@article{CM_1986__57_3_383_0, author = {Dilcher, Karl}, title = {On a diophantine equation involving quadratic characters}, journal = {Compositio Mathematica}, pages = {383--403}, publisher = {Martinus Nijhoff Publishers}, volume = {57}, number = {3}, year = {1986}, mrnumber = {829328}, zbl = {0584.10008}, language = {en}, url = {http://www.numdam.org/item/CM_1986__57_3_383_0/} }
Dilcher, Karl. On a diophantine equation involving quadratic characters. Compositio Mathematica, Volume 57 (1986) no. 3, pp. 383-403. http://www.numdam.org/item/CM_1986__57_3_383_0/
[1] Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications, J. Number Theory 7 (1975) 413-445. | MR | Zbl
:[2] On the Euler and Bernoulli polynomials, J. Reine Angew. Math. 234 (1969) 45-64. | MR | Zbl
:[3] On S-integral solutions of the equation ym = f(x), Acta Math. Hung. 44 (1984) 133-139. | MR | Zbl
:[4] A conjecture concerning the Euler numbers, Amer. Math. Monthly 69 (1962) 538-540. | MR | Zbl
:[5] Irreducibilty of generalized Bernoulli polynomials, preprint. | Zbl
:[6] Asymptotic behaviour of Bernoulli, Euler, and generalzed Bernoulli polynomials, to appear in J. Approx. Theory. | MR | Zbl
:[7] Algorithms for localizing roots of a polynomial and the Pisot Vijayaraghavan numbers, Pacific J. Math. 74 (1978) 47-56. | MR | Zbl
:[8] Generalized Bernoulli numbers, generalized irregular primes, and class numbers, Ann. Univ. Turku, Ser. AI, 178 (1979) 72 p. | MR | Zbl
:[9] On the equation 1k + 2k + ··· + xk = yz, Acta Arith. 37 (1980), 233-240. | MR | Zbl
, and :[10] Lectures on p-acid L-functions, Princeton University Press (1972). | MR | Zbl
:[11] Computation of tangent. Euler, and Bernoulli numbers. Math. Comp. 21 (1967) 663-688. | MR | Zbl
:[12] Diophantine equations, Academic Press, London (1969). | MR | Zbl
:[13] Vorlesungen über Differenzenrechung, Springer Verlag, Berlin (1924).
:[14] Aufgaben und Lehrsätze aus der Analysis, Springer Verlag, Berlin (1925). | JFM
and :[15] The equation 1p + 2p + 3p + ··· + np = mq, Acta Math. 95 (1956) 155-189. | Zbl
:[16] On the diophantine equation 1k + 2k + ··· + xk + R(x) = yz, Acta Math. 143 (1979) 1-8. | MR | Zbl
, and :