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ON ABSOLUTELY EXTREMAL POINTS

S. Glasner and D. Maon

Abstract

Given three doubly asymptotic points x, y, z in a minimal flow X, we construct an affine
embedding ~ : X ~ Q such that ~(x) = 1 2(~(y) + ~(z)). Thus x is not absolutely extremal.
We produce an example of a metric minimal flow X with the property that for every x E X
a triple x, y, z as above exists, thereby showing that no point of X is absolutely extremal.

Compositio Mathematica 59 (1986) 51-56
O Martinus Nijhoff Publishers, Dordrecht - Printed in the Netherlands

Introduction

We recall the definitions of affine embedding and absolute extremality
for flows, introduced in [1]. If (T, X) is a flow (T is a self homeomor-
phism of the compact space X) and (T, Q) an affine flow (i.e., Q is a
compact convex set and T an affine homeomorphism) then an equiv-
ariant continuous map ç: X ~ Q is called an affine embedding if

co ~(X) = Q. A point x E X is called absolutely extremal if for every
affine embedding ~: X- Q ~(x) is in a Q, the set of extreme points of
Q.

Suppose (T, X) is metric and minimal (i.e., every orbit is dense) then
for every affine embedding T: X - Q the set {x ~ X:~(x)~~Q} is a
dense Gs. It was shown in [1] that if (T, X) is metric and minimal then
every distal point of X is absolutely extremal. Again under our assump-
tions on (T, X) the set of distal points is either empty or a dense G8.
These facts led the first author to ask in [1] whether every minimal metric
flow must have absolutely extremal points.

The easiest examples where non-absolutely extremal points exist are
given by certain almost automorphic flows where the flow X is presented
as a set of sequences in l~(Z) and the identity map of X into Q = co(X)
c l~(Z) gives a natural affine embedding [1]. Some doubly asymptotic
points of X turns out to be non-extreme in Q. In this note, we show that
in any minimal flow a point with two doubly asymptotic points is not
absolutely extremal. (x, y are doubly asymptotic if lim d( T nx, Tny)

= 0). We construct a minimal metric flow, every point of which has a
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continuum of doubly asymptotic points; thus providing an example of a
metric minimal flow no point of which is absolutely extremal.

The principle of construction is due to Grillenberger (see e.g. [4]), who
first showed how to define a minimal set with some desired property as
an intersection of a family of subshifts of finite type. A continuous
version of Grillenberger’s construction and applications of this method
are described in [3] and [2]. The present paper can be considered as a
sequel to [1] and we refer the reader to [1] for further motivation.

Section 1. An af f ine embedding associated with doubly asymptotic points

1.1 PROPOSITION: Let (X, T) be an infinite metric minimal flow,
xo, yo, zo E X, doubly asymptotic points. Then there exists an affine
embedding T: X ~ Q such that ~(x0) = 1 2(~(y0) + ~(z0)).

PROOF: In C*(X) we let Tl be the weak * closed linear space spanned by
the set

We let 03C0: C*(X) ~ E = C*(X)/V be the quotient map and define

qp : X-E by ~(x)=03C0(03B4x)=03B4x + V. Put Q = co(~(X)) and let

We claim that V = W; to see this let L |an|  oc be given. Put
nEZ

and let q be the infinite sum. For every f E C(X) we have

Hence 11N ~ ~ and 11 E V. Thus W ~ V ; since ho c W it is enough to
show that W is weak * closed. By Krein-Smulyan’s theorem it suffices to
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show that W n Br is weak * closed, where Br = {v ~ C*(X): ~v~  r}.
Since, B, is metrizable we can deal with sequences. So let

be a sequence in W n B, with ~k ~ ~ ~ V. We have

Using a diagonal process we can choose a subsequence q k, such that for
each n an - bn. For convenience we denote this subsequence also by ~k,
thus we now assume akn ~ bn for every n. Using Fatou’s lemma (in l1(Z))
we have

Put

and let f E C(X) and e &#x3E; 0 be given. Choose 8 &#x3E; 0 such that d(x, y )  8

~ | f(x) - f(y)|  ~ and N with

Then

It follows that ~k ~  so that  = ~ is in W and = W.
Clearly 99 is continuous and equivariant from X into the affine flow

Q. If ~(x) = ~(y) then 03B4x-03B4y ~ V. But as V = W, every non-zero
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measure in V is supported by at least three points. Thus x = y and ~ is
one to one. Finally

This completes the proof. D

Section 2. A metric minimal flow every point of which has a continuum of
asymptotic points

Let Q = [0, 1]Z denote the compact metric space of two sided [0, 1] ]
valued sequences with the metric d(x, y) = sup 2-|n||xn-yn|. For a

nEZ

closed W c [0, 1]n and i E Z we let

n

and C(W) = U Ci(W). We define inductively a sequence nk and closed
sets Wk C Wnkk-1 1 as follows. Let Wo = [0, 1]. Given Wk -1 1 we choose an
arbitrary but fixed 2-k-net {u1, u2,...,ulk} of W2k-1, where the metric
on a finite dimensional cube [0,1]" is d( w, v) = Sup |wl-vl|. Let

n k = 1001k and define

00

We call the set ( ii , i2,...,ilk} a u-set for w. Put X = n C(Wk).
k=1

2.1 PROPOSITION: Let T be the shift on X, then (X, T) is a minimal flow.

PROOF: Follows directly from the way X was defined.

