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SPHERICAL FUNCTIONS AND SPECTRAL SYNTHESIS

Christopher Meaney

Abstract

Let G be a noncompact connected semisimple real Lie group with finite centre and a
maximal compact subgroup K. Suppose further that G/K has rank equal to one and
dimension greater than two. Fix a polar decomposition G = KAK. We show that for every
a E A, a ~ 1, the double coset KaK is not a set of synthesis for the Fourier algebra of G.
This is a consequence of a local regularity property of inverse Jacobi transforms, similar to
the more familiar behaviour of Hankel transforms, and is a noncompact group version of a
result of Franco Cazzaniga and myself concerning Jacobi polynomials.

Combining the above result with the rank-one reduction enables us to exhibit sets of
nonsynthesis for some other noncompact semisimple Lie groups. A similar device applies to
Cartan motion groups associated with Cartan decompositions of these groups.

Finally, using formulae of Koomwinder, Berezin and Karpelevic, we obtain a local
regularity property for the bi-S(U(n)  U( n + k ))-invariant elements of the Fourier algebra
of SU(n, n + n ).

Compositio Mathematica 54 (1985) 311-329.
© 1985 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands.

1. The Fourier algebra and Gel’f and pairs

In this section we recall the notion of spectral synthesis for the Fourier
algebra of a locally compact group and outline a general procedure which
yields sets of nonsynthesis for certain groups.

Suppose that G is a unimodular locally compact group with a fixed
Haar measure. Eymard [8] defined the Fourier algebra A (G) to be equal
to L2(G)* L2(G). The norm of an element f ~ A(G) is the infimum of
the products ~03C81~2 ·~03C82~2, taken over all those 03C81, 03C82 ~ L2(G) with
f = 4,1 * ¥’2. Every closed subset E c G gives rise to two ideals in A(G),
namely, I(E) := {f ~ A (G) : f(x) = 0, ~x ~ E} and J(E) := {f ~
A(G): f is zero on a neighbourhood of E}. The subset E is said to be a
set of synthesis f or A (G) if I(E) is equal to the closure of J(E) in A (G).
For examples of sets of synthesis see [8]. Chapitre 4, and [22], Proposi-
tions 1 and 2.

From now on we limit our attention to Gel’fand pairs. That is, we
assume that G has a compact subgroup K for which KL1(G)K, the
bi-K-invariant elements of L1(G), is a commutative algebra when
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equipped with convolution. Let mK denote the normalized Haar measure
on K and for each continuous function f on G set

so that Pf is bi-K-invariant. In particular, from the definition of the
A (G)-norm, we see that if f ~ A(G) then Pf ~ A(G) and

We denote by KA (G )K the subalgebra of bi-K-invariant elements of
A(G).

Mizony [28], Proposition 1.2.10, has described KA (G )K in terms of the
inverse spherical transform. See also [26], Lemma 3. If Z denotes the set
of zonal spherical functions for the pair (G, K ) and if Z is equipped
with the Godement-Plancherel measure v then there is an isometric

isomorphism

This isomorphism is given by the inverse spherical transform. If f E
KA(G)K then there is a unique element jE L1(Z, v ) such that

and

This also states that KA(G)x can be identified with the Fourier algebra
of the commutative hypergroup KB G/K, see [4], section 2, and [26].
Chilana and Ross [4], section 4, have shown that several commutative
hypergroups have the property that their Fourier algebras possess
bounded point derivations and these lead to examples of sets of non-
synthesis for the hypergroups involved. Here we consider how a similar
strategy can be applied to A ( G ).

Recall that a bounded point derivation on KA ( G ) K at a point x. e G is
a bounded linear functional 8 on KA(G)K such that
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1.7. PROPOSITION: For each xo E G and a neighbourhood U of Kxo K in G
there exists a neighbourhood V of xo in G such that KVK c U.

PROOF: The map K X G X K - G, given by ( k, x, k’) H kxk’, is continu-
ous and so the inverse image of U is a neighbourhood of K  {x0}  K
in K X G X K. The compactness of K and the nature of the product
topology imply the statement. Q.E.D.

Combining this with (1.1) we see that P preserves the ideal J(Kx0K).

