4). Let \(St v_i \) denote \(\{ y \in \text{Ed}(\Gamma_0 \setminus \Delta) \mid o(y) = v_i \} \). As

\[
\# \{ y \in \text{Ed} \Delta \mid o(y) = \bar{v} \} = p + 1 \text{ for any } \bar{v} \in \text{Ver} \Delta
\]

we have

\[
p + 1 = \sum_{y \in St v_i} \frac{f(v_i)}{f(y)} = f(v_i) \sum_{j=1}^{h} \left(N^1_{ij} + \frac{1}{2} N^2_{ij} + \frac{1}{3} N^3_{ij} \right). \tag{1.2}
\]

We can write \(\Gamma_0 = \Gamma_+ \sqcup \Gamma_+ \gamma_p \) where \(\gamma_p \in \mathcal{A} \) has norm \(p \). \(\gamma_p \) induces an involution \(w_p \) of \(\Gamma_+ \setminus \Delta \) which fixes no vertex and no (oriented) edge. In fact we may write \(\text{Ver}(\Gamma_+ \setminus \Delta) = \{ v_1, \ldots, v_h \} \) with \(1 \leq i \leq h, 1 \leq \ell \leq 2 \), where \(v_{i1} \) and \(v_{i2} \) lie above \(v_i \in \text{Ver}(\Gamma_0 \setminus \Delta) \) and \(w_p v_{i\ell} = v_{i,3-\ell} \). Moreover, we may suppose that liftings \(\bar{v}_{i\ell}, \bar{v}_{jm} \in \text{Ver} \Delta \) of \(v_{i\ell}, v_{jm} \in \text{Ver}(\Gamma_+ \setminus \Delta) \) are at a distance congruent to \(\ell - m \) modulo 2. Hence no edge connects \(v_{i\ell} \) and \(v_{j\ell'} \) \((\ell = 1, 2; 1 \leq i, j \leq h) \). By Drinfeld [2] \(\Gamma_+ \setminus \Delta \) is canonically identified with the dual graph \(G = G(M_{\mathfrak{a}} \times \mathbb{Z}_p^* / \mathbb{Z}_p^*) \) of the special fiber \(M_{\mathfrak{a}} \times \mathbb{F}_p \), and Frobenius acts on \(G \) as \(w_p \) (for this "Geometric Eichler-Shimura Relation" see also [4]). Let \(\tilde{G} \) be the dual graph of the special fiber of the resolution of singularities \(M_{\mathfrak{a}} \times \mathbb{Z}_p^* / \mathbb{Z}_p^* \) of \(M_{\mathfrak{a}} \times \mathbb{Z}_p / \mathbb{Z}_p \). For an edge \(y \in \text{Ed}(\Gamma_0 \setminus \Delta) \) let \(\hat{y} \) be the edge above it in \(G = \Gamma_+ \setminus \Delta \) such that \(o(\hat{y}) \in \{ v_1, \ldots, v_h \} \). Then \(\tilde{G} \) is obtained from \(G \) by replacing \(\hat{y} \) together with its opposite edge by a chain

\[
o(\hat{y}) - w_{y_1} - \cdots - w_{y,\ell(\hat{y})-1} - t(\hat{y})
\]
whenever \(\ell(y) \geq 2 \). Identify

\[
\{ v_{i\ell}, w_{ym} | 1 \leq i \leq h; \ell = 1, 2; y \in \text{Ed}(\Gamma_0 \setminus \Delta) \text{ satisfying } \ell(y) \geq 2 \}
\]

and \(1 \leq m < \ell(y) \}

with \(\text{Ver} \tilde{G} \) by letting an element \(\alpha \) in the former set correspond to a component \([\alpha]\) of \((M_\text{gr} \times \mathbb{Z}_p)_{\ell_0}\) in \(\text{Ver} \tilde{G} \). The intersection matrix for \((M_\text{gr} \times \mathbb{Z}_p)_{\ell_0}, A = ([\alpha] \cdot [\beta])_{\alpha, \beta \in \text{Ver} \tilde{G}}, \) is readily obtained from \(G \):

(i) \([v_{11}] \cdot [v_{12}] = N_{11}^1 \text{ for } i \neq j.
\]

\([w_{y1}] \cdot [o(y)] = [w_{y2}] \cdot [t(y)] \text{ if } \ell(y) = 2.
\]

\([w_{y1}] \cdot [o(y)] = [w_{y1}] \cdot [w_{y2}] = [w_{y2}] \cdot [t(y)] = 1
\]

if \(\ell(y) = 3 \).

(ii) \(A \) is symmetric.

