WARREN M. SINNOTT

On p-adic L-functions and the Riemann-Hurwitz genus formula

Compositio Mathematica, tome 53, n° 1 (1984), p. 3-17

<http://www.numdam.org/item?id=CM_1984__53_1_3_0>
ON \textsc{p}-ADIC L-FUNCTIONS AND THE RIEHMANN-HURWITZ
GENUS FORMULA

Warren M. Sinnott

Introduction

Let \(p \) be a prime number, and let \(\mathbb{Q}_\infty \) be the \(\mathbb{Z}_p \)-extension of \(\mathbb{Q} \). For any number field \(F \), the compositum \(F_\infty = F \mathbb{Q}_\infty \) is called the basic \(\mathbb{Z}_p \)-extension of \(F \). Let \(F \) be a CM-field, with maximal real subfield \(F^+ \), and for each integer \(n \geq 0 \), let \(F_n \) be the unique extension of \(F \) in \(F_\infty \) of degree \(p^n \) over \(F \). Let \(h_n^* \) denote the relative class number of \(F_n/F^{+^n} \). The growth of \(\text{ord}_p(h_n^*) \) as \(n \to \infty \) is described by a basic result of Iwasawa (cf. \([8]\)):

\[
\text{ord}_p(h_n^*) = \mu^* p^n + \lambda^* n + \nu^*,
\]

for certain integers \(\mu^* \geq 0, \lambda^* \geq 0, \) and \(\nu^* \), and for \(n \) sufficiently large.

In \([11]\), Y. Kida proved a striking analogue of the classical Riemann-Hurwitz genus formula from the theory of compact Riemann surfaces, by describing the behavior of \(\lambda^* \) in \(p \)-extensions under the assumption \(\mu^* = 0 \). A special case of Kida’s result is the following (for the most general formulation, see Theorem 4.1, below).

Let \(E \) be a CM-field which is a \(p \)-extension of \(F \) (i.e. if \(E' \) denotes the Galois closure of \(E \) over \(F \), \(\text{Gal}(E'/F) \) is a \(p \)-group). Suppose that \(p > 2 \), and that \(F \) contains the \(p \)-th roots of unity. Finally suppose that \(p \equiv q \). Then

\[
2\lambda_E^* - 2 = [E_\infty : F_\infty](2\lambda_F^* - 2) + \sum_w (e(w/v) - 1),
\]

where \(w \) runs over (non-archimedean) places on \(E_\infty \) which do not lie above \(p \) and are split for the extension \(E_\infty/E^{+^\infty} \). For each such \(w, v \) denotes its restriction to \(F_\infty \), and \(e(w/v) \) denotes the ramification index of \(w \) over \(v \).

Kida’s proof uses classical techniques from algebraic number theory, namely genus theory for the fields \(F_n \). Iwasawa \([10]\) found a second proof, using Galois cohomology. Actually, Iwasawa proves more, determining, when \(E_\infty/F_\infty \) is Galois, the representation of \(\text{Gal}(E_\infty/F_\infty) \) on the minus

1 Partially supported by the National Science Foundation.
part of the Iwasawa module of E, tensored with \mathbb{Q}_p. Iwasawa's result is thus an analogue for number fields of a theorem of Chevalley and Weil [3]. Kida's formula follows from Iwasawa's result by taking degrees.

In this paper, we give a third proof of Kida's formula, using the theory of p-adic L-functions. As this paper was being written, we discovered the earlier work of G. Gras [6,7], who used the Kubota-Leopoldt functions to prove Kida's formula when E and F are abelian over \mathbb{Q}. Thus the present paper may be viewed as an extension of Gras's approach to arbitrary CM-fields.

A brief statement of the results we need from the theory of p-adic L-functions is included in §2; given these results, the rest of the paper is relatively self-contained. In §3, we discuss the relation, due to Iwasawa, between the invariants μ^* and λ^* and p-adic L-functions. Finally, in §4, we show how to derive Kida's theorem from the results in §2 and §3.

§1. Preliminaries and notation

Let p be a prime number, which will remain fixed throughout. The units \mathbb{Z}_p^* of the p-adic integers \mathbb{Z}_p can be written as an internal direct product

$$\mathbb{Z}_p^* = V_p \cdot (1 + 2p\mathbb{Z}_p),$$

where V_p is the group of roots of unity in \mathbb{Z}_p, i.e. $|V_p| = p - 1$ if $p > 2$, and $|V_2| = 2$. The projections onto the first and second factors are denoted by ω and $\langle \rangle$, respectively.

