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Abstract

The notion of a convex sum space, which is - roughly speaking - a
convexity structure on the union of sets, was introduced by Gerard
Sierksma. We will consider another possibility of summing convexity
spaces in what will be called a normal gluing, using semi-extreme sets.
In the special case of ordinary convexity on R’, necessary and sufficient
conditions are given in terms of facets. In this connection, we finally
study a non-trivial case where line segments are glued together to a
frame and study it as an embedding problem in graph theory.

1. Normal gluings

A convexity space is a pair (X, C) with W a collection of subsets of a
set X such that 0, X E W and W is closed under intersections. The mem-
bers of W are called convex sets. The C-hull of S in X is defined by W(S)
= n {A 1 AEre, S cA}. In order to study the sharpness of relationships
between the Caratheodory, Helly, Radon and Sierksma (or exchange)
numbers (for definitions and results we refer to [6]), starting with a
finite number of convexity spaces (Xl, C(j 1)’ ..., (X,,, Cn), Sierksma [7] has
introduced the notion of convex sum space and has studied the various

numbers in case the universal sets Xl, ..., Xn are disjoint. In [1], [2] and
[3] we looked at the problem in case the universal sets are not disjoint
and gave other possibilities to construct convexity on ui = 1 Xi.
Throughout this paper we will consider again the construction as intro-
duced in [2] and define % --- %(Wi, ..., rcn) on Xl u... U Xn by
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Clearly (U7= 1 Xi, W) is a convexity space and we say that it is obtained
by gluing the spaces (Xl, Wi), ..., (Xn, Cn). In case the universal sets are
disjoint, we have, see [2],

which is precisely Sierksma’s convex sum space in that case.
In Degreef and Fourneau [4] it is shown that, in general, there always

exists an ordinal y such that, for every subset S of Xl u ... u X,,, SI’
= G(S), where, setting S = S°,

if y is not a limit ordinal,

if p is a limit ordinal.

We call the gluing normal iff for each S in Xl u... u Xn,

The following example shows that gluings are not normal in general.
Take Xl = {(Xl’ X2) E 1R21 Xl  O}, X2 = {(Xl’ X2) E 1R21 Xl  2}, Wi =
cODvlx = {C n Xi 1 CE convl with i = 1, 2 and conv is the ordinary con-
vexity structure on 1R2. Let S = {( -1,4), (1,0), (3, 1)}.

Clearly C1(S n Xl) U rc 2(S n X2) is not an element of e and so cer-
tainly cannot be the G-hull of S.

In the next example, the gluing is normal. Let Xl =

{(X1, X2) E R2 X1 &#x3E;: 0}, X2 = {(x1, X2) e R2 [ xi  0}, Ci = conyX; with
i = 1, 2. One can verify that for each subset S of X, u X2 = R2@ G(S) =
Wl(S n Xl) U rc 2(S n X2).

Note that gluings are normal in case the universal sets are pairwise
disjoint. Throughout this paper we restrict ourselves to two convexity
spaces (Xl, rc 1), (X2, rc 2) and assume in general that Xl n X2 =1= 0. In the
next theorem the concept of semi-extreme set is used; see Sierksma [8], p.
14: a nonempty subset T of A in X is called a semi-extreme set of A iff
T n W(AB T) = 4&#x3E;. If {p} is a semi-extreme set, p is called a semi-extreme
point.

THEOREM 1: Let (Xl, rc 1) and (X2, C2) be convexity spaces such that each
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subset of Xi n X2 is a semi-extreme set of Xl and X2. Then the gluing
(X 1 u X2, G) is normal.