1.8. COROLLARY: If xo E G and f ~ J(Kx0K) then Pf ~ J(Kx0K).

Now fix xo E G, assume that G is not discrete, and suppose that there
is a bounded point derivation 8 for KA (G ) K at xo. We wish to show

On account of Proposition 1.7 we know that if f ~ J(Kx0K) then
there exists an open neighbourhood of xo such that both f and Pf are
zero on KVK. Let W be a neighbourhood of xo such that W is compact
and W c V. Since A(G) is a regular tauberian algebra of functions on G
[22] there exists g ~ A(G) such that g( x ) = 1, Vx EE KWK, and g( x ) = 0,
Vx tt KVK. The same is true for Pg. In particular, f · Pg = 0 and

This proves (1.9).
If I(Kx0K)~KA(G)K is not contained in the kernel of 8 then Kxo K

is not a set of synthesis for A(G). To see this, note that the kernel of the
composition 8 o P is a closed linear subspace of A(G) which contains
J(Kx0K). We summarize.

1.10. PROPOSITION: Let (G, K) be a Gel’fand pair such that G is notdiscrete. Suppose there exists a bounded point derivation 8 for KA(G )K at
some point xo E G. If there exists f E I(Kx0K) for which 03B4(Pf) ~ 0 then
Kxo K is not a set of synthesis for A (G).

This procedure has already been successful in several cases.

1.11. EXAMPLES: (i) Let G = Rn  SO(n) and K = {0}  SO(n), with
n  3. Then KA (G )K is equal to the algebra of radial Fourier transforms.
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From [31], page 822, we conclude that for every nonzero 03BE ~ Rn the coset
K(1, 1)K ~ Sn - 1 X K is not a set of synthesis for the Fourier algebra of
the Euclidean motion group (L. Schwartz’ theorem).

(ii) Let U be a compact connected semisimple Lie group. For G =
ux U and K = {(u, u) : u E U 1, KA(G)K is the subalgebra of central
functions in A ( U ). See [27,30]. Similarly, one can demonstrate the failure
of synthesis for the motion group u  AdU, where u is the Lie algebra of
U, see [27] and [5], section 7.

(iii) Let G/K be a compact rank one Riemannian symmetric space.
Then KA(G)K can be identified with a certain algebra of absolutely
convergent series of Jacobi polynomials. If G/K is of dimension greater
than two then [3] there exist bounded point derivations for KA(G)K.

In the next section we prove an analogue of [3], Theorem 4.8, for
noncompact rank one Riemannian symmetric spaces.

1.12. REMARK: The existence of a system of bounded derivations at one

point can sometimes be used to produce chains of ideals between

I(Kx0K) and J(Kx0K), see [4], and [24].

2. A local property of inverse Jacobi transforms

In 1938 I.J. Schoenberg [31], page 822, proved that Hankel transforms
have certain differentiability properties, depending on the order of the
Bessel function involved. This property is the key to proving that Sn - 1 is
not a set of synthesis for A(Rn), n  3, and example 1.11(i). Subse-
quently, algebras of Hankel transforms were studied by M. Gatesoupe
[15] and A. Schwartz [32,33]. R.J. Stanton and P.A. Tomas [34] have
shown that the zonal spherical functions for noncompact rank one

symmetric spaces (i.e. special cases of Jacobi functions) have asymptotic
behaviour similar to Bessel functions, up to multiplication by a certain
function. Hence we should expect an analogue of Schoenberg’s result for
inverse Jacobi transforms. In this section such a result is proved.
We begin by sketching some properties of Jacobi functions, due to M.

Flensted-Jensen and T. Koornwinder. For details see

[10,11,12,16,18,25,29].
Fix real numbers 03B1  03B2  - 1 2. For each 03BB  0 the Jacobi function ~03BB

of order (a, 8) is defined by

for all t  0. Here F(,, ; ;) is the usual hypergeometric function, [36]
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Chapter 14. We also define

and

These provide densities for two measures on [0, oo), namely,

Note that [10] lemma 11,

The Jacobi transform is the map of L1(03BC) into C0([0, ~)) defined by

for all f E L1(03BC) and 03BB  0. It is a fact that F extends from L’ n L2(03BC)
to provide an isometric isomorphism between L2(03BC) and L2(v), so that v
is the Plancherel measure for L2(03BC). The inverse Jacobi transform is

for all g E L1(v) and t  0. Note that the case a = 03B2 = - 1 2 is the usual
cosine transform.