Let G be a profinite abelian group; the completed group ring of G over \mathbb{Z}_p will be denoted by Λ_G, and may be defined by $\Lambda_G = \lim \mathbb{Z}_p[G/U]$, where U runs over the open subgroups of G. Following Mazur, the elements of Λ_G may be viewed as \mathbb{Z}_p-valued measures on G. If α is an element of Λ_G, and if $f: G \to R$ is a continuous map of G into a profinite \mathbb{Z}_p-module R, the integral of f with respect to α is defined by

$$\int_G f d\alpha = \lim \sum_{g \mod U} f(g)\alpha(gU).$$

If R is a profinite \mathbb{Z}_p-algebra, and $\chi: G \to R^\times$ a continuous homomorphism, χ indices a continuous homomorphism $\Lambda_G \to R$ which we again denote by χ. We have the integration formula

$$\int_G \chi d\alpha = \chi(\alpha).$$

The notion of a pseudo-measure, introduced by Serre [13], will be useful in what follows. An element α of the total ring of fractions of Λ_G
satisfying \((1 - g)\alpha \in \Lambda \alpha\) for all \(g \in G\) is called a pseudo-measure. Let \(R\) be a profinite \(\mathbb{Z}_p\)-algebra, and suppose that \(R\) is an integral domain. If \(\chi\) is a non-trivial homomorphism of \(G\) into \(R^\times\), we may define

\[
\int_G \chi \mathrm{d}\alpha = \int_G \chi \mathrm{d}\beta/(1 - \chi(h)),
\]

(1.1)

where \(h \in G\) is chosen so that \(\chi(h) \neq 1\), and \(\beta = (1 - h)\alpha\). The right hand side lies in the quotient field of \(R\), and is independent of \(h\).

Let \(\mathfrak{o}\) be the ring of integers in a finite extension of \(\mathbb{Q}_p\), and let \(f(T) = a_0 + a_1T + a_2T^2 + \ldots\) be a non-zero power series with coefficients in \(\mathfrak{o}\). We define

\[
\mu(f) = \min\{\text{ord}_\mathfrak{p} a_i : i \geq 0\}
\]

\[
\lambda(f) = \min\{i \geq 0 : \text{ord}_\mathfrak{p} a_i = \mu(f)\}.
\]

Clearly we have \(\mu(fg) = \mu(f) + \mu(g)\), \(\lambda(fg) = \lambda(f) + \lambda(g)\), if \(f, g\) are non-zero elements of \(\mathfrak{o}[[T]]\); we may use these relations to define \(\mu\) and \(\lambda\) on the non-zero elements of the quotient field of \(\mathfrak{o}[[T]]\).

Finally, if \(F \subseteq E\) are fields, and if \(v\) is a place on \(E\), then \(v|F\) denotes the restriction of \(v\) to \(F\).

§2. \(p\)-adic L-functions

Let \(K\) be a totally real number field, and let \(S\) be a finite set of (non-archimedean) places on \(K\), containing the set \(S_p\) of places dividing \(p\). The maximal abelian extension of \(K\) (in a fixed algebraic closure \(\overline{K}\)) unramified outside \(S\) and \(\infty\) will be denoted by \(K_S\), and we put \(G_S = \text{Gal}(K_S/K)\). Since \(S \supseteq S_p\), \(K_S\) contains the group \(\mu_{p^\infty}\) of all \(p\)-power roots of unity. The action of \(G_S\) on \(\mu_{p^\infty}\) induces a character

\[
\mathbb{N} : G_S \to \mathbb{Z}_p^\times,
\]

via the formula

\[
\zeta^\sigma = \zeta^{\mathbb{N} \sigma} \quad \text{for} \quad \sigma \in G_S, \quad \zeta \in \mu_{p^\infty}.
\]

The symbol \(\mathbb{N}\) is used for the following reason. If \(\mathfrak{a}\) is an ideal of \(K\) prime to \(S\), let \(\sigma_\mathfrak{a}\) denote the image of \(\mathfrak{a}\) in \(G_S\) under the Artin map. Then we have

\[
\mathbb{N} \sigma_\mathfrak{a} = \mathbb{N} \mathfrak{a},
\]

where \(\mathbb{N} \mathfrak{a}\) denotes as usual the absolute norm of \(\mathfrak{a}\). Using the decomposi-
tion $x = \omega(x)\langle x \rangle \ (x \in \mathbb{Z}_p^\times)$, we obtain from \mathbb{N} two important characters of G_S:

$$\theta(\sigma) = \omega(\mathbb{N}\sigma), \ \kappa(\sigma) = \langle \mathbb{N}\sigma \rangle.$$

The fixed field of the kernel of θ is $K(\mu_{2p})$; the fixed field of the kernel of κ is denoted by K_∞; it is the basic \mathbb{Z}_p-extension of K.

Let S_∞ denote the set of embeddings of K into \mathbb{R}. If v is such an embedding, we let σ_v denote the element of G_S corresponding to complex conjugation under any embedding $K_S \to \mathbb{C}$ extending v. Clearly

$$\mathbb{N}\sigma_v = -1, \ v \in S_\infty.$$

If χ is any homomorphism of G_S into a field we call χ even if $\chi(\sigma_v) = 1$ for all $v \in S_\infty$, and odd if $\chi(\sigma_v) = -1$ for all $v \in S_\infty$. Thus \mathbb{N} and θ are odd, but κ is even.

