Generic maps and modules
Compositio Mathematica, Volume 47 (1982) no. 2, pp. 171-193.
@article{CM_1982__47_2_171_0,
     author = {Bruns, Winfried},
     title = {Generic maps and modules},
     journal = {Compositio Mathematica},
     pages = {171--193},
     publisher = {Martinus Nijhoff Publishers},
     volume = {47},
     number = {2},
     year = {1982},
     zbl = {0506.13007},
     mrnumber = {677019},
     language = {en},
     url = {http://www.numdam.org/item/CM_1982__47_2_171_0/}
}
TY  - JOUR
AU  - Bruns, Winfried
TI  - Generic maps and modules
JO  - Compositio Mathematica
PY  - 1982
DA  - 1982///
SP  - 171
EP  - 193
VL  - 47
IS  - 2
PB  - Martinus Nijhoff Publishers
UR  - http://www.numdam.org/item/CM_1982__47_2_171_0/
UR  - https://zbmath.org/?q=an%3A0506.13007
UR  - https://www.ams.org/mathscinet-getitem?mr=677019
LA  - en
ID  - CM_1982__47_2_171_0
ER  - 
%0 Journal Article
%A Bruns, Winfried
%T Generic maps and modules
%J Compositio Mathematica
%D 1982
%P 171-193
%V 47
%N 2
%I Martinus Nijhoff Publishers
%G en
%F CM_1982__47_2_171_0
Bruns, Winfried. Generic maps and modules. Compositio Mathematica, Volume 47 (1982) no. 2, pp. 171-193. http://www.numdam.org/item/CM_1982__47_2_171_0/

[1] M. Auslander and M. Bridger: Stable module theory. Mem. Amer. Math. Soc. 94 (1969). | MR | Zbl

[2] L.L. Avramov: A class of factorial domains. Institut Mittag-Leffler, Report No. 2 (1979). | MR

[3] L.L. Avramov: Complete intersections and symmetric algebras. Department of Mathematics, University of Stockholm, Report No. 7 (1980). | MR

[4] W. Bruns: The Eisenbud-Evans generalized principal ideal theorem and determinantal ideals. Proc. Amer. Math. Soc. 83 (1981) 19-24. | MR | Zbl

[5] W. Bruns: The canonical module of a determinantal ring. To appear in the Proceedings of the Symposium on Commutative Algebra at Durham, July 1981. | MR | Zbl

[6] D.A. Buchsbaum: Complexes associated with the minors of a matrix. Symposia Math. IV (1970) 255-283. | MR | Zbl

[7] D.A. Buchsbaum and D. Eisenbud: What makes a complex intact? J. Algebra 25 (1973) 259-268. | MR | Zbl

[8] D.A. Buchsbaum and D. Eisenbud: Remarks on ideals and resolutions. Symposia Math. XI (1973) 193-204. | MR | Zbl

[9] D.A. Buchsbaum and D. Eisenbud: Some structure theorems for finite free resolutions. Adv. Math. 12 (1974) 84-139. | MR | Zbl

[10] D.A. Buchsbaum and D. Eisenbud: Generic free resolutions and a family of generically perfect ideals. Adv. Math. 18 (1975) 245-301. | MR | Zbl

[11] D.A. Buchsbaum and D.S. Rim: A generalized Koszul complex II. Depth and multiplicity. Trans. Amer. Math. Soc. 111 (1964) 197-224. | MR | Zbl

[12] J.A. Eagon and D.G. Northcott: Generically acyclic complexes and generically perfect ideals. Proc. Royal Soc. A 299 (1967) 147-172. | MR | Zbl

[13] H.-B. Foxby: n-Gorenstein rings. Proc. Amer. Math. Soc. 42 (1974) 67-72. | MR | Zbl

[14] S. Goto: On the Gorensteinness of determinantal loci. J. Math. Kyoto Univ. 19 (1979) 371-374. | MR | Zbl

[15] M. Hochster: Generically perfect modules are strongly generically perfect. Proc. London Math. Soc. (3) 23 (1971) 477-488. | MR | Zbl

[16] M. Hochster and J.A. Eagon: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Amer. J. Math. 53 (1971) 1020-1058. | MR | Zbl

[17] H. Kleppe and D. Laksov: The algebraic structure and deformation of Pfaffian schemes. J. Algebra 64 (1980) 167-189. | MR | Zbl

[19] A. Lascoux: Syzygies des variétés déterminantales. Adv. Math. 30 (1978) 202-237. | MR | Zbl

[20] V. Marinov: Perfection of ideals generated by the pfaffians of an alternating matrix. C. R. Acad. Bulg. Sci. 31 (1979). | MR | Zbl

[21] H. Matsumura: Commutative Algebra. W.-A. Benjamin, New York 1970. | MR | Zbl

[22] D. Rees: The grade of an ideal or module. Proc. Cambridge Phil. Soc. 53 (1957) 28-42. | MR | Zbl

[23] G. Scheja and U. Storch: Differentielle Eigenschaften der Lokalisierungen analytischer Algebren. Math. Ann. 197 (1972) 137-170. | MR | Zbl