(iii) All off-diagonal entries of \(A \) not already determined by i) and ii) are 0.

(iv) The diagonal entries of \(A \) are determined so that any row (or column) sum is 0. Thus \([w_{ym}]^2 = -2 \) and

\[
[w_{ym}]^2 = - \sum_{k=1}^{3} \sum_{j=1}^{h} N_{ij}^k.
\]

\section{2. The group of connected components}

Let \(L \) be the free abelian group on the set \(\text{Ver} \tilde{G} \). Let \(L_0 = \left\{ \sum_{v \in \text{Ver} \tilde{G}} n_v v \in L | \sum n_v = 0 \right\} \). The intersection matrix \(A \) represents a transformation \(\mathcal{A} : L \to L \) relative to the standard basis. We have \(\mathcal{A} L \subset L_0 \) by [1.3 iv]. According to Raynaud [8], \(\Phi \approx L_0 / \mathcal{A} L \) canonically. Since \(L \cong L_0 \oplus \mathbb{Z} \) (noncanonically), \(L / \mathcal{A} L \cong \mathbb{Z} \oplus \Phi \). To describe \(\Phi \) we need some linear algebra preliminaries. For \(i \neq j \) let \(R_i \to R_i + aR_j \) (respectively \(C_i \to C_i + aC_j \)) denote the operation of adding a constant multiple \(a \) of the \(j \)th row (column) of a given matrix \(Z \) to the \(i \)th row (column). Let \(Z^{ij} \) denote the matrix obtained from \(Z \) by deleting the \(i \)th row and the \(j \)th column. If \(Z \) is a square matrix we denote its characteristic polynomial by \(P_Z \).
2.1. **LEMMA:** Suppose X and Y are $n \times n$ matrices. Then

(i) $\det \begin{pmatrix} X & Y \\ Y & X \end{pmatrix} = \det(X - Y) \det(X + Y)$.

Suppose in addition that X is symmetric with zero row sum and that Y is diagonal. Then

(ii) $(-1)^{n-1} \det(X^{ij}) = \frac{(-1)^{i+j}}{n} P_X^{i}(0)$.

(iii) $(-1)^{n-1} P_{XY}^{i}(0) = \frac{1}{n} P_X^{i}(0) P_Y^{i}(0)$.

PROOF: Adding the first block row to the second transforms $\begin{pmatrix} X & Y \\ Y & X \end{pmatrix}$ to $\begin{pmatrix} X + Y & Y \\ X & X + Y \end{pmatrix}$; subtracting then the second block column from the first gives $\begin{pmatrix} X - Y & Y \\ 0 & X + Y \end{pmatrix}$, proving (i). Now suppose X is symmetric with zero row sum. For a fixed i let X_j denote the jth column of the $(n - 1) \times n$ matrix obtained by omitting the ith row of X. By assumption $\sum_j X_j = 0$ so that $\det(X^{ij}) = \det(X_1 \ldots \hat{X}_j \ldots X_n) = \det(-X_2 + \ldots + X_n)$, $X_2 \ldots \hat{X}_j \ldots X_n) = \det(-X_j)$, $X_2 \ldots \hat{X}_j \ldots X_n) = (-1)^{j+1} \det(X^{1j})$. Since X is symmetric

$\det(X^{ij}) = (-1)^{i+j} \det(X^{11})$. However $(-1)^{n-1} P_X^{i}(0) = \sum_{\ell=1}^{n} \det(X^{\ell\ell}) = \sum_{\ell=1}^{n} \det(X^{\ell\ell}) = n \det(X^{11})$, so (ii) follows. Finally suppose in addition that Y is diagonal. Note that $(XY)^{\ell\ell} = X^{\ell\ell}Y^{\ell\ell}$, so that

$$(-1)^{n-1} P_{XY}^{i}(0) = \sum_{\ell=1}^{n} \det((XY)^{\ell\ell}) = \det(X^{11}) \sum_{\ell=1}^{n} \det(Y^{\ell\ell})$$

$$= \frac{1}{n} P_X^{i}(0) P_Y^{i}(0),$$

proving (iii).

We can now calculate the order of Φ. By the theory of elementary divisors $|\Phi| = \gcd_{\alpha, \beta}(\det(A^{a\beta}))$. By Lemma 2.1, $|\Phi| = |\det(A^{a\beta})|$ for any α and β, which we will choose equal and among the v_ℓ. Row and column operations $R_\gamma \rightarrow R_\gamma + aR_\delta$, $C_\gamma \rightarrow C_\gamma + aC_\delta$ ($\gamma \neq \delta$) will not change $\det(A^{a\alpha})$ so long as $\delta \neq \alpha$. We will use these to simplify A.