For any character χ of G_S of finite order, with values in \mathbb{C}_p^\times, we let $L^*_S(\chi, s)$ denote the \mathbb{p}-adic L-function attached to χ. $L^*_S(\chi, s)$ is defined by means of the values of classical complex L-functions at negative integers, as follows. Let ψ be any character of G_S of finite order, with values in \mathbb{C}_p^\times, and let $k = \mathbb{Q}(\psi)$ denote the subfield of \mathbb{C}_p generated by the values of ψ. Let $\rho : k \to \mathbb{C}$ be any embedding, so that $\rho \circ \psi$ is a \mathbb{C}-valued character of G_S. By a theorem of Siegel, the complex L-function value $L_S(\rho \circ \psi, 1 - n) \ (n = 1, 2, 3 \ldots)$ lies in $\rho(k)$, and $\rho^{-1}L_S(\rho \circ \psi, 1 - n)$ is independent of the choice of ρ. In view of this we denote $\rho^{-1}L_S(\rho \circ \psi, 1 - n)$ simply by $L_S(\psi, 1 - n)$. Then $L^*_S(\chi, s)$ is the (unique) continuous function of $s \in \mathbb{Z}_p - \{1\}$, with values in \mathbb{C}_p, satisfying

$$L^*_S(\chi, 1 - n) = L_S(\chi\theta^{-n}, 1 - n), \quad (2.1)$$

for $n = 1, 2, 3, \ldots$. It follows from the functional equation of the complex L-functions that $L^*_S(\chi, s)$ is not identically 0 only when χ is even.

The existence of \mathbb{p}-adic L-functions was proved by Deligne and Ribet [4] and P. Cassou-Noguès [1], and their results also imply (Serre [13]) the existence of a pseudo-measure α_S on G_S such that

$$L^*_S(\chi, s) = \int_{G_S} \chi k^{1 - n} \, d\alpha_S, \quad (2.2)$$

for any character χ as above and any $s \in \mathbb{Z}_p$ (with $s \neq 1$ if $\chi = 1$).

We shall need the following consequence of (2.2). Since $\text{Gal}(K_\infty/K) = \mathbb{Z}_p$, we may choose an element γ in the Sylow pro-p-subgroup of G_S whose restriction to K_∞ is a topological generator of $\text{Gal}(K_\infty/K)$. Let Γ be the subgroup of G_S generated topologically by γ. Then $\Gamma \simeq \mathbb{Z}_p$, and G_S
is the internal direct product of the subgroups $A = \text{Gal}(K_S/K_\infty)$ and Γ.

Now let ϕ be the homomorphism of G_S into $\mathbb{Z}_p[[T]]$ that is trivial on A and maps γ to $\kappa(\gamma)(1 + T)^{-1}$. Let χ be a character of G_S of finite order, with values in the ring of integers \mathfrak{o} of a finite extension of \mathbb{Q}_p. Then $\chi \phi$ is a continuous function on G_S with values in $\mathfrak{o}[[T]]$, so we may integrate $\chi \phi$ with respect to the pseudo-measure α_S; we put

$$\tilde{L}_S(\chi, T) = \int_{G_S} \chi \phi d\alpha_S. \quad (2.3)$$

$\tilde{L}_S(\chi, T)$ lies in the quotient field of $\mathfrak{o}[[T]]$, and, from (2.2), we have

$$L^\chi_S(\chi, s) = \tilde{L}_S(\chi, \kappa(\gamma)^{-1} - 1).$$

Let ψ be a character of G_S trivial on A and of finite order. Then ψ is determined by $\psi(\gamma)$, which is a p-power root of unity. It follows immediately from (2.3) that

$$\tilde{L}_S(\chi \psi, T) = \tilde{L}_S(\chi, \psi(\gamma)^{-1}(1 + T) - 1). \quad (2.4)$$

Let S' be a finite set of places on K containing S; if χ is a character of G_S, χ may be viewed as a character of $G_{S'}$, via the natural restriction map $G_{S'} \to G_S$. Then

$$L^\chi_{S'}(\chi, s) = L^\chi_S(\chi, s) \prod_{\nu \in S' - S} \left(1 - \chi \theta^{-1}(\sigma_\nu) \langle N\nu \rangle^{-s}\right),$$

as follows easily from (2.1) and the existence of an Euler product for the complex L-functions. It follows that

$$\tilde{L}_{S'}(\chi, T) = \tilde{L}_S(\chi, T) \prod_{\nu \in S' - S} E_\nu(T), \quad (2.5)$$

where $E_\nu(T)$ is the element of $\mathfrak{o}[[T]]$ satisfying

$$E_\nu(\kappa(\gamma)^s - 1) = 1 - \chi \theta^{-1}(\sigma_\nu) \langle N\nu \rangle^{-s}.$$

Explicitly, define $t = t(\sigma_\nu) \in \mathbb{Z}_p$ by

$$\sigma_\nu \equiv \gamma' \mod A.$$

Since κ is trivial on A, this implies

$$\kappa(\sigma_\nu) = \langle N\nu \rangle = \kappa(\gamma)'$$.
and therefore

$$E_v(T) = 1 - \chi\theta^{-1}(\sigma_v)(1 + T)^{-t}, \quad t = t(\sigma_v).$$

(2.6)

We can use (2.5) and (2.6) to see how the μ and λ invariants of $\tilde{L}_S(\chi, T)$ change when S is replaced by S'. For brevity, let

$$\mu_S(\chi) = \mu(\tilde{L}_S(\chi, T)),$$

$$\lambda_S(\chi) = \lambda(\tilde{L}_S(\chi, T)),$$

when χ is even (so that $\tilde{L}_S(\chi, T) \neq 0$). Then we have the following lemma.