PROOF: We have to show that for each subset S of Xi u X2,
C1(S n Xi) U C2(S n X2) is convex, i.e. [C1(S n X1) U rc 2(8 n X2)] n Xi is
an element of 6;; i = 1, 2. Take i = 1. Ifrc 2(8 n X2) n Xl = 0 we are done.
So we may assume that W2(S n X2) n Xi = T + 0. We show that

T c S n X2. Suppose T w S n X2, i.e. there exists a nonempty subset Tl of
T such that Tl n (S n X2) = 0, hence S n X2 c X2 B Tl and therefore

So Tl c rc 2(X2 B Tl) and then Tl n rc 2(X2 B Tl) + 0 which contradicts the
assumption that each subset of Xi n X2 is a semi-extreme subset of X2.
So T c S n X2. As Tc--Xl we have TeS n Xl, so

which means that

The preceding theorem yields sufficient conditions for (Xl, rc 1) and
(X2, CC 2) in order to have a normal gluing. The second example above
shows that, in general, these conditions certainly are not necessary. The
question now is: is it possible to show that, with certain assumptions on
(Xl, W 1) and (X2, W2), they are necessary? The following theorem gives a
positive answer. The proof is left to the reader, just as the proof of Theorem
3.

THEOREM 2: Let (Xl, C(j 1) and (X2, C(j 2) be convexity spaces with the follow-
ing property. For Tl c T c Xl n X2 there is for each i = 1, 2 a convex set
CT E rci such that CT c XiB T and
(a) (Tl U T) u CTftrci, with T (Xl n X2)B T,
(b) Tu CTErci.
Then are equivalent:
(1) each subset of Xl n X2 is a semi-extreme set of Xl and X2,
(2) the gluing (Xl u X2, e) is normal.

In case Xl n X2 is just one element, we have the following.

THEOREM 3: Let (Xl, rc 1) and (X2, C2) be convexity spaces such that
X i n X2 = {p}. If for some i E {1, 2}, there is a subset Ci ofxiB {p}, Ci E 6; and
{p} u Ci ft rci, then are equivalent:
(1) p is a semi-extreme point of Xj (j =1= i),
(2) the gluing (Xl u X2,G) is normal.
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To end this part of the paper, we return to the situation in our first

examples, namely to (Rn, conv). Let X be a nonempty convex set of Rn. A
convex subset F of X is called a facet of X iff for each x, y E X such that the
open segment ]x, y[ and F have a nonempty intersection, [x, y] is con-
tained in F. Making use of the classical theorem of Caratheodory, we have
the following theorem; we will assume of course Xl n X2 not to be an
element of {0, Xl, X2}, since otherwise the gluing is always normal.

THEOREM 4: Let Xi be a nonempty convex set in Rn and Ci = convlx;
i = 1, 2. In case Xl U X2 is on a straight line, the gluing (XI u X2, G) is
always normal. In case XI u X2 is not on a straight line, the gluing
(X1 u X2, G) is normal iff X1 n X2 is a facet of X 1 and X2.

PROOF: We only give the proof of the last part of the theorem.

Suppose Xi n X2 to be a facet of Xi and X2. We have to show that the
gluing (X1 u X2, G) is normal. In order to do so, we’ll show that for each
subset S of Xl U X2,conv (S n X2) n XI = conv (S n Xl) n X2 =

conv (S n Xl n X2). This clearly is sufficient. We’ll prove that

conv (S n Xl) n X2 = conv (S n XI n X2), the other equality being
completely similar.
The fact that conv (S n Xl n X2) is contained in conv (S n Xi) n X2 is

trivial. Suppose that, on the other hand, conv (S n Xl) n X2 is not con-
tained in conv (S n Xi n X2), i.e. there exists

Using Caratheodory’s theorem, there is a finite subset {xl, x2, ..., Xcl of
S n Xl such that x E conv {x1, ..., Xc}. Since x ft conv (S n X1 n X2 ) we have
for a certain number of the x/s, say x 1, ..., xk, that xi e X2. But then there
always exists YEconv{xl,...,Xk} and zEconv{xk+b.",Xc} such that
x E conv {y, z} = [y, z]. Consequently, x E ]y, z[ n (Xi n X2). Finally, since
Xi n X2 is a facet of Xl, [y, z] c Xi n X2. This is impossible, since yftX2.
So conv (S n Xi) n X2 c conv (S m Xi n X2). 0

