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Introduction

Let V be a smooth complex projective threefold of general type and K v
the canonical divisor on V. In this paper we consider in detail the case
when there exists an integer m &#x3E; 0 such that the m-canonical system
|mKv| has no fixed components, and the corresponding rational map
~mKV is generically finite; in particular we study the base locus of this
linear system.

Using the theory of Hilbert schemes, it is easy to see that in this case
KV is arithmetically effective (denoted a.e.); i.e. KV · C  0 for all curves
C on V. In [12] (Theorem 6.2) we saw that in the case when Kv is a.e., the
canonical ring R(V) = ~ n0 H0(V, nKv) is finitely generated as an

algebra over the complex numbers if and only if the linear system |nKV|
has no fixed points for some n &#x3E; 0.

It is easy to see that if K v. C &#x3E; 0 for every base curve C of 1 mKv
then such an n does exist (1.2). Thus the interesting base curves C are
those with KV’ C = 0. After this paper was written, the author was

informed that Kawamata has now proved that such an n exists in the
case when KV is a.e. Thus we see that the curves C with K v. C = 0 are
precisely those curves that are contracted down on the canonical model
(see [9]). We shall however not assume Kawamata’s result in the proofs of
this paper.

In Section 2 we therefore study the base curves C of |mKV| with
KV · C = 0. We shall see that in this case C must be isomorphic to IP 1

(2.3) and that (2.6) its normal bundle NC/V must be one of

OC(-1) ~ OC(-1), OC(-2) ~ OC or OC(-3) ~ OC(1).
The case of base curves C with Kv - C = 0 is closely connected with the

problem of curves homologous to zero on an analytic threefold. Analo-
gous results to (2.3) and (2.6) have been obtained by Pinkham in this
case, using a different method [7].

In the cases NC/V = OC(-1) ~ OC(-1) or OC(-2) ~ OC above, we
essentially have all the information we want about C. In the remaining
case, we need to know more about the infinitesimal neighbourhoods of C.
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Blowing C up, say fl : hl ~ V with exceptional surface El (isomorphic to
the ruled surface IF 4)’ we let CI denote the minimal section of E1 (hence
on El we have C2= - 4). Now blow CI up, obtaining f2, V2, E2 and C2.
In this way we obtain a sequence of normal bundles Ncl,, NC1/V1,
NC2/V2, .... We discover that the sequence of normal bundles so obtained
must be ( - 3, 1 ), ( - 3, 0), ... , ( - 3, 0), (-2, -1), (-1, -1) (with the
obvious notation and where there are a finite number, say t  0, of

( - 3, 0)’s in the sequence).
As an illustration, we apply these results (in Section 3) to the case of a

base curve C with K v. C = 0 that is isolated in the base locus of 1 mK, 1.
We discover here that C is not then a base curve of |(2m + 1)KV|. As a
corollary, we can deduce for instance that the canonical ring is finitely
generated in the case when for any two base curves C, C’ with KV · C = 0
Kv - C’, C and C’ do not meet.

Let Zo denote the cycle of base curves C of |mKV| with KV · C = 0. In
Section 2 we obtained detailed information concerning the individual
curves of Zo; we now consider the question of the possible configurations
of curves in Zo.

This we consider in Section 4. We show that any two curves of Zo
meet in at most one point (where they meet transversely), and that any
given point of V is contained in at most three curves of Zo (which meet
normally there). Moreover we find that there are no "closed cycles" of
curves in Zo (apart from three curves meeting at a point).
We then take into account the possible normal bundles (found in

Section 2). We show that a curve C in Zo with normal bundle ( - 3, 1)
cannot meet another such curve, and also cannot meet a triple point.
Similarly, we find that a curve C in Zo with normal bundle ( - 2, 0) meets
at most one ( - 3, l)-curve, meets at most one triple point, and cannot
meet both. Finally we consider the case of a curve in Zo with normal
bundle ( -1, -1).