Lemma 2.1: Let χ be an even character of G_S, of finite order, and let S' be a finite set of places of K containing S. Then

$$\mu_{S'}(\chi) = \mu_S(\chi),$$

and

$$\lambda_{S'}(\chi) = \lambda_S(\chi) + \sum' g(\nu),$$

where the summation is taken over places ν in $S' \sim S$ such that $\chi\theta^{-1}(\sigma_\nu)$ has p-power order and $g(\nu)$ denotes the number of places of K_∞ lying above ν.

Proof: It is well known (and is proved again below) that $g(\nu)$ is finite for any non-archimedean place ν on K. Let $\nu \in S' \sim S$, and write

$$-t(\sigma_\nu) = p^a \cdot u \quad a \geq 0, \quad u \in \mathbb{Z}_p^\times.$$

Then

$$E_\nu(T) \equiv 1 - \chi\theta^{-1}(\sigma_\nu)(1 + T^{p^a})^u \mod p \circ [[T]]$$

$$\equiv 1 - \chi\theta^{-1}(\sigma_\nu) - \chi\theta^{-1}(\sigma_\nu) u T^{p^a} \mod (p, T^{p^{a+1}}) \circ [[T]].$$

It follows that

$$\mu(E_\nu(T)) = 0,$$

$$\lambda(E_\nu(T)) = p^a \quad \text{if} \ \chi\theta^{-1}(\sigma_\nu) \text{ is a } p\text{-power root of unity}$$

$$= 0 \quad \text{otherwise.}$$
Now, the decomposition group D_v of v for the extension K_∞/K is generated (topologically) by

$$
\sigma_v|_{K_\infty} \equiv \gamma^{(\alpha_v)} \equiv \gamma^{-p^u} \text{ mod } A.
$$

It follows that the index of D_v in $\text{Gal}(K_\infty/K)$ is p^u. Thus $g(v)$ is finite and equal to p^u, as desired. This completes the proof.

The main result of this section is the following proposition, which gives some information on $\mu_S(\chi)$ and $\lambda_S(\chi)$ when χ is varied.

Proposition 2.1: Let χ be an even character of G_S of finite order, and ψ an even character of G_S of p-power order. First suppose that $p > 2$. Then

$$
\mu_S(\chi) = 0 \quad \text{if and only if} \quad \mu_S(\chi \psi) = 0,
$$
in which case

$$
\lambda_S(\chi) = \lambda_S(\chi \psi).
$$

If $p = 2$, $\mu_S(\chi)$ and $\mu_S(\chi \psi)$ are at least equal to $d = [K:Q]$. However

$$
\mu_S(\chi) = d \quad \text{if and only if} \quad \mu_S(\chi \psi) = d,
$$
in which case we have again

$$
\lambda_S(\chi) = \lambda_S(\chi \psi).
$$

Proof: Let \mathfrak{o} be the ring of integers in a finite extension of Q_p containing the values of both χ and ψ, and let π be a local parameter in \mathfrak{o}.

First suppose $p > 2$. Let $\beta = (1 - \gamma)\alpha_S$. Then β is a measure on G_S, so we have the congruence

$$
\int_{G_S} \chi \psi \phi d\beta \equiv \int_{G_S} \chi \phi d\beta \text{ mod } \pi \mathfrak{o}[[T]].
$$

Hence, by (1.2) and (2.3),

$$
(1 - \chi \psi \phi(\gamma)) \tilde{L}_S(\chi \psi, T) \equiv (1 - \chi \phi(\gamma)) \tilde{L}_S(\chi, T) \text{ mod } \pi \mathfrak{o}[[T]].
$$

(2.7)

Now $\chi(\gamma)$, $\psi(\gamma)$ are p-power roots of unity (since $\Gamma = \mathbb{Z}_p$), and $\kappa(\gamma)$

1 \text{ mod } p. \text{ Hence }

1 - \chi \psi \phi(\gamma) \equiv 1 - \chi \phi(\gamma) \equiv 1 - (1 + T)^{-1} \mod \pi o[[T]]

so these power series have \(\mu \)-invariant 0 and \(\lambda \)-invariant 1. Hence (2.7) shows that

\[
\mu_s(\chi \psi) = 0 \quad \text{if and only if} \quad \mu_s(\chi) = 0,
\]

and, if this is the case,

\[
\lambda_s(\chi \psi) = \lambda_s(\chi),
\]
as desired.

When \(p = 2 \), the argument is almost the same, but we need some additional results, due to Deligne and Ribet, on the 2-divisibility of 2-adic L-functions. Let \(H \) be the subgroup of \(G_s \) generated by the "real Frobenii" \(\sigma_v, v \in S_\infty \). \(H \) is a finite group of exponent 2. Then the following fact is proved in [4] (see also Ribet [12]): the direct image \(\tilde{\beta} \) of the measure \(\beta = (1 - \gamma)\alpha_s \) under the map \(G_s \rightarrow G_s/H \) is divisible by \(2^d \) (i.e. \(2^{-d}\tilde{\beta} \) takes values in \(\mathbb{Z}_2 \)). Since \(\chi \) and \(\phi \) are both \textit{even} characters of \(G_s \), we have that

\[
2^{-d}(1 - \chi \phi(\gamma)) \tilde{L}_s(\chi, T) = \int_{G_s/H} \chi \phi d(2^{-d}\tilde{\beta})
\]
lies in \(o[[T]] \). Since \(\mu(1 - \chi \phi(\gamma)) = 0 \), this shows \(\mu_s(\chi) \geq d \). Similarly, since \(\psi \) is even, \(\mu_s(\chi \psi) \geq d \). The rest of the argument proceeds as above, with \(G_s \) replaced by \(G_s/H \) and \(\beta = (1 - \gamma)\alpha_s \) by \(2^{-d}\tilde{\beta} \). This concludes the proof.

