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Introduction

Perhaps the chief reason why the study of Fermat curves is so rewarding
is that their Jacobians are of CM type. Is there a systematic way to
construct other curves with this property? In this paper, we examine the
limitations of one approach based on a p-adic method - the "canonical
lifting" of Serre and Tate [15]. They showed that an ordinary abelian
variety A over a perfect field k of characteristic p &#x3E; 0 has a distinguished
lifting Acan to the Witt ring W of k; if k is finite, A can is of CM type.
Thus it is natural to try to start with an arbitrary ordinary curve X/k
and ask if the canonical lifting of its Jacobian is again the Jacobian of
some curve. In this paper we show that, when p is odd and the genus is
greater than three, the answer is "no" for most curves, even if one works
mod p2.

Let us briefly sketch our method. We work over an algebraically
closed field k of odd characteristic p ; this allows us to use crystalline
deformation theory to give a completely linear description of the canoni-
cal lifting of an ordinary abelian variety. Let W2 =: W/p 2 W and let X/k
be a curve of genus g  2 with Jacobian J/k. The set of liftings of X/k
to W2 is a torsor under H1(X, 0398X,k) ~ 0393(X, 03A9X/k), and the set of

liftings of J/k together with its polarization to W2, is a torsor under

Sym20393(X, 03A9X/k). The cokernel QXlk of the natural map

can be thought of as the value at X of the normal bundle to the moduli
space Mg of curves in the moduli space f2 g of principally polarized
abelian varieties. In (2.4) we construct an element !3x of QXlk which is
the obstruction we need: 03B2X = 0 iff Jcan/W2 is the Jacobian of a curve
over W2.

Of course, the key point is to show that 03B2X is generically not zero.
Rather than try to construct examples for every g and p, we proceed by
"pure thought". First we show that the Frobenius pullback Fk*(03B2X) of /3x
can be interpolated in any family of curves Y/T: there is a section Î3Y/T
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of F*T(QY/T) whose value at each closed pointed t of T is F*k(03B2Y(t)).
Since QY/T is coherent, this shows at least that the set 03A3 of all closed

points in T corresponding to curves X with a canonical lifting mod p2 is
constructible. When g = 2 or when the fibers of Y/T are nonhyperelliptic
(as we may safely assume when g &#x3E; 2), QYIT is locally free of rank
(( g - 2)(g - 3)/2), and then 2 is in fact closed.

To show that 03B2Y/T is not zero when g  4 and Y/ T is a versal family
of curves, we prove that in fact !3Y/T cannot be descended to r(T, 6y/r)
 r(T, Fj,QY/T)’ This is the same as showing that 03B2Y/T ~ 0, where v
is the canonical connection which exists on the Frobenius pullback of
any coherent sheaf [10, (5.1)]. To accomplish this, we first give a very
simple formula (3.2) for 03B2Y/T involving the Cartier operator and the
multiplication map: 03BCY/T: Sym20393(Y, 03A9Y/T) ~ 0393(Y, 03A9Y/T).

The rest of our argument is clearest if we make a finite étale covering
of T and choose a level p-structure for the Jacobian of Y/T. Using the
well-known correspondence between divisors of order p and holomor-
phic differentials fixed by the Cartier operator [14], we find that

r(Y, 03A9Y/T)C has an (9,-basis f wl, ... , 03C9g}, and the canonical embed-
ding can be viewed as a T-map Y ~ T  Pg-1. Then we see immediately
from our formula (3.2) that if i7ÀY/T vanished, KY/T =: ker(03BCY/T)
would also be invariant under the Cartier operator. In other words, the
intersection ZYIT of all the quadrics in T  Pg-1 containing Y would
descend to a "constant" subscheme of T. When g  5, Petri’s theorem
[16] tells us that a general curve of genus g is equal to the intersection of
the quadrics containing it, leading to the absurd conclusion that the
generic curve is definable over Fp! For g = 4, an easy modification of this
argument can be made to work.

It is worth remarking that many of our arguments, including formula
(3.2), are valid in the context of abstract F-crystals. Consequently they
can also be expected to apply to diverse situations, such as families of K3
surfaces, hypersurfaces, etc. For the sake of concreteness we have chosen
to treat here the case of curves exclusively, leaving the generalizations to
the future, as need arises.
Many related questions remain to be investigated. Perhaps the most

obvious is the problem of identifying the subsets of Mg/k corresponding
to curves which have canonical liftings mod higher powers of p. The
question of constructing nonhyperelliptic curves of high genus with CM
Jacobians remains quite mysterious; most intriguing is R. Coleman’s

suggestion that, for large g, there should be only finitely many such
curves. We also think the moduli of curves with a level p structure, which

maps naturally to the Hilbert scheme of Pg-1, warrants further investi-
gation. We had intended to mention the problem of constructing "ex-
plicit" examples of curves with no canonical lifting, but in fact Oort and
Sekiguchi have, completely independently, constructed many such exam-
ples [13]. They were able to conclude that the generic curve of genus g
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has no canonical lifting, at least when g  2(p - 1)  8, providing a
completely different proof of our main result in most cases. We should
also point out that the first explicit example seems to be due to D.
Mumford (letter to Dwork, 1972).
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§ 1. Canonical lif tings of abelian varieties and Jacobians

Recall that an abelian variety A over an algebraically closed field k of
characteristic p is said to be "ordinary" iff it satisfies the following
equivalent conditions:

The étale part of the p-divisible group of A is 
(1.1.1)isomorphic to (Qp/Zp)g.