2. Frames: an embedding problem

In this section a non-trivial example of a normal gluing of a finite
number of convexity spaces is given. Consider (Xi, CCi), i = 1,..., n, where Xi
is a closed segment and Wi = convlx,. A normal gluing (Ul= 1 Xi,G) where
two segments have either an empty intersection or one endpoint in
common, is called a frame (X, G), with X = Ui=l Xi. The endpoints of the
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segments are the semi-extreme points of the frame. The number of semi-
extreme points of a frame will be called the order of the frame. The graph
associated with a frame (X, G), denoted, by G(X, G), is the graph with
vertices the semi-extreme points of (X, G) and edges the pairs of semi-
extreme points {p, ql such that G(p, q) is a segment. Clearly, each graph
without isolated points is, up to an isomorphism, the graph of a frame. We
say that a frame (X, G) can be embedded in (Rn, conv) if there exists an
injection 0: X ---&#x3E; Rn such that for each subset S of X, 0[ie(S)]
= O(X) n conv [O(S)]. Note that each frame of order d can be embedded in
(lRd-l, conv). One may ask whether it is possible to do better and character-
ize which frames are embeddable in which (IRII, conv). The following
theorem gives the answer to this problem.

THEoREm 5: A frame (X, e) is
(1) embeddable in (R, conv) iff G(X,G) is a line segment;
(2) embeddable in (1R2, conv) iff G(X, G) is either a cycle or a part of a cycle;
(3) embeddable in (1R3, conv) iff G(X, G) is planar;
(4) always embeddable in (R4, conv).

PROOF:

(1) and (2) are left to the reader.
(3) Let G(X,G) be a planar graph. If there are at most 3 vertices, there is

nothing to prove. In the other case, we may assume without loss of
generality the graph to be maximal. Then the graph is 3-connected and
using the Steinitz-Rademacher theorem, it is the 1 -skeleton. of a convex
3-dimensional polyhedron. The last conclusion gives us the embedd-
ing. If G(X, q) is not a planar graph, using Kuratowski’s theorem, there
is a subgraph homeomorphic with K5 or K3,3. It will be sufficient to
show that neither K5 nor K3,3, considered as normal gluings, is
embeddable in (1R3, conv). K3,3 is left to the reader, since the arguments
are the same as for K5. What K5 is about, there are two possibilities.
Denoting the set of vertices by A = {a1, ..., a5}, one of the vertices, say
as, may belong to the convex hull of the other ones. This clearly gives
not an embedding. In the other case, the vertices are "convex independ-
ent". Then, by Radon’s theorem, it is always possible to find vertices,
say al, a2, such that conv {a1, a2} and conv [AB {a,, a2}] have a nonem-
pty intersection. Let x be an element in the intersection. We will denote
the vertices of the "gluing KS" by A’ = {a1,..., a’I, such that çl(a§) = ai
for each i.

If x is an element of one of the three closed line segments defined by
{a3,a4,aS}, say of [a3,a4], we consider the set {al,a2,a3}.
çl[%((a?, a?, ai ))] is given by the union of three closed line segments
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defined by {a1,a2,a3}. 4&#x3E;(Ks) n conv [0({a’, a’, a’l)] on the other
hand contains the closed segment [a3, x], and consequently they are
different. If x is an element of the "open triangle" a3 a4 as, we consider
{a3, a4, a5}. 0[e({a’, a’, a’ 1)] is given by the union of the three closed
line segments defined by { a3, a4, a5 } .

4&#x3E;(K s) n conv [0({a’, a’4, a5})] on the other hand contains x. So once
again they are different and we have no embedding.

(4) It suffices to consider the so-called moment-curve in 1R4, with para-
metrization x(t) = (t, t2, t3, t4). Then we know that the convex hull of 2
(resp. 1) extreme points of the cyclic polytope C(v, 4), which is the
convex hull of u &#x3E; 5 points of the moment curve, is a 1-face (resp. 0-
face) of C(v, 4) ([5]). This is sufficient to embed each frame in

(R4, conv). 0
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