Let \(\chi \) and \(S \) be as above. If \(S \) is as small as possible, i.e. if \(S \) consists precisely of the places dividing \(p \) and the places for which \(\chi \) is ramified, we omit the subscript \(S \) from our notations: thus \(L^*(\chi, s), \mu(\chi), \lambda(\chi), \) etc.. With this notation, we summarize the results of this section in the following theorem.

\textbf{Theorem 2.1:} Let \(\chi \) and \(\psi \) be even characters of \(\text{Gal}(K^{ab}/K) \) of finite order, and suppose that the order of \(\psi \) is a power of \(p \). Then \(\mu(\chi) \geq d \text{ ord}_p(2), \mu(\chi \psi) \geq d \text{ ord}_p(2), \) and

\[
\mu(\chi) = d \text{ ord}_p(2) \quad \text{if and only if} \quad \mu(\chi \psi) = d \text{ ord}_p(2).
\]

Now suppose that \(\mu(\chi) = \mu(\chi \psi) = d \text{ ord}_p(2), \) and that the order of \(\chi \) is prime to \(p \). Let \(L \) be the extension of \(K \) corresponding to \(\chi \theta^{-1} \) (resp. \(\chi \) if
$p = 2$, and put $L_\infty = LK_\infty$. Then

$$\lambda(\chi \psi) = \lambda(\chi) + N,$$

where N is the number of places v on K_∞ satisfying the conditions

(i) v does not lie above p, and $v|K$ is ramified for ψ.

(ii) v splits completely in L_∞.

Proof: The statement about the μ-invariants is immediate from Lemma 2.1 and Proposition 2.1.

Let S (resp. T) be the set of places of K that either divide p or are ramified for χ (resp. $\chi \psi$). Since χ and ψ have relatively prime orders, T contains S. By Proposition 2.1 and Lemma 2.1,

$$\lambda(\chi \psi) = \lambda_T(\chi \psi) = \lambda_T(\chi) = \lambda(\chi) + M,$$

where $M = \sum_v g(v)$, the summation taken over those places v in $T \sim S$ for which $\chi \theta^{-1}(\sigma_p)$ has p-power order. Since χ is here assumed to have order prime to p, and θ has order prime to p if $p > 2$ (and order $2 = p$ if $p = 2$), this condition on v may be restated as $\chi \theta^{-1}(\sigma_p) = 1$ (resp. $\chi(\sigma_p) = 1$ if $p = 2$), i.e. v splits completely in L. This last is, for any extension v of p to K_∞, equivalent to the assertion that v splits completely in L_∞, and $g(v)$ is by definition the number of extensions of v to K_∞. So M is the number of places v on K_∞ which split completely in L_∞ and satisfy $v|K \in T \sim S$. Such v satisfy (i) and (ii); conversely if a place v on K_∞ satisfies (i) and (ii), then v splits completely in L_∞, and $v|K$ lies in T ($v|K$ ramified for ψ implies $v|K$ ramified for $\chi \psi$, since χ and ψ have relatively prime orders) but not in S (for $v|K$ splits completely in L). This completes the proof.

§3. The analytic class number formula

Let F be any number field, $\zeta(F, s)$ its zeta function. The functional equation for $\zeta(F, s)$ and the formula for the residue of $\zeta(F, s)$ at $s = 1$ together imply that

$$\lim_{s \to 0} \frac{\zeta(F, s)}{s^{r_1 + r_2 - 1}} = -hR/w. \quad (3.1)$$

Here, as usual, r_1 denotes the number of real embeddings, r_2 the number of complex embeddings, h the class number, R the regulator, and w the number of roots of unity of F.

Now let F be a CM-field, with maximal real subfield F^+. Let ϵ be the quadratic character of F^+ corresponding to the extension F/F^+. Then we have a factorization

$$\zeta(F, s) = \zeta(F^+, s) L(\epsilon, s).$$
Applying (3.1) also to the field F^+, we find that

$$L(\epsilon, 0) = 2^dh^*/wQ.$$

Here d is the degree of F^+ over \mathbb{Q}, h^* is the relative class number of F/F^+, w is as above the number of roots of unity in F, and Q denotes the index $[E: WE^+]$, where E (resp. E^+) is unit group of F (resp. F^+), and W is the group of roots of unity in F. Hence

$$h^* = wQ2^{-d}L(\epsilon, 0); \quad (3.2)$$

this formula is called the analytic class number formula for h^*.

Let p be a prime number, \mathbb{Q}_∞ the \mathbb{Z}_p-extension of \mathbb{Q}, and let $F_\infty = F\mathbb{Q}_\infty$. For each integer $n \geq 0$, there is a unique extension F_n of F in F_∞ of degree p^n over F. Each F_n is again a CM-field, and we may use (3.2) to obtain information on the behavior of the relative class number h_n^* of F_n/F_n^+ as n varies.