The p-linear endomorphism of H1(A, (9A) induced
by the absolute Frobenius endomorphism FA of A (1.1.2)
is bijective.

The crystalline cohomology H1cris(A/W) splits into a direct sum:

invariant under the map Fl induced by FA, where FA* U : U - U is an
isomorphism and F*A|T: T ~ T is p times an isomorphism.

(1.2) REMARK: There is a canonical isomorphism:

which we permit ourselves to view as an identification. The Hodge
filtration: Fil =: F1Hodge ~ H1DR(A/k) is well-known to be the kernel ofthe endomorphism HDR( FA) of H1DR(A/k) induced by FA; in particular,
this map always has rank g. Its image, often called the "conjugate
filtration", is denoted F1con c H1DR(A/k). It is clear that A is ordinary iff
the natural map

is an isomorphism.
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Let 03A6k: F*kH1DR(A/k) ~ H1DR(A/k) denote the k-linear map corre-
sponding to H1DR(FA). It factors through the natural projection
F*kH1DR(A/k) ~ F*kH1(A, (!JA)’ fitting into a commutative diagram

Thus, A is ordinary iff h is bijective iff qr is bijective. When this is the
case, the U (resp. the T ) in (1.1.3) is the unique H1cris(FA)-invariant direct
summand of H1cris(A/W) lifting F ôn (resp. FH’.dge). The letter U stands
for "unit root"; we will also use the notation Filcan for the subspace T.
When the context permits, we shall also use these notations for the
reductions of the corresponding spaces modulo various powers of p.

Let Wn =. W/pnW and let S =: Spec Wn or Spf W. Recall that if X/S
is any smooth proper formal scheme and X/k is its closed fiber, there is
a canonical isomorphism

compatible with the isomorphism (1.2.1). We set

In the absence of p-torsion in the Hodge groups, we see that Filx is a

lifting of Filx =: F1Hodge  HDR( X/k) to a direct summand of Hcis(XIS). 1 X/S).
For abelian varieties we have, since p is odd, the following "crystalline
local Torelli theorem" [11, §5], [2, (3.23)].

(1.3) THEOREM: If A/k is an abelian variety, the above correspondence

(formal liftings of A/K to S } ~ (liftings of Fil A to a
direct summand of H1cris(A/S)}

is bijective.

In particular, the lifting T = Filcan of (1.1) and (1.2) defines a formal
lifting A can of A to S, called the "canonical lifting". This is the crystal-
line description of a famous result of Serre and Tate, who also proved
that A can is in fact algebraizable.
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(1.4) THEOREM (Serre-Tate): If A/k is an ordinary abelian variety, there is
a lifting Acan/W of A/k to an abelian scheme over W, uniquely determined
by any of the following properties:

The p-divisible group of Acan splits as a direct sum of (1.4.1)its étale and connected p ieces. ( 

There is an Fwmorphism Fcan: Acan ~ Acan lifting (1.4.2)the absolute Frobenius endomorphism FA Qf A. (1.4.2)

The action FÂ of FA on H1cris (A/W) leaves FilAcan (1.4.3)invariant. 

Moreover if B/k is another ordinary abelian variety the natural map

is bijective. 

Perhaps the best current reference for this result is Messing’s thesis,
especially [11, V, §3 and Appendix]. Although (1.4.3) is not mentioned
explicitly there, it follows immediately from the methods of proof. One
can also refer to [2, 3.4] for an explicit discussion of (1.4.3). Note that
only the implication (1.4.3) ~ (1.4.1) and (1.4.2) requires the hypothesis
that p be odd. Moreover, if k is finite, the canonical lifting Acan/W is
also characterized by: End(Acan) ~ End(A) is bijective [11, Appendix,
(1.3)].

Note that if A is ordinary, so is its dual. One sees easily that the
canonical lifting of the dual of A is the dual of its canonical lifting. The
last part of (1.4) therefore implies that every polarization of A lifts

uniquely to a polarization of Acan; this can also be deduced from [2,
(3.15)]. In particular,

A can is algebraizable.