2.2 PROPOSITION: For every k, Wk is pathwise connected.

PROOF: Assume Wk _ 1 is connected. Let w, w’ E Wk, W = wlw2 ... Wnk’
W’ WW2 1 ... wnk, wl, wl E Wk-1. Assume first that there exists a u-set
A = {i1, i2,...,ilk} common to w and w’. We let w(t) = w1(t)
w2(t) ... wnk(t) be defined by W, (t)wlj +1(t) ~ M if ij E A and where for
all other i ’s wl(t) is a path in Wk -1 1 connecting wl and w,’. Clearly
w( t ) E Wk for every t E [0, 1]. For the general case let A = {i1, i2,...,ilk}
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and A’ = (i’1, i’2,...,i’lk} be u-sets for w and w’ respectively. Choose
A" = {i"1, i"2,..., i"lk} ~ {1, 2,..., nk} a set of odd indices disjoint from
A U A’ and def ine v = v1v2 ...vnk, v’ = v’1v’2 ... v’nk as follows

Clearly v, v’e Wk. Now as A is a common u-set for w and v, A" a

common u-set for v and v’ and A’ a common u-set for v’ and w", we
conclude by the first part of the proof, that there exists a path in Wk
connecting w and w’. D

DEFINITION: Let K be a natural number 1  r, s  lk, ru. A chain
from ur to us is a set f jo, j1,..., jl} of indices such that jo = r, 7/ = s

and d(ujn, ujn+1) 2-k, 0  n l.
For every r and s as above, the existence of a chain from ur to u,

follows from the fact that Wk is pathwise connected.

DEFINITION: For x ~X there exists by definition a sequence of integers
{tk} such that tk  0  tk + m k (where mk is the length of sequences in
Wk ) and such that for every k x E Ctk(Wk). It is easy to see that one can
choose {tk} so that Vk tk-1 = tk (mod mk-1). Such a sequence {tk} will
be called a block partition for x.

2.3 PROPOSITION: Let x e X, ( tk 1 a block partition for x and wo E Wk,,
for some ko. Then there exists y E X such that

(1) Yltko, tko + mko - 1] = Wo
(2) y is doubly asymptotic to x.

PROOF: We define y[tk, tk + mk - 1] by induction on k. Put y[tk0, tko +
mk0-1]=w0. Let x[tk, tk + mk - 1] = w1w2 ... wnk = w, wl ~ Wk-1, i =

1,..., nk, and suppose x[tk-1, tk-1 + mk-1 - 1] is wn. Let A be a u-set
for w. If n, n - 1 ~ A define y[i] = x[i] for tk  i  tk + mk -1, i ~

[tk-1, tk-1 + mk-l - 1] and then clearly y[tk, tk + mk - 1] E Wk.
If n = ir ~ A, let m, 1  m  nk-1 be an odd integer such that

m e A. There exists an s, 1  s  lk such that d(us, wmwm+1)  2 k. Let
jo, j1,...,jl be a chain from Ur to us, jo = r, il = s; thus for iJt ~ A
w, w, Jt +1 = uJt, t 

= 1,..., l. Put w’ = w’1w’2 ... wnk where for an odd i
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Since for every t, d(uJt-1, uJt)  2-k and also deus, wmwm + 1 )  2-k we
have d(w, w’)  2-k. Let y[tk, tk + mk -1] = w’1w’2...w’n-1y[tk-1, tk-1
+ mk-1 - 1]w’n+1...w’nk, then clearly y[tk, tk + mk - 1] ~ Wk. If n - 1 =
ir ~ A the construction is similar.

There are now three possibilities :
(1) tk ~ oo, tk + mk ~ 00, in which case y is now fully defined.
(2) There exists ko such that for k  ko, tk = tko. In this case define

y[ - 00, tk0- 1]=x[-~, tk0-1].
(3) There exists ko such that for k  ko, tk + mk = tko + mko.
In this case define y[tk0 + mko + 1, ~] = x[tk0 + mko + 1, ~]. By defi-

nition of y we have for i  tk and i &#x3E; tk + mk, |y[i] - x[i]|  2 - k. Thus
y and x are asymptotic. D
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