2.3. DEFINITION: For a, 03B2, v and F1 as above we let

In particular, A ( a, /3)c Co ([0, (~)). If f = F-1g for some gEL1(v) we
define the norm of f to be

and set Ff to be equal to g.
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From [10] Theorem 4, we see that if f is an even element of C~c((R)
then f|[0,~) ~ A(03B1 03B2). Flensted-Jensen and Koornwinder [12], Corollary
4.6, have shown that A(03B1, 03B2) is a Banach algebra of continuous func-
tions on [0, oo). In fact, A(03B1, /3) is the Fourier algebra of the hypergroup
[0, ~), when L1(03BC) is equipped with the convolution described in [11].
We wish to show that if a  1 2 and 03B1  03B2  - 1 2 then elements of

A ( a, 03B2) are differentiable on (0, ~). To prove this we employ the
asymptotic properties of c and the description of ~03BB in terms of Jacobi

functions of the second kind.

2.4. DEFINITION: For 03B1  03B2  - 1 2 fixed, 03BB ~ R and t &#x3E; 0 set 03A603BB(t) to be
equal to 

It is known [25], equation (2.5), that

for all À &#x3E; 0 and t &#x3E; 0. The following result is due to Flensted-Jensen,
[10] Theorem 2. Here we continue with fixed 03B1  8  - 1 2.

2.6. LEMMA :

(a) For each ~ &#x3E; 0 and n  0 there exists a positive constant Kn(~) such
that

and |(~/~t)n03B8(03BB, t)|  Kn(E) uniformly in t E [~, oc) and 03BB E R.

(b) There exists a constant k &#x3E; 0 such that

Combining this with (2.5) we can estimate 99 (n) (t). Let us put

for À E Rand t &#x3E; 0. From lemma 2.6(a) we see that for each E &#x3E; 0 and

n  0,



317

uniformly in ~  t  cc and 03BB ~ R. Furthermore,

and so for ~  t  oc and À &#x3E; 0 we see that

This is the key estimate in this paper.
For small values of À we can use [10] Theorem 2(ia), so as to avoid the

À -1 term.

2.9. LEMMA: For each n  0 there exists Kn &#x3E; 0 such that

for all 03BB  0 and t  0.

Note that (2.8) is a refinement of this estimate when 03BB  1. In

particular, if 0  n  [03B1+1 2] and t =1= 0 then the function 03BB ~ ~(n)03BB(t) is
uniformly bounded on [0, oo ). This shows that if a  1 2 then we can
differentiate (2.2), as long as t ~ 0.

Fix g E L1(v) and set f = F-1g. For ~ &#x3E; 0 and to &#x3E; E we see that

We can repeat this [03B1 + -11 times.

2.11. THEOREM: For a  1 2 , 03B1 , /3  -1 2 and ~ &#x3E; 0 there is a constant

k &#x3E; 0 such that if f E A(03B1, 03B2) then f|[~,~) E C[03B1+1/2]([03B5, oc» and

Compare this with [3], Theorem 2.9, and [15].

and so
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2.12. REMARK: An alternative method for obtaining (2.8) is to differenti-
ate the integral (2.21) in [25].

2.13. COROLLARY: If 03B1 - 1 2, 03B1  03B2  -1 2 and E is a nonempty finite
subset of (0, oo) or a sequence of positive numbers with no finite accumula-
tion points then E is not a set of synthesis for A ( a, 03B2).

PROOF: On account of Theorem 2.11 we see that if x E E then f H f ’( x )
is a bounded point derivation for A ( a, 8). It remains then to observe
that for each x E E there exists f E C~c((0, ~)) with f 1 E = 0 and
f’( x) =1= 0. Q.E.D.

Suppose that G/K is a noncompact rank one Riemannian symmetric
space of dimension d. For a = (d - 2)/2 and a certain -1 2  03B2 03B1,
determined by the geometry of G/K, it is known [34] that the subset of
zonal spherical functions for the Gel’fand pair (G, K ) which form the
support of the Godement-Plancherel measure can be identified with the
Jacobi functions of order (a, 8). Under this identification the Gode-
ment-Plancherel measure corresponds to |c(03BB)|-2d03BB on [0, ~), up to
normalization, and so we have an isomorphism of Banach algebras

Theorem 2.11 then tells us when it is possible to equip KA (G )K with
bounded point derivations.

2.15. THEOREM: Let G be a noncompact connected semisimple Lie group
with finite centre and a fixed maximal compact subgroup K. Suppose that
G/K is a d-dimensional rank one Riemannian symmetric space and let G
have an Iwasawa decomposition G = KAN. Fix a nonzero element H in the
Lie algebra of A. If d  3 and E &#x3E; 0 then there is a constant k &#x3E; 0 such that

for each f E KA (G)K the function

is [(d - 1)121-times differentiable and

2.16. COROLLARY: For G, K, A, and H as above, if dim(G/K)  3 and
to &#x3E; 0 then the double coset K exp( t 0 H) K is not a set of synthesis for A (G).