If A /S is any formal lifting of an ordinary A/k, a natural measure of
the "distance" between A and A can is the composite

where 71’can is the projection associated to the direct sum decomposition
H1cris = Filcan ~ U. Since FilA and Filcan are equal modulo p, we in fact
have a map:
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This map and its variants will be the key to our analysis. Note that TA = 0
iff A = Acan/S.

(1.6) REMARK: Although we shall not need it for what follows, it is

interesting to relate rA to the theory of canonical coordinates [5], by
means of explicit formulas. Recall from [5] that the universal formal
deformation space T of A over W is formally smooth of dimension g2,
and admits "canonical coordinates" {tlj = qij - 1, 1  i, j  g}, with

respect to which the Gauss-Manin connection looks especially nice. Thus,
if B/T is the universal formation deformation of A/k, HbR(B/T)
admits a basis: {03C91, ... , 03C9j, ~1 ... ~g} compatible with the Hodge filtra-
tion, and the Gauss-Manin connection v is given by:

Moreover, the canonical lifting corresponds to the W-section: {tlj = 0}.
Now any formal lifting A/S corresponds to an S-valued point of T, i.e.
to a choice of g2 elements {tij(A)} of the maximal ideal of (9s. The
canonical isomorphisms H1DR(A/S)  H1cris(A/S)  H1DR(Acan/S) can
be calculated by well known formulas (cf. [1]) in terms of the Gauss-Manin
connection. We find that

Suppose now that X/k is a smooth projective curve of genus g  1
and let J =: (A, 0398) denote the Jacobian of A together with its principal
polarization. There is a canonical commutative diagram:

compatible with the actions of absolute Frobenius. In particular, A is

ordinary iff Fx induces a bijective endomorphism of H1(X, (9x); in this
case one says that X is ordinary. It is clear that this condition depends
only on the isomorphism class of X/k and hence only on the image of X
in the coarse moduli space Mg/k of curves of genus g over k. It is quite
easy to see that the set Mg ord(k) of points corresponding to ordinary
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curves is Zariski open in Mg(k); L. Miller was the first to prove that for
every g, it is also dense [12].

If X/k is ordinary, let Ocan be the unique lifting of 8 to the canonical
lifting Acan of A, and let Jcan(X)=: (can, Bcan)’ a principally polarized
abelian scheme over W. If R is any W-algebra, we let Jcan/R denote the
principally polarized abelian scheme over R obtained from Jcan by base
change.

(1.7) DEFINITION: An ordinary curve X/k is "pre-R-canonical " iff there is
a smooth curve Y/R whose Jacobian is isomorphic, as a principally
polarized abelian R-scheme, to Jcan(X)/R.

Note that if g  3, every principally polarized abelian variety of genus
g over an algebraically closed field is the Jacobian of a curve, and that
the curve is smooth if the 0-divisor is irreducible. Thus, if g  3, every
ordinary curve over k is pre-K-canonical.

It ought to be clear that the pre-R-canonicity of X/k depends only on
the isomorphism class of X/k. Thus the class of all pre-R-canonical
curves defines a subset of Mg ord(k) which we denote by 03A3R.

(1.8) THEOREM: If g  4, the set LK of pre-K-canonical curves in JI( g ord(k)
is nowhere dense in JI( g ord ( k ).

Let W2 =: W/p2W. Theorem (1.8) will follow easily from:

(1.9) THEOREM: The set 03A3w2 of pre-W2-canonical curves in Jl(gord(k) is

constructible. Its intersection with the nonhyperelliptic locus is closed. If
g  4, it is nowhere dense.

Let us explain how (1.9) implies (1.8). Clearly it suffices to prove that

if x ~ Mg ord(k) represents the class of a nonhyperelliptic and pre-
K-canonical curve X, then X is also pre- W2-canonical. Suppose Y/K is a
smooth curve whose Jacobian is J(X)can/K. Necessarily there is a finite

extension K’ of K to which Y descends; write Y’/K’ for some descent of
Y/K. For K’ large enough, we still have J(Y’)/K’ ~ J(X)can/K’. Since
J(X)can/K’ has stable reduction, so does Y’/K’: there is a stable curve
Y’ over the ring of integers V’ of K’ whose generic fiber is Y’. Then by [6,
(2.5)ff], the Jacobian of the special fiber of Y’ is the special fiber of
J(X)can; it follows that this special fiber is just X. In other words, Y’/V’
is a lifting of X. Let 1 denote the universal f ormal deformation of X
and let A denote the universal formal deformation of J(X). Each of
these is a formally smooth formal scheme over W, and since X is not
hyperelliptic, the natural map ~A is a closed immersion. The lifting
Y’ defines a V’-valued point y’ of -IF, and its image in .91 factors

through a W-valued point. It follows that y’ also factors through a
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W-valued point, i.e. Y’ descends to W. Then if Y/ W is such a descent,
J(Y/W2)~J(X)can/W2, so X is pre- W2-canonical.
We shall explain the proof of Theorem (1.9) in the next sections.