The results and methods of this paper are also closely connected with
a conjecture of Reid. He conjectures that if we have a finite collection of
curves Zo = UCt on a smooth projective threefold V with KV · C, = 0 for
all i and H1(OZ) = 0 for all schemes Z supported on Zo, and such that Zo
is isolated among cycles of this type, then Zo is contractible (by a
morphism not contracting anything else). An easy modification of the
methods of Section 2 shows that in this case also, any Cl (trivially
isomorphic to Pl 1 here) has one of the above three normal bundles, and
that on blowing up, the sequence of normal bundles obtained is as

described above. The methods of sections 3 and 4 are therefore relevant
in this case also.

The author would like to thank Henry Pinkham for the benefit of his
valuable comments on both the content and presentation of this paper.
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1. Preliminaries

Throughout this paper V will denote a smooth complex projective
threefold of general type, and m a positive integer such that |mKV| has no
fixed components and the rational map ~mKV is generically finite.

PROPOSITION 1.1: KV is arithmetically effective.

PROOF: If there exists a curve C on V with K v. C  0, then by the theory
of Hilbert schemes (see for instance [5] Section 1), we deduce that C
moves in an algebraic family. This then would yield a fixed component of
|mKV| (one can of course say far more; see [6]). D

PROPOSITION 1.2: If KV · C &#x3E; 0 for all base curves C of |mKV|, then for
some n the linear system 1 nK v is without fixed points. If C is a base curve
with K, - C = 0, then C has arithmetic genus pa(C)  1.

PROOF: Let D, D’ ~ 1 mK v be general elements, and Z = D’l D denote the
scheme theoretic intersection. For n  1, we have the exact sequence of
sheaves

From the Kawamata-Viehweg form of Kodaira vanishing ([4] or [11]),
we see that h’(V, nD) = 0 for i &#x3E; 0 and n &#x3E; 0. Thus from the exact

sequence

we deduce that h’(D, OD(nD)) = 0 for i &#x3E; 0 and n &#x3E; 2. Thus from the
former exact sequence, we see that h1( Z, OZ(nD )) = 0 for n &#x3E; 3.

Suppose first that C is a base curve with KV · C = 0. We have an
epimorphism OZ(nD) ~ fflc(nD) of sheaves supported on Z, and hence
we deduce that h1(C, OC(nD)) = 0 for n &#x3E; 3. Since D · C = 0, we see that
~(C, (9c) = x ( C, OC(nD))  0. Thus pa(C)  1 as required.

Suppose therefore that KV · C &#x3E; 0 for all base curves C of |mKV|. We
see then that for all the curves C underlying Z, we have D - C &#x3E; 0. Hence
D is ample on Z (Propositions 4.2 and 4.3 of [2]). Thus for n sufficiently
large, OZ(nD) is generated by its global sections.

From the first exact sequence and the fact that h1(OD(nD)) = 0 for
large n, we deduce that OD(nD) is also generated by its global sections
for n sufficiently large. Hence, using the second exact sequence, we see
that the same is also true of the sheaf (9v(nD). Thus the linear system
|nD| is fixed point free for large n. 0

We see therefore that it is vital to consider further those base curves C
with K, - C = 0. This we do in detail in the next section.
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2. Base curves with KV · C = 0

Suppose that C is a base curve of |mKV| with K, - C = 0, and let f 1:
V1 ~ V denote the blow up of C. Note here that in the case when C is
singular, it has at worst a node or a cusp (by (1.2)), and thus V, has only
one singular point (cf. [8]), which in the terminology of [9] is a compound
Du Val point (in particular it is Gorenstein and rational). Let El denote
the exceptional divisor on Vj ; note that El is a Cartier divisor. Now on
hl we have KV1 = f1*KV + E1.

PROPOSITION 2.1:

PROOF: First suppose that C is smooth. By Riemann-Roch,

Now note that ~(2KV) = ~(KV1+f1*K,) (using the Kawamata-

Viehweg form of Kodaira vanishing and the birational invariance of
plurigenera). But by Riemann-Roch

and

Thus f1*KV · c2(V1) = K, - C2 (V). In particular
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Since the arithmetic genus is birationally invariant, we deduce that

E1 · C2(VI) = 0. (The fact that E1 · c2(V1) = - KV · C for the blow up of a
smooth curve C holds in general, and is a standard computation with
Chern classes.)