We will use a subscript n to refer to objects attached to F_n. From (3.2), we have

$$h_n^* = w_nQ_n2^{-d_n}L(\epsilon_n, 0) = w_nQ_n2^{-d_n}\prod_{\psi}L(\epsilon\psi, 0);$$

the product on the right is taken over all characters ψ of $\text{Gal}(F_n^+/F^+)$, and the L-functions on the right are attached to F^+. Clearly $d_n = dp^n$ for $n \geq 0$; the behavior of W_n and Q_n is also predictable, at least for n large:

Lemma 3.1: There is an integer $n_0 \geq 0$ such that

(a) \quad $w_n = w_{n_0}p^{(n-n_0)\delta}$, \quad for $n \geq n_0$, where $\delta = 0$ or 1.

(b) \quad $Q_n = Q_{n_0}$, \quad for $n \geq n_0$.

Corollary: For $n \geq n_0$,

$$h_n^* = h_{n_0}^*p^{(n-n_0)\delta}\prod_{\psi}2^{-d}L(\epsilon\psi, 0), \quad (3.3)$$

the product taken over all characters ψ of $\text{Gal}(F_n^+/F^+)$ that are non-trivial on $\text{Gal}(F_{n_0}^+/F_{n_0}^+)$.

Proof: The corollary is immediate from the lemma and (3.2). To see part (a) of the lemma, suppose first that the number of roots of unity in F_∞ is finite. It is then clear that w_n is independent of n for n large, say $n \geq n_0$,

i.e. (a) holds with $\delta = 0$. Now suppose that the number of roots of unity in F_∞ is infinite. The group of roots of unity of order prime to p in F_∞ is finite in any case, and so lies in F_{n_0} for some $n_0 > 0$. Hence w_n/w_{n_0} is a power of p for $n \geq n_0$. It is easy to check by Galois theory that we must have $F_n = F_{n_0}(\mu_{p^{n-n_0}})$ for $n \geq n_0$, and this implies (a) with $\delta = 1$.

To prove (b), we need the following description of Q. Let j denote the nontrivial automorphism of F/F^+; j corresponds under any embedding $F \hookrightarrow \mathbb{C}$ to complex conjugation. Hence, by a theorem of Kronecker, η^{1-j} is a root of unity for any unit $\eta \in E$. From this it follows that $E/WE^+ = E^{1-j}/W^2 \subseteq W/W^2$. Hence Q is either 1 or 2, and $Q = 2$ if and only if $E^{1-j} = W$. It is immediate from this description that the following two implications are valid, for any $m \geq n \geq 0$:

1. Suppose that the inclusion $W_n \hookrightarrow W_m$ is surjective on the 2-power roots of unity. Then $Q_n = 2$ implies $Q_m = 2$.

2. Suppose that the norm map from W_m to W_n is surjective. Then $Q_m = 2$ implies $Q_n = 2$.

Now, if the number of 2-power roots of unity in F_∞ is finite, (1) may be used, provided that n is sufficiently large; on the other hand, if the number of 2-power roots of unity in F_∞ is infinite, then $p = 2$, and it is well known that the norm maps W_m onto W_n for $m \geq n > 0$, so (2) applies. In either case, we see easily that Q_n is independent of n for n sufficiently large. This completes the proof.

Remark: The above proof shows that $\delta = 1$ occurs precisely if F_∞ contains all the p-power roots of unity. An equivalent formulation in terms of characters is as follows. F_∞ contains the p-power roots of unity if it contains μ_p (resp. μ_4 if $p = 2$). If p is odd, $F^+(\mu_p)$ is then an extension of F^+ in F_∞ of degree prime to p, hence $F = F^+(\mu_p)$, and so $\epsilon \theta = 1$. Thus $\delta = 1$ if and only if $\epsilon \theta = 1$ (when p is odd).

If $p = 2$, let ψ denote the non-trivial character of F_2^+ / F^+, F_2^+ being of course the first layer of the \mathbb{Z}_p-extension F_∞^+ / F^+. If F_∞^+ contains the 2-power roots of unity, the $F^+(\mu_4)$ is an imaginary quadratic extension of F^+ in F_∞; hence $\theta = \epsilon$ or $\epsilon \psi$. So, when $p = 2$, $\delta = 1$ is equivalent to $\epsilon \theta = 1$ or ψ.

We use (3.3) to relate the μ^* and λ^* invariants of the \mathbb{Z}_p-extension F_∞/F to the μ and λ invariants of certain p-adic L-functions. In fact, Iwasawa [9] showed that, when F is a cyclotomic field, one could give a proof of the existence of μ^* and λ^* from (3.3), using the Kubota-Leopoldt functions; and Coates [2] pointed out that the standard properties of p-adic L-functions would make the proof work in general (see also [5]).

Proposition 3.1: There are integers $\mu^* \geq 0$, $\lambda^* \geq 0$ and ν^* such that

$$\text{ord}_p(h^*_n) = \mu^*p^n + \lambda^*n + \nu^*,$$
for \(n \) sufficiently large. In fact
\[
\mu^* = \mu_S(\epsilon \theta) - d \text{ord}_p(2)
\]
\[
\lambda^* = \lambda_S(\epsilon \theta) + \delta,
\]
where \(\delta \) is defined in Lemma 3.1, and \(S \) is the set of places of \(F^+ \) that ramify in \(F_\infty^+ \).