§2. Obstructions mod p 2

Suppose X/k is a smooth projective curve of genus g. Poincaré duality
in crystalline cohomology furnishes us with a perfect alternating pairing:

If e and 1’ are elements of H1cris(X/W), one has the compatibility
relation

One deduces immediately that, when X is ordinary, the direct summands
U and Filcan (1.1.3) of H1cris(X/W) are totally isotropic and mutually
dual.

If Wn =: W/pnW and if X is a lifting of X to Wn, we obtain a totally
isotropic lifting Filx of Filx = FI to a direct summand of

H1cris(X/Wn). By (1.2), when X is ordinary, the natural map

is an isomorphism, since it is modulo p.

(2.2) PROPOSITION: If X/k is an ordinary curve of genus g, the following
are equivalent:

PROOF: If X/k is pre-Wn-canonical, there is a smooth proper Y/Wn such
that J(Y/Wn ) ~ Jcan/Wn as principally polarized abelian schemes. In
particular, the reduction of J(Y/Wn) to k is isomorphic to the Jacobian
of X/k, and by the Torelli theorem, Y/k = X/k, i.e. YI W is a lifting of
X/k. Thus, (2.2.1) implies (2.2.2). The remaining equivalences are clear.
n
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Now if X/W2 is any lifting of X/k, we obtain as in (1.5) a map:

by composing the inclusion of Filx in H1cris(X/W2) with the projection
associated with the direct sum decomposition

Of course, pF1con = 0, so TX factors through Fil x ~ Fil x. In other words,
there is a unique map:

such that for any w E Fil x, we have

where w E Filx and ",’ E Filcan are liftings of 03C9. It is clear that X/k is
pre- W2-canonical iff we can choose X/W2 such that 03B4X = 0.

Recall that the cup-product pairing on H1DR(X/k) induces a perfect
pairing (, ) : Fil x X Fcon ~ k. Thus, we can identify 8x with a bilinear
map :

given by: 03B2X(03C9, 03C9’) = 03C9, 03B4X03C9’. It follows immediately from the facts
that (, ) is alternating and that Filx and Filcan are totally isotropic that
03B2X is symmetric. Thus we can identify /3x with a map :

Of course, FilX ~ 0393(X, 03A9X/k), so there is a natural map

(2.4) PROPOSITION: The restriction /3 x of 03B2X to ker(ti x) g Sym2 Fil x is

independent of the lifting X/W2. The curve X/k is pre-W2-canonical iff
18X = 0.

PROOF: Standard deformation theory tells us that Def( X/ W2 ), the set of
isomorphism classes of lifting of X/k to W2, is a torsor under the group
H1(X, (3X/k)’ where of cour-se 8X/k is the tangent bundle. Moreover, the
set of liftings Lcris(FilX/W2) of Fil x to totally isotropic direct summands



120

of H1cris(X/W2) is a torsor under (Sym2 Pilx)V (in the manner described
above). We have a natural map of groups:

and of sets:

When p ~ 2, it is proved in [2, (3.21)] that the second of these maps is a
morphism over the first one. (For p = 2, a correction term is required
[4].) In particular, if D ~ H1 (X, 0398X/k) and if X’/ W2 is the lifting
obtained from X/ W2 by "adding" D, then Filx, is obtained from Filx
by "adding" tt’(D). It follows that we have:

If we identify Cok(03BCX) with Ker(03BCX), we find that the image Px of 8x
in this space depends only on X, and that flx vanishes iff X’ can be
chosen so that 03B2X’ = 0. D

(2.4.3) REMARK: The restriction flx of 03B2X to Ker(03BCX) is an element of the
dual Ker(03BCX) of Ker(03BCX), which we can identify with Q x =: Cok(03BCX).
This space has a natural geometric interpretation: it is the normal bundle
to the deformation space of X in the deformation space to its Jacobian

J(X) as a principally polarized abelian variety. That is, we have an exact
sequence

(2.5) VARIANT: We can also use characterization (1.4.3) to measure how
far XIW2 is from defining the canonical lifting. Namely, let

denote the W-linear map corresponding to Fi. If w E F*W FilX, 03A6(03C9) ~
pH1cris(X/W2) ~ H1DR(X/k). Thus, there are unique maps:

One verifies immediately that y x is in fact the inverse transpose of the

map D: Fk*Fcon ~ Fcon induced by (D (and hence does not depend on the



121

lifting X/W2). It is well known that this is the inverse Cartier operator
C-1. It is also immediate to verify that

In order to prove (1.9), we first show that the obstructions Tx =: Fk*(X)
vary nicely in a family. To this end, let Y/T be a smooth proper family
of curves of genus g, where T/W2 is smooth, and let Y/T be the
reduction of Y/ T mod p. The yoga of crystalline cohomology then
provides us with an F-crystal on T/ W2 . For our purposes, we may as
well assume that T is affine, so that the absolute Frobenius endomor-
phism FT of T admits (many) liftings to endomorphisms FT of T. Our
F-crystal then becomes the following set of data:

- a coherent sheaf of OT-modules with integrable (2.6.1)connection ( HT, V). 