Combining the above formulae now yields the result.
The case when C is singular is essentially the same: consider a

desingularization h: hl ~ V, of hl, and apply Riemann-Roch on Vl.
Since the singularity on VI is rational, we know that R1h*O1 = 0 for all
i &#x3E; 0, and that h*(O1 = (9v,.

Thus, considering X(VI, h*(KV1 + f*1KV)) on VI, Bye deduce that h*E1
· c2(1) = 0, using essentially the same argument as above together with
the Leray spectral sequence. We then deduce (again similarly to the case
when C is smooth) that

However, using the fact that Rlh*(O1 = 0 for i &#x3E; 0, and hence that the
Leray spectral sequence degenerates, we also have that

Thus the result is now proved in general. ~

LEMMA 2.2: Suppose that X is a Gorenstein threefold with only finitely
many singularities, and à is an effective Cartier divisor on X such that
A3 &#x3E; 0 and Ll. B  0 for all but finitely many curves B on X. Then

h’(X, Kx + 0394) = 0 for i &#x3E; 1.

PROOF: Choose a smooth very ample divisor H on X not containing any
of the finite number of curves or any of the finite number of singularities,
such that à + H is ample and à2 - H &#x3E; 0. In particular, h1(H, KH + 0394|H)
= 0. Since by Kodaira vanishing H2(V, K v + à + H) = 0, the result
follows using the exact sequence

By assumption C is fixed in |mKV|. Thus for some r &#x3E; 0, |f*1mKV| =
1 Dl + rEl, where 1 D, is the mobile part of the linear system. We say that
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the base curve C has multiplicity r in ImK vi. Clearly à = Di satisfies the
conditions of (2.2), and therefore so too does r(mf1*KV - E1) ~
(r-1)mf*1KV + D1, and hence also (mf*1KV - E1). (Throughout this

paper, - denotes linear equivalence.)

PROPOSITION 2.3: If KV · C = 0 for a base curve C of |mKV|, then C is
isomorphic to P1.

PROOF: From (1.2) we know that pa(C)  1; let us assume that p, (C) = 1
and obtain a contradiction. Then, even if C is singular, we know that it is
regularly immersed in V, and that it is Gorenstein with dualizing line
bundle wc = Oc. Thus, if PC denotes the sheaf of ideals defining C, we
have that PC/P2C on C is locally free of rank 2. Using the generalized
adjunction formula ([1], Chapter 1, Theorem 4.5) we know that the line
bundle ̂ 2(PC/P2C) on C has degree 0.

With the notation above, we have V1 = PorjV (OV ~ PC ~ P2C ~ ...),
and that OV1(- E1) ~ OV1(1) where the right hand side denotes the natural
relatively ample bundle defined by fc (see [3], Chapter II, Proposition
7.13). Let Y denote the Cartier divisor on El corresponding to the line
bundle OE1(1) (which can be interpreted as either the restriction of (9 v (1)
to El, or else the natural relatively ample bundle on El = 
Thus E13 = -Y2 .

1 claim that for any rank 2 bundle,5?7on C with E = PC(F), and Y the
natural relatively ample divisor, we have Y2 = deg(^2F). We can assume
without loss of generality that Y is effective (by [3], Chapter II, Lemm 7.9
and Proposition 7.10). The claim now follows by [2], Chapter 1, §10 in
the case when C is smooth, and the same proof works also in the case
when C is singular.

Thus we have deduced that El = 0 on V1. Note however that for
sufficiently large s,

since by Theorem 2.2 of [12], the multiplicity of El in |nf1*KV| is bounded
as n ~ ~ .

Since however we have that h1(V, (sm + 1)KV) = 0 for i &#x3E; 0, and by
(2.2), that hl(V1, KV1 + s(mf*1KV - E1)) = 0 for i &#x3E; 1, we obtain an im-
mediate contradiction from (2.1).