PROOF: On account of Proposition 1.10 we need only to remark that
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there exists f ~ K C~c(G)K ~ A(G) with f (exp(t0 H)) = 0 and

(d/dt) f (exp(t0 H)) ~ 0.

2.17. REMARKS: (a) The referee has suggested the following alternative
proof of Theorem 2.11, based on (3.7) and (3.13) in [25]. Fix 03B1  03B2 
-1/2 and let F03B1,03B2 and W03C303BC be the operators defined on pages 152-3 of

[25]. In addition, fix a compact interval [a, b] c (0, oc) and 03C8 E

C,’«O, ~)) such that 03C8(t) = 1 if a  t b and 03C8(t) = 0 if t &#x3E; 2b. For

every f ~ A(03B1, fl) we know that ~03C8·f~(03B1,03B2)  const · ~f~(03B1,03B2) and that
F03B1,03B2(03C8·f) is continuous and has support in [o, 2b]. Koornwinder has
shown that

and so the cosine transform of F03B1,03B2(03C8 · f ) is integrable with respect to the
measure |c(03BB)|-2d03BB. Lemma 2.6(b) tells us that if 03B1  1/2 and 2  it 
203B1 + 1 then

From this we conclude that Fa,/3( ¥’. f) is of class C[203B1+1] on [0, cc) and
for 0  k  [2a + 11, 

Note that we cannot claim this if a  1/2.
It remains to apply equation (3.13) of [25]. For every f ~ A(03B1, 03B2) and

a  x  b,

Examining (3.10) and (3.11) in [25] and recalling (2.19) above shows that
for every 0  k  [a + (1/2)],

where the constant depends on a, b, a and fl.
(b) The case a = /3 = 0 corresponds to the case G = SL(2, R) and

K = SO(2). In particular, dim(G/K) = 2 and the zonal spherical func-
tions are



320

Differentiating yields

The hypergeometric function here corresponds to a Jacobi function with
indices (1, 1). Fix to in the interval (0, 1]. The methods of section 2 in
[34] show that as 03BB ~ oo,

and it is known that J1(03BBt0) behaves like

This shows that CPÀ(to) is not bounded and so elements of

SO(2)A(SL(2, R)sO(2) need not be differentiable on A+. The example of
the circule in R 2, see [20], suggests that the case dim(G/K) = 2 should be
different from higher dimensional cases.

(c) Yet another proof of the fact that 03BB ~ ~(n)03BB(t) is uniformly bounded
when t ~ 0 and 0  n  [a + 1/2] is given by differentiating the right
hand side of (2.16) in [25] and keeping track of the integrability of the
functions

for 0  l n and 0  s  t.

3. Semisimple Lie groups

Our principal tools in this section will be the rank one reduction [19],
section IX.2, and the following result of Herz [21].

3.1. LEMMA : Let G be a locally compact group with a closed subgroup H.
Then A(G)|H ~ A(H) and ~f|H~A(H)  ~fA(G), ~f ~ A(G).

Now let G denote a noncompact connected real semisimple Lie group
with finite centre and a fixed maximal compact subgroup K. Equip g, the
Lie algebra of G, with the Killing form (,) and let g = f ~ p be the
Cartan decomposition determined by the choice of K. Fix a maximal
abelian subspace a of p and set A = exp( a ). The polar decomposition of
G is G = KAK.

For each y E a * let g03B3 := {X ~ g : [ H, X] = 03B3(H)X, ~H ~ 03B1} The set
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of restricted roots is

For each 03B3 ~ R let m ( y ) = dim g03B3. Now put a’ := (H ~ a : 03B3(H) ~ 0~03B3
~ R} and fix one component a + of a’. The corresponding set of positive
roots is denoted by R +. Furthermore, let

Each root 03B3 ~ R+0 determines an element Hy E a by setting y(H) =
H, H03B3&#x3E; ~H ~ a. The elements of Rt give rise to closed connected
semisimple subgroups of G of real rank one.