- a horizontal map: 03A6FT: F*T(HT, ) ~ (HT, V)-

Poincaré duality provides us with a horizontal alternating form:

and one has all the expected compatibilities, e.g. with specialization. Note
that these data depend only on Y/ T and FT, not on Y/T. On the other
hand, there is a canonical isomorphism:

under which V becomes identified with the Gauss-Manin connection.

Thus the lifting Y/T of Y/T does provide us with a filtration Fil Y  HT,
lifting the Hodge filtration on HT = HDR(Y/T).

Assume from now on that each fiber of Y/T is ordinary. Then as
explained in [9] there is a unique horizontal lifting UT of FconT  HT to a
local direct summand of HT which is stable under 03A6; 03A6 in fact induces a
(horizontal) isomorphism ~FT: FT*UT ~ UT.
On the other hand, there is no 03A6-invariant lifting of Fil y, in general.

The lifting Fily provided by I’/T will not usually be C-invariant, but
will define a direct sum decomposition:
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Thus, there are unique maps

It is easy to verify that yY,FT is just the inverse transpose of 03A6:

F*TUT ~ UT, and is therefore independent of the liftings Y/T and FT of
YIT and FT. We shall denote it simply by 03B3Y/T.
We shall find it convenient to work with the maps

Our next result expresses the relationship between 18Y,FT and the obstruc-
tion /3 x of (2.4). 

(2.7) PROPOSITION: Let QYIT be the cokernel of the dual of the natural
map

Then the image 03B2Y/T of PY,Fr in FT*QY/T is independent of the liftings YIT
and FT of Y /T and FT. For any closed point t ~ T, the image 03B2Y/T(t) of
03B2Y/T in

is precisely F*k(03B2Y(t)).
PROOF: Associated to each closed point t of T is its Teichmuller lifting
t ~ T’( W2 ), uniquely determined by the commutativity of the diagram

Via the canonical isomorphism: t*HT ~ H1cris(Y(t)/W2), t*(03A6FT) be-

comes the map 03A6: F*WH1cris(Y(t)/W2) ~ H1cris(Y(t)/W2) used in (2.5).
Moreover, Y(t) =: t*(Y) is a lifting of Y(t)/k to W2, and, via our

isomorphism, t * Fily becomes FilY(t)  H1cris (Y(t)/W2). It now follows

from the definitions that

and
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The OT-modules Fily and r( Y, 03C9~2Y) are locally free, and their formation
commutes with base change. It follows that the natural map from

QY/T(t) =: t*QY/T to Cok(03BCY(t)) is an isomorphism. By (2.5.3) and the
definitions, we find that the image of t*(03B2Y,FT) in Fk*(QY/T(t)) is

precisely Fk*(03B2Y(t)), proving the last part of our proposition.
In particular, we see that 03B2Y,FT(t) is independent of the choices Y/ T

and FT, for every closed point t of T. On the open subset of T where

QYIT is locally free, at least, this is enough to show that 03B2Y,FT is also

independent of the choices. It is more revealing, however, to give a
"crystalline" proof.

First let us investigate the effect of changing the lifting Y/T. This
involves an argument just like the proof of (2.4). The set of all such

liftings is a torsor under H1(Y, 0398 Y/T ) ~ 0393(Y, 03A9Y/T). If two liftings Y
and Y’ differ by an element 0 of H1(Y, 0398Y/T), the corresponding
filtrations differ by an element 03B2 of Sym2(Fily)V; in fact, 03B2 = 03BCY/T(03B8).
Since FT is the identity map (set-theoretically), there is a natural map of
abelian sheaves:

One checks immediately that

and hence that the images of 03B2Y’,FT and 03B2Y,FT in F*T(QY/T) are equal.
On the other hand, the set of all liftings FT of FT is a torsor under

F*T(0398T/k). If FT and FT are two liftings, differing by an element

o E F;«3T/k)’ the yoga of crystalline cohomology furnishes us with a
canonical isomorphism e: FT*HT  FT,HT [1]. This isomorphism can be
computed from the connection V on the (9rmodule HT. Using the fact
that the divided powers p[i] = 0 ’a (9T for i  2, one finds that, for

w E HT lifting w e HT,

Since (D is a morphism of crystals, 03A6FT,  E = FFT, so that

Suppose now that w E Fil y, so that w E Fil y. Write

Via the natural isomorphism: Fcon ~ HT/Fil y, the map p becomes
identified with the usual Kodaira-Spencer mapping [8]. Now let w =:
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F*T(03C9) ~ F*T Fil y. Using the obvious abbreviations and the definitions, as
well as the fact that (DFT : F*T FilY ~ HT is zero, we find from (2.7.5) and
(2.7.6): 