Thus pa ( C ) = 0 as required. D

REMARK 2.4: The results (2.1) to (2.3) provide the prototype for a
number of the proofs which follow. 1 shall therefore explain at this stage
the ideas behind these proofs.
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Let Z0 denote the cycle of those base curves C of |mKV| such that
K, - C = 0. Suppose now that ~: Ù - V is any birational morphism (with
 smooth) whose exceptional locus lies over Zo, and let the effective
divisor C on V be defined by K = ~*KV + ol. The proof of (2.1) goes
over unchanged to show that

We note also in passing that if B is a smooth rational curve on a
threefold W, h :  ~ W the blow up of B, then

PROPOSITION 2.5: With the notation above, suppose that é’ is fixed in
|m~*KV| 1 (e. g. the case when (p is the composite of blow ups of base curves).
Suppose also that K · B  0 for all but finitely many curves B contained in
C and that K3V  K 3. Then we have a contradiction.

PROOF: Since Cis fixed in |m~*KV|, (m~*KV - 03B5) · B  0 for all but

finitely many curves B not contained in é. However since (m~*KV - 03B5)
is numerically equivalent to - Kv on d, the second assumption now
implies that (m~*KV - 03B5) · B  0 for all but finitely many curves B on V.
Now since 03B53 = K 3 - K3V  0, we have that (m~*KV - tff)3 = m3K3V - C3
&#x3E; 0. Hence by (2.2), hl(, K v + s(m~*KV - é» = 0 for i &#x3E; 1.

Moreover, as in (2.3) we know that

for s sufficiently large, and that hl(V, (sm + 1)KV) = 0 for i &#x3E; 0. Hence

for s sufficiently large; this then provides the required contradiction
using (2.4). 0

Returning now to our base curve C of ImK,l with K, - C = 0, we know
that C is isomorphic to P1, and so the normal bundle is decomposable;
say NC/V = OC(e - a ) fl3 OC(-a) where e  0. From the adjunction for-
mula, e - 2 a = deg(Nc/v) = - 2. In particular we note that a &#x3E; 0. With
this notation, El is the ruled surface Fe. In this case when e ~ 0, let C,
denote the minimal section of E j(C2 = - e ), and f2 : V2 - VI the blow up
of C,, with E2 the corresponding exceptional surface. If the composite
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f1 03BF f2 is denoted f : V2 ~ Vh, then |f*mKV| = 1 D, + rf2*E1 + r1E2, where
ID21 is the mobile part, and r1  r denotes the multiplicity of C1 in |D1|.

PROPOSITION 2.6: The normal bundle NC/V is one of ( -1, -1), ( - 2, 0) or
( - 3, 1), where ( -1, -1 ) denotes (9c( -1) ~ OC( -1), etc.

PROOF: We note first that D1 · Cl = -rEI . C, = -r(e - a) = -r(a - 2).
Thus Di , C1  0 if and only if NC/V = ( -1, -1) or ( - 2, 0). Moreover,
we note that the normal bundles listed in the Proposition correspond to
a = 1, 2 and 3 respectively.

Suppose therefore that D1 · Cl  0 and hence r1 &#x3E; 0. Consider f:
V2 ~ V as described above. An easy calculation using (2.4) shows that

KV2 - K3V = -2(a - 4). Thus clearly the conditions of (2.5) are satisfied,
and a contradiction is obtained. 0

The curves NC/V = ( -1, -1) or ( - 2, 0) are what Reid in [10] calls
( - 2)-curves, and essentially we have all the information about their

neighbourhoods in V that we want (see [10], §5). Let us now concentrate
on the case when NC/V = (- 3, 1). Blowing up minimal sections of

exceptional surfaces, we obtain ig, Er, CI as before, and a sequence of
normal bundles NC/V, NC1/V1’ etc.

PROPOSITION 2.7: The only possible sequence of normal bundles in the case
when NC/V = ( - 3, 1) is :

( where there are a finite number, say t  0, of ( - 3, 0)’s in the sequence).