Step 1: Suppose $\ell(y) = 2$ for $y \in \text{Ed}(\Gamma_0 \backslash \Delta)$. Set $\alpha_1 = o(y)$, $\alpha_2 = t(y)$,
\[\alpha_3 = w_{y1}. \text{ Then } A_{\alpha_\alpha} \neq 0 \text{ only when } \alpha \in \{ \alpha_i \}_{i=1}^3. \text{ The } 3 \times 3 \text{ minor } M = (A_{\alpha_{\alpha}})_{1 \leq i,j \leq 3} \text{ has the form} \]

\[
M = \begin{pmatrix}
a & b & 1 \\
b & c & 1 \\
1 & 1 & -2
\end{pmatrix}.
\]

Applying to \(A \) the transformations \(R_{\alpha_i} \rightarrow R_{\alpha_i} + \frac{1}{2} R_{\alpha_j} \), \(R_{\alpha_2} \rightarrow R_{\alpha_2} + \frac{1}{2} R_{\alpha_3} \), and then the symmetric operations on columns transforms the minor \(M \) to

\[
M' = \begin{pmatrix}
a + \frac{1}{2} & b + \frac{1}{2} & 0 \\
b + \frac{1}{2} & c + \frac{1}{2} & 0 \\
0 & 0 & -2
\end{pmatrix},
\]

leaves \(A \) symmetric, and doesn’t change the other elements of \(A \).

Performing these operations for all \(y \in \text{Ed}(\Gamma_0 \setminus \Delta) \) with \(\varepsilon(y) = 2 \) will transform the subminor

\[
(A_{\alpha_i \alpha_j})_{1 \leq i,j \leq 2} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}, \quad \text{where } \alpha_k = v_{i1}, \; \alpha_k = v_{j2}
\]

(or \(\alpha_k = v_{i2} \) and \(\alpha_k = v_{j1} \), \(1 \leq i,j \leq h \), to

\[
\begin{pmatrix}
a + \frac{1}{2} \sum_{k=1}^{h} N_{ik}^2 & b + \frac{1}{2} N_{ij}^2 \\
b + \frac{1}{2} N_{ij}^2 & c + \frac{1}{2} \sum_{k=1}^{h} N_{kj}^2
\end{pmatrix}.
\]

Step 2: Now suppose \(\varepsilon(y) = 3 \) for \(y \in \text{Ed}(\Gamma_0 \setminus \Delta) \). Set \(\alpha_1 = o(y) \), \(\alpha_2 = t(y) \), \(\alpha_3 = w_{y1} \), \(\alpha_4 = w_{y2} \). The corresponding \(4 \times 4 \) minor has the form

\[
M = \begin{pmatrix}
a & b & 1 & 0 \\
b & c & 0 & 1 \\
1 & 0 & -2 & 1 \\
0 & 1 & 1 & -2
\end{pmatrix}
\]

and \(A_{\alpha_{\alpha}} = A_{\alpha_{\alpha}} = 0 \) for \(\alpha \notin \{ \alpha_i \}_{i=1}^4 \). Applying \(R_{\alpha_3} \rightarrow R_{\alpha_2} + \frac{1}{2} R_{\alpha_4}, \cdot R_{\alpha_3} \rightarrow R_{\alpha_3} + \frac{1}{2} R_{\alpha_4} \) and then \(C_{\alpha_2} \rightarrow C_{\alpha_2} + \frac{1}{2} C_{\alpha_4}, \; C_{\alpha_3} \rightarrow C_{\alpha_3} + \frac{1}{2} C_{\alpha_4} \) transforms \(M \) to

\[
M' = \begin{pmatrix}
a & b & 1 & 0 \\
b & c + \frac{1}{2} & \frac{1}{2} & 0 \\
1 & \frac{1}{2} & -\frac{3}{2} & 0 \\
0 & 0 & 0 & -2
\end{pmatrix}.
\]
Applying next \(R_\alpha \rightarrow R_\alpha + \frac{3}{2} R_\alpha \), \(R_\alpha \rightarrow R_\alpha + \frac{1}{3} R_\alpha \), \(C_\alpha \rightarrow C_\alpha + \frac{2}{3} C_\alpha \), and \(C_\alpha \rightarrow C_\alpha + \frac{1}{3} C_\alpha \) gives

\[
\begin{pmatrix}
 a + \frac{2}{3} & b + \frac{1}{3} & 0 & 0 \\
 b + \frac{1}{3} & c + \frac{2}{3} & 0 & 0 \\
 0 & 0 & -3/2 & 0 \\
 0 & 0 & 0 & -2
\end{pmatrix}.
\]