PROOF: Let \(n_0 \) be sufficiently large, so that the conclusions of Lemma 3.1 hold; we may suppose also that \(F_\infty^+/F_{n_0}^+ \) is totally ramified at all places dividing \(p \). If \(\psi \) is a character of finite order of \(\text{Gal}(F_\infty^+/F^+) \), with values in \(\mathbb{C}_p^\times \), non-trivial on \(\text{Gal}(F_\infty^+/F_{n_0}^+) \), then \(S \) (as defined in Proposition 3.1) is precisely the set of places for which \(\psi \) is ramified. Hence, by (2.1), we have,
\[
L(\epsilon \psi, 0) = L_S^*(\epsilon \psi \theta, 0) = \tilde{L}_S(\epsilon \theta, \psi(\gamma)^{-1} - 1).
\]
The second equality comes from (2.4).

Now let \(n \geq n_0 \), and combine (3.3) and (3.4). As \(\psi \) varies over characters of \(\text{Gal}(F_n^+/F^+) \) that are nontrivial on \(\text{Gal}(F_n^+/F_{n_0}^+) \), \(\psi(\gamma)^{-1} \) will vary over roots of unity \(\xi \) in \(\mathbb{C}_p^\times \) satisfying \(\xi^{p^n} = 1, \xi^{p^n_0} \neq 1 \). Hence
\[
h_n^* = h_{n_0}^* p^{(n-n_0)\delta} \prod \xi 2^{-d} \tilde{L}_S(\epsilon \theta, \xi - 1),
\]
with \(\xi \) satisfying \(\xi^{p^n} = 1, \xi^{p^n_0} \neq 1 \). Now if the order of \(\xi \) is \(p^m \), and if \(m \) is sufficiently large, it is easy to see that
\[
\text{ord}_p \tilde{L}_S(\epsilon \theta, \xi - 1) = \mu_S(\epsilon \theta) + \lambda_S(\epsilon \theta) \text{ord}_p(\xi - 1)
\]
\[
= \mu_S(\epsilon \theta) + \lambda_S(\epsilon \theta)/(p^{m-1}(p-1)).
\]
Hence, increasing \(n_0 \) if necessary, we have from (3.5)
\[
\text{ord}_p h_n^* = (\mu_S(\epsilon \theta) - d \text{ord}_p(2)) p^n + (\lambda_S(\epsilon \theta) + \delta)n + C,
\]
for \(n \geq n_0 \) and some integer \(C \) independent of \(n \). This completes the proof of the proposition.

§4. Kida’s formula

Let \(F \) be a CM-field with maximal real subfield \(F^+ \), and let \(E \) be a CM-field which is a \(p \)-extension of \(F \) (i.e. if \(E' \) is the Galois closure of \(E \) over \(F \), then \(\text{Gal}(E'/F) \) is a \(p \)-group). Wherever appropriate we use
subscripts E and F to distinguish between objects attached to E and those attached to F. The aim of this section is to prove the following theorem of Y. Kida [11]:

Theorem 4.1: $\mu^*_E = 0$ if and only if $\mu^*_E = 0$, and when this is the case,

$$
\lambda^*_E - \delta_E = [E_\infty : F_\infty](\lambda^*_F - \delta_F)
+ \sum_{w'} \left(e\left(\frac{w'}{v'}\right) - 1\right) - \sum_w \left(e\left(\frac{w}{v}\right) - 1\right),
$$

the summations taken over all places w' on E_∞ (resp. w on E_∞^+) which do not lie above p, and $v' = w'|F_\infty$ (resp. $v = w|F_\infty^+$).

Proof: If $F \subseteq E \subseteq D$ is a tower of CM-fields, with D/F a p-extension, it is easy to check that if the theorem holds for any two of the extensions E/F, D/E, D/F, it holds for the third. This allows us to reduce first to the case E/F Galois and then to the case E/F cyclic of degree p. Hence we suppose that E/F is cyclic of degree p in the following.

If $E = F_1$ (the first layer of the basic \mathbb{Z}_p-extension F_∞/F), it is immediately that

$$
\lambda^*_E = \lambda^*_F, \quad \delta_E = \delta_F,
$$

so the theorem is valid in this case.

Now suppose that $E \cap F_\infty = F$. The extension of E^+ corresponding to the character $\epsilon_E \theta_E$ is contained in $E(\mu_{2p})$, hence is abelian over F^+. Hence we have a factorization

$$
L^*(\epsilon_E \theta_E, s) = \prod_{\psi} L^*(\epsilon_F \theta_F \psi, s), \quad (4.1)
$$

with ψ running over the characters of $\text{Gal}(E^+/F^+)$. Since $E \cap F_\infty = F$, we have an isomorphism $\text{Gal}(E_\infty/E) \simeq \text{Gal}(F_\infty/F)$ under restriction, so we may choose a topological generator γ_E of $\text{Gal}(E_\infty/E)$ such that $\gamma_E = \gamma_E|F_\infty$ is a topological generator of $\text{Gal}(F_\infty/F)$. From this it is clear that (4.1) implies

$$
\tilde{L}(\epsilon_E \theta_E, T) = \prod_{\psi} \tilde{L}(\epsilon_F \theta_F \psi, T). \quad (4.2)
$$