PROOF: On CI we have an exact sequence of sheaves

Hence NC1/V1 = (-4,1), ( - 3, 0) or ( - 2, -1 ). 1 claim that ( - 4, 1 )
cannot occur.

To see this, blow up C2, giving f3: V3 ~ V2, and let ~: V3 ~ V denote
the composite f1 f2 f3. If NC1/V1 = ( - 4, 1), we see that D2 - C2 = - (r
+ rl ), and using (2.4) that K3V3 = Kv. The other conditions of (2.5) are
now easily checked, and thus a contradiction is obtained.

Therefore NC1/V1 = (- 3, 0) or ( - 2, -1). If for some i, NCi/Vi =
( - 2, - 1), we deduce from the exact sequence on Ci+1 1 

that NCi+1/Vi+1 = ( -1, -1). If however for some i, NCi/Vi = ( - 3, 0), we
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deduce from the exact sequence on C, + 1

that N
Finally we note that if |Dt| denotes the mobile part of mKVJ |, and

NC/V = (-3, 0) for j = 1, ... , i - 1, an easy calculation shows that’D, . C,
= -r. Hence C, is a base curve of 1 D, 1. This then shows that an infinite
sequence of ( - 3, 0)’s cannot occur, since then Cl would be a base curve
of |D| for all i &#x3E; 0 (i.e. we cannot resolve the base locus), which is clearly
in contradiction to the results say of [13]. 0

3. Isolated base curves

As an illustration of the above results, let us consider the case when C
has KV · C = 0 and is isolated in the base locus of 1 mK v (we shall note
later that a trivial modification of the argument then applies to a slightly
more general case).

PROPOSITION 3.1: If C is isolated in the base locus, and Ncl v ( -1, -1)or ( - 2, 0), then C is not a base curve of |(2m + 1)KV|.
PROOF: We noted in the proof of (2.6) that in this case -El 1 El is a.e. on
El. Using the fact that C is isolated in the base locus of |mKV|, we deduce
that mft K v - El is a.e. on VI. The Kawamata-Viehweg form of Kodaira
vanishing then gives

Thus (2.1) implies that

In particular we see that El is not a fixed component of |(2m + 1)/f*1KV|
on VI, and hence that C is not a base curve of |(2m + 1)KV|. 1:1

We consider therefore the case when NC/V = ( - 3, 1). By (2.7), there
exists an integer t  0 such that Nc,/v, = ( - 3, 0) for 1  i  t, and

NCt+l/Vt+l = (- 2, -1).

PROPOSITION 3.2: If C is isolated in the base locus, and Nc/v = ( - 3, 1),
then C is not a base curve of |(2m + 1)KV|.

PROOF: Suppose first that t = 0. Consider the divisor 03B5= f*2E1 + E2 on
V2. An easy check confirms that - 03B5 · B  0 for all curves B on 03B5. Since C
is isolated in the base locus of |mKV|, we deduce that mf*KV - 03B5 is a.e.
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on h2 (where as before f denotes the composite f, - f2 ). In particular we
have that h’(V2, K,,2 + 2(mf*KV - 03B5)) = 0 for i &#x3E; 0. Hence using Remark
2.4, we see that

i.e. d’is not fixed in |(2m + 1)f*KV|.
If however C is fixed in |(2m + 1)KV|, then we note that C, is also

fixed in 1 D, on Th (since - E1 · C1  0), and hence that C is fixed in
|(2m + 1)f*KV|; we conclude therefore that C is not fixed in |(2m + 1)KV|.

The case when t &#x3E; 0 is slightly more complicated. We consider the
threefold V;+2. For i  t + 2, we shall denote by h l : Vt+2 ~ Vl the obvious
composite morphism, and in particular h : Vt+2 ~ V. Let us consider first
the case when t = 1 (where the salient features of the general case are
already present). Here we have NC/V = (-3, 1), NC1/V1 =(-3, 0) and
NC2/V2 =(-2, -1).