Hence

Of course, the element

is given by the composite of Kodaira-Spencer e: 0398T/k ~ Hl(8Y/T) with
cup-product: H1(0398Y/T) ~ Hom(Fily, Fcon) [8]. Using the notations and
identifications above, we can write (2.7.8) as

This implies that the class of a modulo the image of F*(03BCY/T) is

independent of the choice of FT, and completes the proof of (2.7). D

(2.8) COROLLARY: The set of all closed points t of T such that the fiber
Y(t)/k is pre- W2-canonical is equal to the set of closed points t such that

03B2Y/T(t)=0 in F*QY/T(t). In particular, it is constructible, and it is

closed if QY/T is locally free. n

Suppose now that T/W2 is the fine moduli space of curves of genus g
with level structure and Y/T is the universal family. It is clear that

03A3W2  Mg is just the image, via the natural map T ~ Mg, of the

constructible set in Corollary (2.8). This proves the first statement of

Theorem (1.9). For the second statement, recall that if X/k is a nonhy-
perelliptic curve (or if g = 2), the map 03BCX/k is surjective. Thus, in the
situation of (2.7), if we assume that all the fibers of Y/T are nonhyperel-
liptic (or that g = 2), we find that Jl y /T is a surjective map of locally free
sheaves. In this case, QY/T is isomorphic to the dual of the kernel of
Jl Y/T’ and in particular is locally free. This proves the second statement
of Theorem (1.9). We shall prove the third statement in the next section.

(2.9) REMARK: Suppose that Y/T/W2 is a versal family of curves, i.e.

that the Kodaira-Spencer mapping:

is an isomorphism. In this case, F*(QY/T) is the cokernel of the natural
map
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We see from formula (2.7.9) that 03B2Y/T = 0 iff there exists a lifting FT of
FT such that 03B2FT = 0, i.e. such that Fily is invariant under (DFT. Such a
lifting FT is called an "excellent lifting of Frobenius" [7]. If all fibers of
YIT are nonhyperelliptic, or if g = 2, 03B2Y/T = 0 iff each 03B2Y/T(t) = 0, i.e.
iff each Y(t) is pre-W2-canonical. (In fact, if FT exists, the Teichmuller
lifting of t defines the canonical lifting.) If X is nonhyperelliptic and
g = 3 (or if g = 2), the map (2.9.1) is in fact an isomorphism, so QY/T is
zero. Thus, every nonhyperelliptic curve of genus 3 (and every curve of
genus 2), is pre-W2-canonical, and there exists a unique excellent lifting
FT of Frobenius to T. Of course, this is no surprise, because, in these
cases, the Torelli mapping from T to the moduli of principally polarized
abelian varieties is a local isomorphism, and the theory of canonical
coordinates applies.

§3. Dif f erentiating the obstruction

We again let Y/T/W2 denote an affine family of smooth curves of genus
g  4 and Y/T/k its reduction mod p. In this section we shall prove
that, if Y/T is versal, its general member is not pre- W2-canonical, i.e.

03B2Y(t) ~ 0 for general t. Now we have shown that {F*k03B2Y(t): t ~ T} can be
"interpolated": there is a section 03B2Y/T of F*T(QY/T) which specializes at
each t to F*k03B2Y(t). We shall in fact see that {03B2Y(t): t ~ T} cannot be

interpolated, i.e. the element 03B2Y/T of r(T, F;QY/T) does not lie in the
subspace r(T, QY/T). Of course, this implies that it is not zero!

As is well known, for any quasicoherent sheaf Q on any smooth
k-scheme T, the sheaf FTQ has a canonical integrable connection v,
characterized by Q = Ker(FT*) [10]. Thus, what we must show is that
for a versal family Y/T/k, the element 03B2Y/T Of F;QY/T ~ 2TIk is not
zero. As a first step, we present a simple formula for this element. It is
important to note that the proof of our formula is purely formal, and in
particular would make sense in the context of abstract F-crystals.

In order to write our formula in the most elegant form, we assume that
the family Y/T is versal, i.e. that the Kodaira-Spencer mapping 0398T/k ~
H1(Y, 0398Y/k) is an isomorphism. We then identify (3Tlk with H1(Y, (3Y/k)
and 0 with r( Y, 03A9Y/T). Thus, we regard JLY/T as a map:

Recall again that J.LY/T can be computed from the Gauss-Manin connec-
tionv and the bilinear form (, ) on H1DR(Y/T) by:

Let us also assume that all the fibers of Y/T are nonhyperelliptic, so
that ftYlT is surjective, and let
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Thus, our obstruction can be regarded as a (9,,Iinear map