Let $d = [F^+ : \mathbb{Q}]$, so that $[E^+ : \mathbb{Q}] = pd$. Taking μ-invariants in (4.2) and subtracting $pd \text{ ord}_p(2)$ from both sides, we obtain

$$
\mu(\epsilon_E \theta_E) - pd \text{ ord}_p(2) = \sum_{\psi} \mu(\epsilon_F \theta_F \psi) - d \text{ ord}_p(2).$$
By Theorem 2.1, the left hand side and each term on the right is nonnegative; moreover, the terms on the right are either all positive or all 0. Hence \(\mu(\epsilon_F \theta_E) = pd \text{ord}_F(2) \) if and only if \(\mu(\epsilon_F \theta_E) = d \text{ord}_F(2) \), or, by Proposition 3.1, \(\mu^*_F = 0 \) if and only if \(\mu^*_F = 0 \). Thus the first part of the theorem is proved.

We suppose now that \(\mu^*_E = \mu^*_F = 0 \). Taking \(\lambda \)-invariants in (4.2), we find

\[
\lambda(\epsilon_F \theta_E) = \sum_\psi \lambda(\epsilon_F \theta_E \psi) \tag{4.3}
\]

At this point it is convenient to separate the cases \(p > 2 \) and \(p = 2 \).

Suppose \(p > 2 \). By Theorem 2.1, with \(K = F^+ \) and \(\chi = \epsilon_F \theta_E \),

\[
\lambda(\epsilon_F \theta_E \psi) = \lambda(\epsilon_F \theta_E) + N, \quad \text{if} \quad \psi \neq 1,
\]

where \(N \) is the number of places \(v \) on \(F^+_\infty \) such that (i) \(v | F^+ \) does not divide \(p \) but is ramified for \(\psi \), and (ii) \(v \) splits in \(F^-_\infty \). Thus

\[
\lambda(\epsilon_F \theta_E) = p\lambda(\epsilon_F \theta_E) + (p - 1)N.
\]

However, any place \(v \) on \(F^+ \) satisfying (i) ramifies in \(E^+_\infty \), and so has a unique extension \(w \) on \(E^+_\infty \), and \(e(w/v) = p \). From this it is easy to see that the formula of the theorem holds for \(E/F \), using Proposition 3.1.

Now suppose \(p = 2 \). Applying Theorem 2.1 with \(x = 1 \) we find

\[
\lambda(\epsilon_F \theta_E) = \lambda(1) + N, \quad \lambda(\epsilon_F \theta_E \psi) = \lambda(1) + N',
\]

where \(N \) (resp. \(N' \)) is the number of places \(v \) on \(F^+_\infty \) such that \(v | F^+ \) does not divide 2 but is ramified for \(\epsilon_F \theta_E \) (resp. \(\epsilon_F \theta_E \psi \)). Here \(\psi \) denotes the non-trivial character of \(E^+ / F^+ \). The second condition is vacuous in this case. Eliminating \(\lambda(1) \) and continuing as above, we find

\[
\lambda(\epsilon_F \theta_E) = 2\lambda(\epsilon_F \theta_E) + N' - N.
\]

In view of Proposition 3.1, we have only to show that

\[
N' - N = \sum_{w'} (e(w'/v') - 1) - \sum_w (e(w/v) - 1) \tag{4.4}
\]

where \(w' \) (resp. \(w \)) runs over places of \(E^-_\infty \) (resp. \(E^+_\infty \)) not dividing 2, and \(v' = w' | F^+_\infty, v = w | F^+_\infty \). This can be seen as follows. If \(v \) is a place on \(F^+_\infty \) not dividing 2, let \(N(v) = 1 \) if \(v | F^+ \) is ramified for \(\epsilon_F \), and put \(N(v) = 0 \) otherwise; similarly let \(N'(v) = 1 \) if \(v | F^+ \) is ramified for \(\epsilon_F \psi \), \(N'(v) = 0 \).
otherwise. Since θ_F is ramified only for the primes above 2, we have

$$N = \sum_v N(v), \quad N' = \sum_v N'(v),$$

where v runs over the places on F_∞^+ that do not divide 2. For any such v, let L_v be the fixed field of the inertia group of v for the extension E_∞/F_∞^+. There are five possibilities for L_v; a case by case examination shows that

$$N'(v) - N(v) = \sum_{w'} \left(e\left(w'/v'\right) - 1 \right) - \sum_w \left(e\left(w/v\right) - 1 \right),$$

the summations on the right taken over the places w' on E_∞ (resp. places w on E^+) lying over v; we note that v always splits completely in L_v (the residue field of F_∞^+ at v contains the maximal 2-extension of the prime field). Summing over places v that do not lie above 2, we obtain (4.4). This concludes the proof.

References

(Oblatum 5-VIII-1982)

Riemann-Hurwitz formula

(17)

Institute for Advanced Study
Olden Lane
Princeton, NJ 08540
USA

Current address:
Department of Mathematics
Ohio State University
Columbus, OH 43210
USA