If E1 denotes the proper transform of El under f2, an easy check
shows that on V2 the minimal section C2 of E2 meets Cl = El ~ E2 in one
point. Thus when we blow up C2, we obtain a configuration on V3 as in
Fig. 1.

In Fig. 1, ~ is the curve on V3 corresponding on h2 to the fibre of the
ruling on E’ 1 containing the point E’1 ~ C2. As surfaces, El’ is IF 4 blown up
in a point on the minimal section, E2 is F3 and E3 is F1.
On V3 therefore we consider the divisor 03B5 = h*1E1 + h*2E2 + E3. An

easy check shows that - é. B à 0 for all curves B on éexcept for f; also
- é- ~ = -1. We note moreover that N~/V3 = ( - 2, -1).

Figure 1.
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We now blow up f, obtaining g: h3 ~ V3 and exceptional surface E
say. On V3 we consider the divisor  = g*03B5+ E. It is now straightforward
to check that - à’. B  0 for all curves B on . Thus as before, using the
fact that C is isolated in the base locus of |mKV|, we deduce that

hl(3, K v3 + 2(m*KV - )) = 0 for i &#x3E; 0 (where h is the composite h 0 g).
Using Remark 2.4 however, we now have

and hence that iis not fixed in |(2m + 1)*KV|. As before therefore, we
discover that C is not a base curve of |(2m + 1)KV| on V.

The case t &#x3E; 1 is similar. Note first that for all 3  i  t + 2, an easy
calculation shows that the minimal section Cl of E, does not meet the
proper transform E’l-1 of El-1. Secondly, we note that in Fig. 1 (consid-
ered now for arbitrary t &#x3E; 1), the minimal section C3 of E3 cannot meet f.
For if it did meet ~, then on V4 we would have K V4 ~’ = 2 (where ~’ on
V4 corresponds to ~ on V3). Hence if we blow up e’ on V4, obtaining g’:
V4 - V4, we deduce via Remark 2.4 that K3V4 = K3V. Letting ~: 4 ~ V
denote the obvious composition of maps, we see that the conditions of
(2.5) are satisfied, and hence a contradiction is obtained.
We now consider the divisor é= hi El + h*2E2 + ... + Et+ 2 on Vt+2;

bearing in mind the above two observations, it is a straightforward check
that - 03B5. B  0 for all curves B on d’ except for the curve ~* on Vt+2
corresponding to the curve ~ on V3; for this curve -03B5·~*= -1. Now
blow up f* obtaining g: t+2 ~ Vt+2, and proceed precisely as in the
t = 1 case. 

We have thus seen that for any isolated base curve C of ImKvl with
KV · C = 0, C is not a base curve of |(2m+1)KV|. However, the only
place that we use the fact that C is isolated in the above is that in order
to check that m*KV -  is a.e., we need to check it not only on the
curves in cf, but also on the curves of t+2 correspond to the other base
curves of |mKV|. Clearly, the only such curves that we need to worry
about are those that meet C. If however any other base curve C’ which
meets Chas KV · C’ &#x3E; 0, we can then merely choose N a sufficiently large
multiple of m so that, repeating the above argument for INK vi, the

positivity is satisfied on Vt+2.

COROLLARY 3.3: If no two base curves C, C’ of |mKV| with KV · C = 0 =

KV · C’ meet, then for some n the linear system InK vi is without fixed
points.

PROOF: As above, we choose N sufficiently large so that we· can then
deduce that the base curves C of |NKV| with KV · C = 0 are no longer
base curves of |(2N + 1)KV|. Hence we see that for some n, |nKV| has no
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fixed components and the only base curves C’ of |nKV| have KV · C’ &#x3E; 0.
Now apply (1.2). 

In Section 2, we obtained detailed information concerning the individ-
ual base curves C of |mKV| with KV · C = 0. We now wish to ask which
configurations of such curves can occur. We consider this question in the
next section.

4. Conf iguration of curves in the base locus

With the notation as before, let Zo denote the cycle of base curves of
|mKV| with KV · C = 0; in particular any component of Zo is isomorphic
to P1. We investigate the question of which configurations can appear in
Zo. In this section, we shall again make extensive use of (2.5).

