COMPOSITIO MATHEMATICA

PIOTR BLASS JEFFREY LANG Appendix : "Picard groups of Zariski surfaces"

Compositio Mathematica, tome 54, nº 1 (1985), p. 37-40 <http://www.numdam.org/item?id=CM_1985_54_1_37_0>

© Foundation Compositio Mathematica, 1985, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

APPENDIX TO "PICARD GROUPS OF ZARISKI SURFACES"

Piotr Blass and Jeffrey Lang

In this appendix we show how to pass from *generic* to *general* and how to prove our conjecture stated in the introduction to [1] and [2] (see Theorem 7(2) below).

We use techniques of P. Samuel and Jeffrey Lang and of course the main result of [1] which was proven with the help of Deligne.

We begin by introducing some notation which is analogous to [3] and [1]. If R is a normal noetherian domain we denote by Cl R its divisor class group.

k algebraically closed field of characteristic $p \ge 5$;

 T_{ij} indeterminates; we consider the polynomial ring

$$k \begin{bmatrix} T_{ij} \end{bmatrix} \quad 0 \le i + j \le p \text{ and two polynomials}$$

$$F(x, y) = \sum T_{ij} X^i Y^j, \quad 0 \le i + j \le p \text{ and}$$

$$\Upsilon(x, y) = \sum t_{\alpha, \beta} X^{\alpha} Y^{\beta},$$

$$0 \le \alpha + \beta \le p - 2 \text{ with } t_{\alpha, \beta} \text{ also indeterminates over } k.$$
We denote $\nabla = \frac{\partial^{2p-2}}{\partial x^{p-1} \partial y^{p-1}}.$ We consider the system of equations:

$$(LS)\nabla(F^{j}\Upsilon) = 0$$
 $j = 0, 1, 2, ..., p - 2$
 $(PLS)\nabla(F^{p-1}\Upsilon) = \Upsilon^{p}.$

We consider the above equations as equalities of polynomials in X, Y. By comparing coefficients of the various monomials in X and Y we get an equivalent system

$$(LSI)\Sigma \underline{p}_{\alpha,\beta}^{\gamma,\delta} t_{\alpha,\beta} = 0$$
$$(PLSI)\Sigma Q_{\mu,\nu}^{\gamma,\delta} t_{\gamma,\delta} = t_{\mu,\nu}^{\rho}$$
$$\underline{p}, Q \in k [T_{ij}].$$

If we specialize the indeterminates T_{ij} to have values $(c_{ij}) \in \text{Speck}[T_{ij}]$, a closed point, then we denote the corresponding system $LSI(c_{ij}) + PLSI(c_{ij})$.

We use the following facts.

THEOREM 1 (J. Lang): Let A be any algebraically closed field of characteristic p > 0. Let $G(x, y) \in A[x, y]$ be a polynomial such that $\partial G/\partial x$ and $\partial G/\partial y$ are relatively prime polynomials in A[x, y]. Then the surface S: $z^p = G(x, y)$ is normal and its divisor class group Cl S is isomorphic to the set of polynomial solutions $t(x, y) \in A[x, y]$ of degree deg $t \le \deg G - 2$ of the following system of equations:

$$\nabla(G^{j}t) = 0, \quad j = 0, 1, 2, \dots, p-2, \text{ and}$$
$$\nabla(G^{p-1}t) = t^{p}.$$

PROOF: See [3], 2.1, 2.3, 2.9.1.

THEOREM 2 (Blass-Deligne): The only solution of (LSI) + (PLSI) in $L = \overline{k(T_{ij})}$ i.e. with $t_{\alpha, \beta} \in L$ is the identically zero solution $t_{\alpha, \beta} = 0$.

PROOF: The set of solutions is isomorphic to Cl $\frac{L[X, Y, Z]}{(Z^{\rho} - \Sigma T_{ij} X^{i} Y^{j})}$ by above theorem, but the latter group is shown to be zero in [1]. From now

on Σ means \sum

 $\overbrace{0 \le i+j=p}^{0 \le i+j=p}$ The following is simple.

LEMMA 3. If $q = (c_{ij}) \in \text{Speck}[T_{ij}]$, then the set of solutions $(t_{\alpha,\beta})$ of $LS(c_{ij}) + PLS(c_{ij})$ is finite.

PROOF: Lang [3], proof of Lemma 2.8.

In what follows, Let *H* be the subscheme of Spec $k[T_{ij}] \times \text{Spec } k[t_{\alpha,\beta}]$ defined by (LS + PLS) or equivalently by (LSI and PLSI).

Consider the projection $H_{\text{red}} \to H \to \text{Spec } k[T_{i_j}]$. We denote by $\kappa^{-1}(q)$ the set (group) of closed points of H_{red} that map to q.