Performing these operations for all \(y \in Ed(\Gamma_0 \setminus \Delta) \) with \(\ell(y) = 3 \) will transform the subminor

\[
(A_{\alpha_k, \alpha_j})_{1 \leq k, \ell \leq 2} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}, \quad \text{where } \alpha_k = v_{im}, \quad \alpha_\ell = v_{j,3-m}
\]

for \(m = 1, 2; 1 \leq i, j \leq h \), to

\[
\begin{pmatrix}
 a + \frac{2}{3} \sum_{k=1}^{n} N_{ik}^3 & b + \frac{1}{3} N_{ij}^3 \\
 b + \frac{1}{3} N_{ij}^3 & c + \frac{2}{3} \sum_{k=1}^{h} N_{jk}^3
\end{pmatrix}.
\]

Step 3: Suppose that \(\text{Ver} \, \tilde{G} \) is ordered so that the first \(h \) rows (and columns) of \(A \) correspond to \(\{ v_{i1} \}_{i=1}^{h} \) (in order) and the next \(h \) rows and columns similarly correspond to \(\{ v_{i2} \}_{i=1}^{h} \). After Steps 1 and 2 \(A \) is transformed to a matrix with block form \(\begin{pmatrix} U & 0 \\ 0 & V \end{pmatrix} \), where \(U \) is a \(2h \times 2h \) matrix. For \(1 \leq \ell \leq 3 \) let \(n_\ell \) be the number of oriented edges of length \(\ell \) in \(Ed(\Gamma_0 \setminus \Delta) \). The matrix \(V \) is diagonal with \(n_2 + n_3 \) entries equal to \(-2\) and \(n_3 \) entries equal to \(-\frac{3}{2}\). \(U \) has the block form \(U = \begin{pmatrix} J & N \\ N & J \end{pmatrix} \), where \(N = N^1 + \frac{1}{2} N^2 + \frac{1}{3} N^3 \) (see Section 1). By our calculation \(J \) is the diagonal matrix given by

\[
J_{ii} = A_{ii} + \frac{1}{2} \sum_{j=1}^{h} N_{ij}^2 + \frac{2}{3} \sum_{j=1}^{h} N_{ij}^3 \quad \text{for } 1 \leq i \leq h.
\]

Hence by \([1.3, iv]\)

\[
J_{ii} = - \sum_{j=1}^{h} \left(N_{ij}^1 + \frac{1}{2} N_{ij}^2 + \frac{1}{3} N_{ij}^3 \right).
\]
It follows that U is a symmetric zero row sum matrix. By [1.1] $N = BF^{-1}$ and by [1.2] $-J = (p + 1)F^{-1}$. Hence $U = \hat{U}F^{-1}$, where $\hat{U} = \begin{pmatrix} -(p + 1)I & B \\ B & -(p + 1)I \end{pmatrix}$ and $\hat{F} = \begin{pmatrix} F & 0 \\ 0 & F \end{pmatrix}$. Using Lemma 2.1, (iii) we now obtain

$$|\Phi| = |\det(A^{11})| = |\det(U^{11})| \det(V) | = 2^{n^2}3^{n_3} \frac{1}{2h} |P_{\hat{U}}(0)|$$

$$= 2^{n^2}3^{n_3} |P_{\hat{U}}(0)/P_{\hat{F}}(0)|.$$

Firstly, $|P_{\hat{F}}(0)| = 2 |P_F(0)P_{\hat{F}}(0)| = 2(\tr F^{-1})(\det F)^2$. Next, using Lemma 2.1 (i), $P_{\hat{U}}(x) = \det \begin{pmatrix} (x + p + 1)I & -B \\ -B & (x + p + 1)I \end{pmatrix} = (\det((x + p + 1)I + B) \det((x + p + 1)I - B)) = (-1)^hP_B(-x - p - 1)P_B(x + p + 1)$. Differentiating at $x = 0$ gives $P'_{\hat{U}}(0) = (-1)^hP_B(-p - 1)P_B(p + 1)$, since $p + 1$ is an eigenvalue for B, so that $P_B(p + 1) = 0$. Hence we have proven:

2.2. THEOREM:

Using the results of Eichler [3] and Kurihara [5] we can rewrite Theorem 2.2 in a more convenient form. Let

$$e_2 = \prod_{q \mid \Disc} \left(1 - \left(-\frac{4}{q}\right)\right), \quad e_3 = \prod_{q \mid \Disc} \left(1 - \left(-\frac{3}{q}\right)\right).$$

2.3. THEOREM:

$$|\Phi| = \frac{1}{2m(\hat{D})c(\hat{D})2^{n^2}3^{n_3}} |P_B(-p - 1)P_B'(p + 1)|$$

where $c(\hat{D}) = 8$ if $\Disc = 2$, $c(\hat{D}) = 3$ if $\Disc = 3$, and $c(\hat{D}) = 1$ otherwise.

