The Plancherel theorem for general semisimple groups
Compositio Mathematica, Volume 57 (1986) no. 3, pp. 271-355.
@article{CM_1986__57_3_271_0,
     author = {Herb, Rebecca A. and Wolf, Joseph A.},
     title = {The {Plancherel} theorem for general semisimple groups},
     journal = {Compositio Mathematica},
     pages = {271--355},
     publisher = {Martinus Nijhoff Publishers},
     volume = {57},
     number = {3},
     year = {1986},
     mrnumber = {829325},
     zbl = {0587.22005},
     language = {en},
     url = {http://www.numdam.org/item/CM_1986__57_3_271_0/}
}
TY  - JOUR
AU  - Herb, Rebecca A.
AU  - Wolf, Joseph A.
TI  - The Plancherel theorem for general semisimple groups
JO  - Compositio Mathematica
PY  - 1986
SP  - 271
EP  - 355
VL  - 57
IS  - 3
PB  - Martinus Nijhoff Publishers
UR  - http://www.numdam.org/item/CM_1986__57_3_271_0/
LA  - en
ID  - CM_1986__57_3_271_0
ER  - 
%0 Journal Article
%A Herb, Rebecca A.
%A Wolf, Joseph A.
%T The Plancherel theorem for general semisimple groups
%J Compositio Mathematica
%D 1986
%P 271-355
%V 57
%N 3
%I Martinus Nijhoff Publishers
%U http://www.numdam.org/item/CM_1986__57_3_271_0/
%G en
%F CM_1986__57_3_271_0
Herb, Rebecca A.; Wolf, Joseph A. The Plancherel theorem for general semisimple groups. Compositio Mathematica, Volume 57 (1986) no. 3, pp. 271-355. http://www.numdam.org/item/CM_1986__57_3_271_0/

1 P. Dourmashkin: Ph.D. Thesis, MIT (1984).

2 M. Duflo: On the Plancherel formula of almost-algebraic real Lie groups, Lie Group Representations III, Proceedings, Univ. of Maryland 1982-1983, Lecture Notes in Math., Vol. 1077, Springer-Verlag, Berlin and New York, 101-165. | MR | Zbl

3 T.J. Enright, R. Howe and N.R. Wallach: A classification of unitary highest weight modules, Representation Theory of Reductive Groups (Proceedings, Utah, 1982), Birkhäuser (1983) 97-143. | MR | Zbl

4 T.J. Enright, R. Parthasarathy, N.R. Wallach, and J.A. Wolf:

(a) Classes of unitarizable derived functor modules, Proc. Nat. Acad. Sci., U.S.A. 80 (1983) 7047-7050. | Zbl

(b) Unitary derived functor modules with small spectrum, Acta Math. 154 (1985) 105-136. | MR | Zbl

5 T.J. Enright and J.A. Wolf: Continuation of unitary derived functor modules out of the canonical chamber Analyse Harmonique sur les Groupes de Lie et les èspaces symétriques, Actes du colloque du Kleebach, 1983, Mémoire de la Societé Math. de France, 112 (1984) 139-156. | Numdam | MR | Zbl

6 Harish-Chandra: (a) Discrete series for semisimple Lie groups I, Acta Math. 113 (1965) 241-318. | MR | Zbl

(b) Harmonic analysis on real reductive groups I, J. Funct. Anal. 19 (1975) 104-204. | MR | Zbl

(c) Harmonic analysis on real reductive groups, II. Inv. Math., 36 (1976) 1-55. | EuDML | MR | Zbl

(d) Harmonic analysis on real reductive groups, III, Ann. of Math., 104 (1976) 117-201. | MR | Zbl

7 R. Herb:(a) Fourier inversion of invariant integrals on semisimple real Lie groups, TAMS 249 (1979) 281-302. | MR | Zbl

(b) Fourier inversion and the Plancherel theorem for semisimple real Lie gioups, Amer. J. Math. 104 (1982) 9-58. | MR | Zbl

(c) Fourier inversion and the Plancherel theorem (Proc. Marseille Conf., 1980), Lecture Notes in Math., Vol. 880, Springer-Verlag, Berlin and New York, 197-210. | MR | Zbl

(d) Discrete series characters and Fourier inversion on semisimple real Lie groups, TAMS, 277 (1983) 241-261. | MR | Zbl

(e) The Plancherel theorem for semisimple groups without compact Cartan subgroups (Proc. Marseille Conf. 1982), Lecture Notes in Math. Vol. 1020, Springer-Verlag, Berlin and New York, 73-79. | Zbl

8 R. Herb and P. Sally: Singular invariant eigendistributions as characters in the Fourier transform of invariant distributions, J. Funct. Anal. 33 (1979) 195-210. | MR | Zbl

9 L. Punkánszky: The Plancherel formula for the universal covering group of SL(2, R), Math. Ann. 156 (1964) 96-143. | EuDML | MR | Zbl

10 P.J. Sally, Jr.: Analytic continuation of the irreducible unitary representations of the universal covering group of SL(2, R), Mem. AMS 69 (1967). | MR | Zbl

11 P. Sally and G. Warner: The Fourier transform on semisimple Lie groups of real rank one, Acta Math. 131 (1973) 1-26. | MR | Zbl

12 D. Shelstad: Orbital integrals and a family of groups attached to a real reductive group, Ann. Sci. Ecole Norm. Sup. 12 (1979) 1-31. | EuDML | Numdam | MR | Zbl

13 M. Vergne: A Poisson-Plancherel formula for semisimple Lie groups, Ann. of Math., 115 (1982) 639-666. | MR | Zbl

14 D. Vogan, Jr.: Unitarizability of certain series of representations, Ann. of Math., 120 (1984) 141-187. | MR | Zbl

15 N. Wallach: The analytic continuation of the discrete series I, II, T.A.M.S., 251 (1979) 1-17, 19-37. | MR | Zbl

16 G. Warner: Harmonic Analysis on Semisimple Lie groups, Vol. I, II, Springer-Verlag, Berlin and New York, 1972. | MR | Zbl

17 J.A. Wolf: (a) Spectrum of a reductive Lie group, AMS PSPM, Vol. 25, (1974) 305-312. | MR | Zbl

(b) Geometric realizations of representations of reductive Lie groups, AMS PSPM, Vol. 25 (1974) 313-316. | MR | Zbl

(c) Unitary representations on partially holomorphic cohomology spaces, Mem. AMS. 138 (1974). | Zbl