Fix 03B3 ~ R+0 and let g y be the Lie subalgebra of g generated by g Y
and g-03B3. Then [19], Proposition IX.2.1, gy is semisimple and it has a
Cartan decomposition

where f03B3 := f ~ g03B3 and p03B3 := p ~ g03B3. The connected Lie subgroup of G
with Lie algebra g y is denoted by GY. This is a closed subgroup of G,
[35], Lemma 1.1.5.7. Furthermore, KY:= GY ~ K is a maximal compact
subgroup of GY. The subspace a Y := R Hy is maximal abelian in p03B3 and
we set AY := exp(a03B3).
Now we have a rank one symmetric space G03B3/K03B3 of dimension

d(y)= 1 + m(03B3) + m(203B3), that is, the dimension of )3B

3.3. THEOREM: Let G, K, A and Rt be as above. Suppose that there is a
root y E Rt with

Then for each t &#x3E; 0 and 0  n  [(m(03B3) + m(203B3))/2] the map

is a bounded linear functional on A (G).

PROOF: Firstly, we know that if f ~ A(G) then PIEA(G). Furthermore
from Lemma 3.1 it follows that Pf|G03B3 E A(G’’) and

Since K03B3 = K ~ G03B3 and Pf ~ KA(G)K we see that Pf|G03B3 ~ K03B3A(G)K03B3.
Now apply Theorem 2.15. Q.E.D.
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3.4. COROLLARY: Notation and hypothesis as in Theorem 3.3. For each
t &#x3E; 0 the double coset K - exp( tHy) . K is not a set of synthesis for A (G).

We can also apply this reasoning to the Cartan motion group p  AdK,
since

It is known [19], p. 535, that G03B3/K03B3 is isotropic and so

can be identified with the radial elements of A(p03B3). If f ~ KA(p  K)K
then t ~ f(tH03B3, 1) is [(m(03B3) + m(2y))/2]-times differentiable on (0, ~)
and for each t &#x3E; 0 there is a constant k &#x3E; 0 such that

See [32].

3.7. THEOREM: Let G, K, A, P and Rô be as above. If there is a root
y ~ R+0 with m(03B3) + m(203B3)  2 then for each t &#x3E; 0 the double coset

K(tH03B3, 1) K is not a set of synthesis for the Fourier algebra of p  K.
Similarly, the orbit Ad(K)(tH03B3) is not a set of synthesis for A(p), the

algebra of Fourier transforms of L1( p*).

The selection of a radial function f in C~c(p) with f(tH03B3) = 0 and
(d/dt)f(tH03B3) ~ 0, completes the requirements of Proposition 1.10. Note
that the dimension of Ad(K)(tH03B3) is less than or equal to dim p - dim a,
so that we have produced submanifolds in p which are not sets of

synthesis and which have codimension  the rank of G/K, see [24].

3.8. EXAMPLES: (i) Groups G of real rank one which satisfy the hypothe-
ses of Theorem 2.15.

(ii) A real semisimple Lie group G with the property that g has only
one conjugacy class of Cartan subalgebras, since then m(03B3) is even for
all y E Rt , see [19], Theorem IX.6.1.

In particular, all connected semisimple complex Lie groups, in which
case m(y) = 2, ~03B3 ~ R+0.

(iii) Amongst the classical groups not covered in (i) and (ii) we can
read off the following examples from Table VI in [19], pages 523-4 and
section X.6.
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4. Complex groups

When G is a connected semisimple complex Lie group we can refine
Theorem 3.3 and demonstrate an analogue of Ricci’s Theorem 1 in [30].
Maintain the notation set up in section 3 and assume that G is complex.
Let W denote the Weyl group of (G, K). It is known [14] that the
Godement-Plancherel measure is carried on a*/W, so that we can view
it as a W-invariant measure v on a*. Define

To each 03BB ~ a * such that

there is associated the zonal spherical function

for H E a. See [17], page 304.
Fix xo OE A + and let Tl be a neighbourhood of xo in A with compact

closure contained in A +. There is a function h E KCcoo( G)K such that

Hence, for every f E KA(G)K, we have
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and

Furthermore, there is a constant k &#x3E; 0, depending on xo and V, such that

It is known that v is absolutely continuous with respect to Lebesgue
measure on a*. We can view H03B3 ~ a as a translation invariant vector
field on A. Then (4.3) and (4.4) show that the distribution

and

Note also that f 1 A ~ A(A) and has

Arguing as in [27], page 54, we see the following.