(3.2) PROPOSITION: Let v: F*T(QY/T) ~ 2 Tlk ~ FT(QY/T) be the canoni-
cal connection described above, let f3Y/T E F*T(QY/T) be the obstruction
(2.7), and let y: F*TFilY ~ Fily be the inverse Cartier isomorphism (2.6.5)
(the inverse transpose of Hasse-Witt). Then the following diagram is

commutative:

PROOF: Let H =: HT, together with its integrable connection p, and let
U =: UT ~ H, Fil =: FilY ~ H. Since U  H is invariant under the

connection p, the quotient module H/U inherits a connection p. Using
the natural isomorphism: Fil - H/U, we can regard V as a connection
on Fil, which we denote by a. Note that Fil ~ H is not invariant under
V; in fact, (with the obvious notations),

"is" the Kodaira-Spencer mapping. Thus,

We can view ’Fil: Fil  H and U: H - U as maps of modules with
integrable connection. Using the usual conventions for the induced p on
Hom’s, we find:

Now let FT: T - T be a lifting of .FT and (H, V, û, Fil) =:
F*T(H, , U, Fil). We have a horizontal map 03A6=: 03A6FT: (H, , Û) -
(H, , U), and the composite U  03A6  iFil, "divided by p " is our

obstruction aFT. We calculate:
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Here p: Fil - 03A9T/W2 0 U is the map defined as in (3.2.2); one checks
easily that p = d FT  F*T(03C1) and hence is divisible by p. Recall that ~:
U ~ U is the isomorphism induced by 0, and that 03B1Y,FT = ~-1 o O:y ’ F . T
Thus, if we let ~FT: F*T03A9T ~ 0 T denote the map induced by p-1 dFT, we
find the following formula:

Since our pairing Fily X Fcon ~ (9T is horizontal, we have the formula:

But ~ is the inverse transpose of y, and (via the identification (3.1.1)),
the bilinear form induced by p is just 03BCY/T. Thus we have proved:

In other words, the following diagram commutes:

We should perhaps remark that 11FT depends on the liting FT of FT, but
that it factors through the closed one-forms, and its projection to

H1(03A9T/k) is just the inverse Cartier operator [1, §8]. At any rate, this
term is no immediate concern to us, because of course F*T(03BCY/T) vanishes
on FT*(KYIT). Thus, the diagram (3.2.9) specializes to our desired for-
mula (3.2.1) when we restrict to Fj,(KY/T)’ 

The following result completes our proof of Theorem 1.9.

(3.3) THEOREM: Let Y/T be a versal family of nonhyperelliptic curves of
genus g  4. Then ~03B2Y/T is not identically zero. In other words, 03B2Y/T does
not descend to a section of QYIT-
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PROOF: Recall that we have an exact sequence

By (3.2), we see that -B1Î3Y/T can be viewed as the composite map:

Here y is the inverse Cartier operator. Thus, if ~03B2B/Y=0, KYIT is

stable under y. We shall see that this is impossible. Indeed, for any curve
X of genus g  1, the linear system Fil x = r( X, ax) is base point free,
and there is a canonical map

When X is nonhyperelliptic, this map is a closed immersion. If we let
PFily denote the projective bundle over T associated to the locally free
(9,-module Fily, we get a closed immersion of T-schemes

Now Fily has no canonical basis, but it comes close to having a
canonical Fp-lattice, provided by the isomorphism y: FT* Fil, - Fil y.
Namely, after T is replaced by a finite étale covering, the sheaf of

Fp-vector spaces Fily =: ( w (E Fil y: y(1 ~ 03C9) = 03C9} spans Fil y, and in fact
the canonical map

is an isomorphism. (This is just Lang’s theorem.) Thus, if P(Fil03B3) is the
projective space over Fp associated to Fil03B3, we have a canonical isomor-
phism : T X P(Fily)  P(Fil y). (We could even choose a basis of Fil,
and write P(Fil) ~ fFDg-l; such an isomorphism would be unique up to
the action of the finite group PGL( g, Fp). Our map 03C8Y/T then becomes a
map of T-schemes:

Recall that 03BCY/T: Sym2 FilY ~ QT/K is identified with multiplication
Sym2 FilY ~ r( Y, 03C9Y2). Thus, its kernel K Y/T is just the set of quadratic
forms which vanish on Y, and the corresponding divisors are precisely
the quadrics in T  P(Fil03B3) which contain Y. If KY/T is invariant under
y, the subspace K03B3 =: {03C9 ~ KY/T: 03B3(1 ~ 03C9) = 03C9} = K ~ Sym2(FilY) de-
fines an Fp-form of KY/T, i.e., OT~FpK03B3~KY/T. Then the subscheme
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Z(K.Y) - P(Fily) corresponding to the homogeneous ideal spanned by
K03B3 is a descent of Z(KY/T): Z(KY/T ) ~ T  Z(K03B3). Set-theoretically,
Z(KY/T) corresponds to the intersection of all the quadrics containing Y,
and we have Y  Z(KY/T) ~ T  Z(K03B3). If g  5, this is clearly absurd:
Petri’s theorem [16] tells us that the generic fiber YT of Y/T is equal to
the intersection of all quadrics containing it. Thus, Y = Z(K Y/T)T and of
course does not descend to a curve over Fp! This contradiction completes
the proof when g &#x3E; 5.