REMARK 4. We point out that if $q = (c_{ij}) \in \text{Spec } k[T_{ij}]$ is a closed point, then $\kappa^{-1}(q)$ is in one to one correspondence with the solution set of equations $LSI(c_{ij}) + PLSI(c_{ij})$.

PROPOSITION 5: There exists an open and dense subset $\mathcal{O}\mathbf{p}$ of Spec $k[T_{ij}]$ such that for $q \in \mathcal{O}\mathbf{p}$, $\kappa^{-1}(q)$ consists of a single point with coordinates $t_{\alpha,\beta} = 0$ for all α, β .

LEMMA 6:Let $Z \subset H_{red}$ be the subset of Spec $k[T_{ij}] \times Spec \ k[t_{\alpha,\beta}]$ defined by $t_{\alpha,\beta} = 0$ (all α, β). Let C by any irreducible component of H_{red} whose image $\kappa(C)$ is dense in Spec $k[T_{ij}]$. Then C = Z.

PROOF: First of all, dim $C = \dim Z = \dim k[T_{ij}]$ because of Lemma 3. Consider the diagram

$$\mathcal{O}(C) \leftarrow k[T_{ij}]$$

$$m \downarrow$$

$$\overline{k(T_{ij})} = L.$$

Let $[t_{\alpha,\beta}]$ be the class of $t_{\alpha,\beta}$ in $\mathcal{O}(C)$. $\mathcal{O}(C)$ has fraction field which is finite algebraic over $k[t_{i,j}]$. Hence we get an injective map m.

Suppose that for some α , β , $[t_{\alpha,\beta}] \neq 0$ in $\mathcal{O}(C)$ then $m([t_{\alpha,\beta}]) \neq 0$ and we would get a non-trivial solution of (LS) + (PLS) in L which contradicts the Blass-Deligne theorem. Thus $[t_{\alpha,\beta}] = 0$ in $\mathcal{O}(C)$ for all α, β , i.e. $C \subseteq Z$ and consequently C = Z since Z is irreducible.

PROOF OF PROPOSITION 5. Let $H_{red} = Z \cup C_1 \dots \cup C_s$ be a decomposition of H_{red} into irreducible components.

We have $\overline{\kappa(C_j)} \subset \text{Spec } k[T_{ij}]$ by Lemma 6. Thus set $\mathscr{O}p = \text{Spec } k[T_{ij}] - \bigcup_{j=1}^{s} \overline{\kappa(c_j)}$. For every $q \in \mathscr{O}(p)$, $\kappa^{-1}(q)$ is a single point of Z. Q.E.D.

REMARK 6. There exists an open and dense subset of Spec $k[T_{ij}]$, for example the subset V defined in [1] (0.2), such that if $q = (c_{ij})$ belongs to it, then

$$\kappa^{-1}(q) \leftrightarrow \operatorname{Cl} \frac{k[x, y, z]}{\left(z^{p} - \Sigma c_{ij} x^{i} y^{j}\right)}$$

PROOF: For $q \in V$, $q = (c_{ij})$, the polynomials $\partial(\sum c_{ij}x^iy^i)/\partial x$ and $\partial(\sum c_{ij}x^iy^i)/\partial y$ are relatively prime. Thus Remark 6 follows from Remark 4 and Theorem 1. Q.E.D.

THEOREM 6. There exists an open and dense subset $D \subset \text{Spec } k[T_{ij}]$ such that for every closed point $q = (c_{ij}) \in D$,

(1) $\kappa^{-1}(q)$ consists of the single point, (2) Spec $\frac{k[x, y, z]}{(z^{p} - \sum c_{ij}x^{i}y^{j})}$ is a UFD, (3) Cl of the above ring in (2) is the zero group (4) The system $SLI(c_{ij}) + PSLI(c_{ij})$ has only the zero solution.

PROOF: Set $D = V \cap \mathcal{O}p$. Then (1) follows from Proposition 5 and we deduce (3) and (2) from Remark 6. Finally (4) follows because the closed

points of $\kappa^{-1}(q)$ are in one-to-one correspondence with the solutions of the system $SLI(c_{ij}) + PLSI(c_{ij})$. Q.E.D.

References

- [1] P. BLASS: Picard groups of Zariski surfaces I. Comp. Math. 54 (1985) 3-36.
- [2] P. BLASS: Groupes de Picard des surfaces de Zariski. Comptes Rendus des Seances de l'Academie des Sciences, I-315, 19 septembre 1983.
- [3] JEFFREY LANG: The divisor class group of the surface $z^{p^n} = G(x, y)$ over fields of characteristic p > 0. Journal of Algebra (2) 1983.

(Oblatum 16-I-1984)

Piotr Blass Department of Mathematical Sciences University of Arkansas Fayetteville, AR 72701 USA

Jeffrey Lang Department of Mathematics Harney Science Center University of San Francisco San Francisco, CA 94117 USA