4.6. THEOREM: Notation and hypothesis as above. If S c R+ and f E
KA(G)K then the distribution

is a continuous function and

4.7. COROLLARY: Suppose G is a complex semisimple Lie group with

maximal compact subgroup K and polar decomposition KAK. If xo E A is a
regular element then Kxo K is not a set of synthesis for A(G).
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The motion group result in this case is already contained in [27],
Theorem 4.3.

4.8. REMARKS: If we lift the hypothesis that G is complex then we lose
Harish-Chandra’s formula (4.2). If we try to use the Gangolli expansion
[14], [3.45], in its place we find we cannot get estimates for (03A003B3 ~ R+ H03B3)~03BB
which are uniform in 03BB ~ a*, on account of the singularities of the
c-functions, see [7] Lemma 5. However, the Gangolli expansion does
provide another means of proving (2.8) in the rank one case. For very
detailed analysis of the asymptotics for zonal spherical functions on G
and p  K, see [2,5,6,13].

5. Real semisimple Lie groups again

The referee’s proof of Theorem 2.11 replaces direct estimates of deriva-
tives of spherical functions with the properties of the Abel and Fourier
transforms. We examine these transforms in the case rank(G/K) &#x3E; 1. In

the final part of this section we present an analogue of Theorem 4.6 in
the case G = S U( n, n + k ) and K = S(U(n) X U(n + k )), with n  1 and
k  1.

Assume that G is a connected noncompact semisimple real Lie group
with finite centre and recall the notation of sections 1 and 3. Let

G = KAN be the Iwasawa decomposition corresponding to our choice of
a in p and normalize the Haar measures on A and N as in [7]. Let W be
the Weyl group and identify the Godement-Plancherel measure v with
the corresponding W-invariant measure on a *, noting that it is absolutely
continuous with respect to Lebesgue measure. The Fourier transform on
a is denoted by Fa.

For every f ~ KCc(G)K and H E a the Abel transform is

and the spherical transform satisfies

Now suppose that E is a compact subset of A and fix 03C8 ~ KC~c(G)K
such that 03C8 = 1 on a neighbourhood of E. For every f E KA(G)K and
xEE,

and
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Lemma 5 in [7] shows that for all 03BB ~ a *,

5.6. LEMMA: Notation and hypotheses as above. Suppose that every y E R+0
satisfies m ( y ) + m (2 y )  2. Then for every f E KA ( G ) K the distributional
derivative

is an element of A ( a ) and its norm is less than or equal to const - 11 f 11 A(G).
The constant here depends on G and 4,.

There seem to be very few cases where an explicit formula for W is
known, see [1], apart from complex and rank-1 groups. This lemma
would be useful in determining local regularity properties for elements of
KA(G)K if it were known that the "inverse" of W preserved some order
of differentiability of functions. Recall Remarks 2.17(a).
When G = SU(n, n + k) we can use a formula of Berezin and Karpe-

levic to prove an analogue of Theorem 4.6. From now on we fix n  1
and k  1 and we follow the notation of Hoogenboom’s paper [23]. The
symmetric space SU(n, n + k)/S(U(n) X U(n + k )) has rank n and we
identify a with Rn. Recall that if 03BB ~ a * then the corresponding zonal
spherical function is

~03BB(aT) = const. det(~(k,0)03BBl(tj)) X ...

Here aT is a regular element of A + if its coordinates satisfy

We now focus our attention on the function

for a fixed regular element aT.
Koornwinder (see (2.21) in [25]) has shown that
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where

From this it follows that

Using a similar proof to that of Lemma 4.1 in [23], one can show that if
M &#x3E; 0 and |sj|  M for 1  j  n, then there is a constant const M &#x3E; 0

such that

for all À E Rn. ’That is to say, the function

is smooth on Rn  Rn and if E is a compact subset of Rn then

sup sup |F(s, 03BB)|  ~.
X OE Rn S OE E

Combining (5.7), (5.10), and (5.11) we see that

for all regular aT. Now observe that if k  1 then the function
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is integrable on (0, t) for each 0  1  k. See remark 2.17.(c).

5.12. THEOREM: For t1 &#x3E; t2 &#x3E;... &#x3E; tn &#x3E; 0 and 0  lj  k, 1  j  n, there
is a constant CT &#x3E; 0 such that

In particular, for this element aT of A the double coset K. aT. K is no a set
of synthesis for the Fourier algebra of S U( n, n + k).

This theorem leads to the following local regularity property. For
every compact subset E properly contained in the set of regular elements
of A and for each n-tuple 1 as in the statement of the theorem,

where f is a bi-K-invariant element of A(G).
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