THEOREM 4.1:

( a ) Any two curves in Zo meet in at most one point, where they meet
transversely.

(b) A t most three curves of Zo meet at any given point, where they meet
normally.

( c) There are no "closed cycles " of curves in Zo ( i. e. curves Bi , ... , Bk
in Zo with B, meeting Bt + 1 for each i, where Bk+1 is understood as B1)
apart from three curves meeting at a point.

PROOF :

(a) Let BI and B2 be any two curves in Zo. We blow up one of them,
say B2, obtaining a morphism h: V’ ~ V and exceptional divisor E. If B’1
denotes the curve on V’ corresponding to B1 on V, suppose that E . B’1 = d.
We need to show that d  1.
We note however that K3V’ = K3V + 2. Hence if we blow up B1 on V’

and let cp:  ~ V denote the composite of this map and h, then by (2.4)
K3V - K3V = -2(d- 2). The result now follows easily using (2.5).

(b) Let B1, ... , Br be curves of Zo that meet at some point P on V. Let
us blow up one of the curves, say BI. Let h : V’ ~ V denote this blow up
and E the exceptional divisor. If B’l (1  i  r ) denotes the curve on V’
corresponding to Bl on V, then the B’i all meet the same fibre F in the
ruling of E over B1. Note also that K3V, = K3V + 2, and that KV’ · B; = 1
for 1  i  r.

Thus we note that blowing up a Bl does not alter K3. Suppose now
that two of the Bl meet, say B2 meets B’3. Blowing up B’2, say g: V* ~ V’,
we have that K3V* = K3V’ and that KV* · B"3 = 2 (where B"3 on V*

corresponds to B’3 on V’). Thus if we now blow up B"3 and let cp:  ~ V
be the composite of this morphism with the other two blow ups, then
using (2.4) we have K3V = K3V. A contradiction now follows easily from
(2.5).

Thus no two of B’2,...,B’r meet on V’. We need to show that r  3.
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Suppose not; let us then blow up the curves B’2, B’3 and B’4; say h:

V* ~ V’. Note that by (2.4) K3V* = K3V’.
If we denote by F’ the curve on V* corresponding to F on V’, we

observe that K v * . F’ = 2. Thus if we blow up F’ and let ~:  ~ V be the
composite of this morphism with the other blow ups, then using (2.4) we
have K3V = K 3. A contradiction again follows easily using (2.5).

(c) The fact that one cannot have any "closed cycles" follows simi-
larly ; we blow up one of the curves, say B1, and K3 increases by 2. If we
now blow up the base curve corresponding to B2, K3 will remain

unchanged. We continue this procedure until we reach the curve corre-
sponding to Bk . Blowing this curve up now decreases K3 by 2, and so the
total effect has been to leave K 3 unchanged. A contradiction now follows
easily using (2.5). D

We now need a couple of lemmas.

LEMMA 4.2: Suppose that B and C are curves of Zo which meet, and that C
has normal bundle ( - 3, 1). Let f1: V, ~ C denote the blow up of C, El the
exception divisor (isomorphic to IF 4) and CI the minimal section. If we
denote by B’ the curve on V1 corresponding to B, then B’ does not meet CI.

PROOF: If B’ meets CI, blow up B’ and then blow up the curve

corresponding to CI. If ~: É- V denotes the composition of these
morphisms, we find that K 3 = K3V, and that a contradiction follows using
(2.5). ~

As in (4.2), suppose that B and C are curves of Z, which meet, and
suppose that C has normal bundle ( - 3, 1). However, let us now blow up
B first, say h : V’ ~ V with exceptional divisor E. Then blow up the curve
C’ on V’ corresponding to C, obtaining a threefold V* and an excep-
tional divisor E*. We therefore obtain a configuration as in Fig. 2, where
E’ is the proper transform of E, and fis the curve on V* corresponding
to the fibre of E’ meeting C’.

LEMMA 4.3: E* is isomorphic to F3 and the minimal section C* meets t.

Figure 2.