PROOF: By Eichler's mass formula $\tr F^{-1} = m(\hat{D})$. Suppose $\Disc \geq 5$. Then $f(v) \in \{1, 2, 3\}$ for all $v \in \Ver(\Gamma_0 \setminus \Delta)$; set $h_\ell = \#\{v \in \Ver(\Gamma_0 \setminus \Delta) \mid f(v) = \ell\}$. By Kurihara [5], Section 4 we have

$$h_2 = \frac{1}{2} \prod_{q \mid \Disc} \left(1 - \left(-\frac{4}{q}\right)\right) \quad \text{and} \quad h_3 = \frac{1}{2} \prod_{q \mid \Disc} \left(1 - \left(-\frac{3}{q}\right)\right).$$
From Kurihara's table ([5], Proposition 4-2) we obtain

\[
\frac{(\det F)^2}{2^n 3^n} = \frac{2^{2h_2} 3^{2h_3}}{2^{h_2 (1+(-4/p))} 3^{h_3 (1+(-3/p))}} = 2^{e_2} 3^{e_3}.
\]

Suppose next Disc \(\mathcal{D} = 3 \). Then \(F \) is the \(1 \times 1 \) matrix (6) and Kurihara's table gives

\[
\frac{(\det F)^2}{2^n 3^n} = \frac{36}{2^{(1+(-4/p))} 3^{(1/2)(1+(-3/p))}} = 3 \cdot 2^{e_2} \cdot 3^{e_3}.
\]

Finally if Disc \(\mathcal{D} = 2 \), \(F = (12) \) and

\[
\frac{(\det F)^2}{2^n 3^n} = \frac{144}{2^{(1/2)(1+(-4/p))} 3^{(1+(-3/p))}} = 8 \cdot 2^{e_2} \cdot 3^{e_3}.
\]

The theorem follows.

2.4. REMARK: In the course of the proof of Theorem 2.2 we inverted only 2 and 3. Likewise the proof of Lemma 2.1, i) shows that one can transform \(\begin{pmatrix} X & Y \\ Y & X \end{pmatrix} \) to \(\begin{pmatrix} X - Y & 0 \\ 0 & X + Y \end{pmatrix} \) by elementary row and column transformations \(R_i \rightarrow R_i + aR_j, C_i \rightarrow C_i + aC_j \) with \(a \in \mathbb{Z}^{[\frac{1}{2}]} \). Hence setting

\[
M = \mathbb{Z}^{[\frac{1}{2}]}, \quad M_0 = \left\{ (a_1, \ldots, a_h) \in M \mid \sum \frac{a_i}{f(v_i)} = 0 \right\},
\]

we have

\[
\Phi \otimes \mathbb{Z}^{[\frac{1}{2}]} \simeq M_0/(B - (p + 1) I) M \oplus M/(B + (p + 1) I) M.
\]

§3. The connected component

Since all components of the special fiber \((\overline{M_{\mathcal{D}}} \times \mathbb{Z}_p)_0 \) are rational the connected component \(J_p^0 \) is a torus.

3.1. THEOREM: \(J_p^0 \simeq H^1((\Gamma_+ \setminus \Delta), \mathbb{Z}) \otimes G_m \). The action of Frobenius is \(w_p \otimes \text{Frob}_{G_m} \).

PROOF: We need only remark that \(\Gamma_+ \setminus \Delta, \tilde{G} \), and the graph of the special fiber as defined in Deligne and Rapoport [1], p. 164, are all naturally homotopic, so that [1], 3.7b applies.
3.2. Corollary: Let $\ell \not= p$ be a prime. Then the Tate module

$$Ta_{\ell} (\mathfrak{g}_p^0) \cong H^1 (\Gamma_+ \backslash \Delta, \mathbb{Z}_\ell)$$

with Frobenius acting as $p^w p$.

References

(Oblatum 2-X-1985)

B.W. Jordan
Princeton University
Mathematics Department
Fine Hall – Washington Road
Princeton, NJ 08544
USA

and

R.A. Livné
Tel Aviv University
School of Mathematics
Ramat Aviv
Israel