In genus 4, a slightly different argument is needed. Since our problem
is local for the étale topology, it will suffice to prove that ~03B2Y/T ~ 0, for
one versal family of curves of genus 4. In fact, it will suffice to prove that
for some family Y/T of ordinary nonhyperelliptic curves of genus 4, the
kernel KY/T of the natural map Sym20393(Y,03C9Y) ~ 0393(Y,03C92Y) is not

preserved by the inverse Cartier operator y. As is well-known, this kernel
is one-dimensional, corresponding to the unique quadric surface Z2 in
P0393(Y, 03C9Y) containing Y. Moreover, Y is the complete intersection of Z 2
with a cubic surface Z3, unique mod IZ2.

Suppose again that KY/T is invariant under y. Then, as above, we can,
after making an étale base extension, find an (9,-basis for r( Y, w y ) with
respect to which K y IT is constant. Thus P0393(Y, 03C9Y) = P3  T and
z2 = Z,,2 X T, where Z2  P3 is a quadric (over Fp). It is not hard to

construct a family of curves for which this is impossible. Start with a
fixed smooth cubic Z3 ~ F3, and let ZT  T  P3 be a family of

quadrics with the property that Zo is a cone with vertex not on Zj, and
such that the generic member of ZT is smooth. Let YT be the family of
curves ZT ~ Z3. It is clear that no recoordinitization of p T 3 can make ZT
constant!

All we have to do, then, is be certain that we can find a family of
quadrics such that the fibers of YT are ordinary. Since this is an open
condition, it suffices that the curve Yo corresponding to the quadric cone
be ordinary. In other words, it is enough to show that for some quadric
cone Z2 and some cubic surface Z3, the Hasse-Witt matrix of their
intersection is invertible. This ordinariness remains an open condition

even if one allows further degeneration, e.g. to two planes meeting three
planes in general position, which is easily seen to give an "ordinary"
curve. 0

(3.4) REMARK: If X/k is an ordinary curve of genus g, there is a

canonical isomorphism between the set of all holomorphic differentials
on X fixed by Cartier and the set of p-torsion points on the Jacobian of
X [14]. In particular, a choice of Fp basis for 0393(X, 03C9X)03B3 corresponds
precisely to a level p structure on X (i.e., on Jac(X)). This gives us a
canonical map from the moduli of ordinary curves with level p structure
to the Hilbert scheme of Pg-1. It seems to us that this map, used

implicitly in the previous proof, warrants further study. 0
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Formula (3.2) can also be used to calculate the tangent space of Y- W2
(in the nonhyperelliptic locus). If Y/T is again a versal family of
nonhyperelliptic ordinary curves, we have seen that Y- W2 is the closed
subscheme of T defined by the vanishing of a certain section 03B2Y/T of
Hom(F;KY/T’ (9T). Here KY/T is locally free of rank ( g - 2)(g - 3)/2,
and its formation commutes with base change. Thus, the ideal 1"2. of 1 W2
is just the image of !3Y/T’ We have a natural map: 

(3.5) PROPOSITION: The image of I03A3/I203A3 via the above map is
(Sym203B3(F*TKY/T) + KY/T)/KY/T. In particular, if X/k is nonhyperel-
liptic, ordinary, and belongs to 03A3W2, then the conormal bundle of 03A3W2 in
Mg at X/k is canonically isomorphic to 

PROOF: Choose a local basis {~l} for K Y/T; then (1 ~ ~i} is a local
horizontal basis for FT*KYIT, and {03B2Y/T(1 ~ ~i)} is a set of generators for
I03A3. Then d03B2Y/T(1 ~ ~i) = ~(03B2Y/T)(1 0 17i) = - 03BCY/T(Sym203B3(1 ~ ~l)) E
OTIK, by (3.2). Projecting to 03A9T/k |03A3, we find the desired formula. D

We have calculated some examples of these conormal spaces, one by
hand, more with the aid of Spencer Bloch and his IBM personal
computer. For example, the Fermat curve X of degree 5 is nonhyperel-
liptic of genus 6, and is ordinary and pre-W-canonical if p ~ 1 (5). The
moduli space Mg has dimension 15, and K, has rank 6. For all those p
which fit into the computer, we found that the conormal bundle also had
rank 6. Thus 03A3W2 is smooth of codimension 6 at the point X. It would be
interesting to study the "deeper" subschemes 2 Wn for higher n, and of
course to pursue higher genera. 
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