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TORSION IN ELLIPTIC CURVES OVER k(t)

David A. Cox and Walter R. Parry

Let k be a field of characteristic p &#x3E; o, P ¥: 2, 3, and let t be

transcendental over k. The purpose of this paper is to study the
groups

E(k(t»t’., = (x E E(k(t»tor: p does not divide the order of xl

where E is an elliptic curve over k(t) with nonconstant j-invariant.
Since E(k(t» is finitely generated (the Mordell-Weil theorem),
E(k(t»,’O, is isomorphic to ZlnZ EB Z/mZ where n and m are positive
integers with p,r n and m , n. A complete description of the possible
groups is given in Theorem 5.1.
We approach this problem in a classical way, using the subgroups

Tm ( n ), ml n, of SL(2, Z) defined by

Tm (n ) acts on the upper half plane b as usual, and the quotient
Ym (n ) = rm(n)BSJ is related to moduli problems of elliptic curves con-
taining a subgroup isomorphic to Z /n Z ® Z /m Z (we make this pre-
cise in § 1). The basic idea is that the possible groups E(C(t))tor are
those ZlnZ (D ZlmZ for which Xm(n) = rm(n))J* has genus 0. The
methods of Deligne and Rapoport then allow us to generalize to an
arbitrary field k of characteristic not 2 or 3.
The first section defines a level (n, m) structure on an elliptic curve

over a base, and uses [2] to solve the resulting (coarse) moduli
problem and relate it to -r,,,(n). §2 is preliminary to §3, which is a
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catalog of the properties of Tm(n), and §4 applies this to the fine

moduli problem, studying the universal curves for level (n, m) struc-
tures (these exist in most cases). Then §5 puts this all together to
prove the classification theorem. An appendix contains a theorem,
used in §4, which is a nice extension of a representability result in [2,
VI.2].
The usual ways of writing Tn(n), Yn(n) and Xn(n) are r(n), Y(n)

and X (n ), and we will use the latter. Note that when m = 1, our
notation agrees with standard notation.

We would like to thank Barry Mazur for several useful suggestions.

§1

In this section we make extensive use of [2]. Let n and m be

positive integers with n &#x3E; 2 and m n. A level (n, m) structure on a
generalized elliptic curve E - S (see [2, II.1.12] for a definition) is an
S-inclusion of groups

such that:

1. Cm is locally, in the étale topology, isomorphic to (Z/ m Z)s, and
2. the image of a meets every irreducible component of every

geometric fiber of E ---&#x3E; S.

To relate this to [2], let H be the subgroup of GL(2, Z/nZ) defined

by:

Then, from [2, IV.3], we get the algebraic stack Jlt%[1/n] and its

compactification (relative to Z[I/n]) .JlH[I/n]. These objects have the
following interpretation:

PROPOSITION 1.1: Jlt%[1/n] (resp..JlH[I/n]) is the algebraic stack
classifying equivalence classes of level (n, m) structures on elliptic
curves E over S (resp. generalized elliptic curves E over S), where two
level (n, m ) structures a : Z /n Z x Cm E and a’ : Z /n Z x C2 - E are
equivalent if there is an S-isomorphism q: Cm ----&#x3E; C’ m such that a =
a’- (1 x q).

PROOF: We first treat JK%[1/n]. From [2, IV.3.2], a level H struc-
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ture on E is an element a of FH(S), where FH is the étale sheaf

HBIsos(En, (Z/nZ)}). Such an a thus consists of an étale cover

(S; - S);i of S and isomorphisms ai:(En)s,----&#x3E;(ZInZ)’. 1 such that for
i, j E I, there is an hij E Hom(Sij, H) (S;j = Si xs sj) and a commutative
diagram:

Let C be the subgroup of (Z/nZ)2 generated by (0, n/ m ). Since

the ai’(1,O) (resp. the ai’(C» patch to give us a map (Z/nZ)s  E
(resp. an S-group scheme Cm and a map Cn---&#x3E;E). Together, these
define a level (n, m) structure whose equivalence class is well defined.
Then, using (1), one sees that FH(S) is the set of equivalence classes
of level (n, m ) structures on E, as desired.
With this interpretation of «’ H [Iln], the technique used in the proof

of Construction 4.13 of [2, IV.4] easily gives us the desired inter-
pretation of JK [ 1/n]..

Let M’ H [Iln] ] and MH[I/n] denote the underlying algebraic spaces
of ,«’[Iln] and AlH[I/n] (i.e., they are coarse moduli spaces for the
underlying functors of M[I/n] and AlH[I/n]). As we will most often
be working over a field k, we introduce the notation:

(We are assuming that the characteristic of k does not divide n.) If
there is any danger of confusion, we will write n .Ãln,m,h etc.
We can say the following about M’ k and Mk :

PROPOSITION 1.2: If k is a field whose characteristic does not divide
n, then :



340

1. Mk is a smooth, geometrically connected curve whose genus is

independent of k.
2. When k = C, there are isomorphisms:

(rm(n) is defined in the introduction.)

PROOF: The map

is smooth and proper by [2, VI.6.7] and has connected geometric
fibers by [2, IV.5.5] (note that det: H  (Z/nZ)* is surjective). So we
need only show that MQ = rm(n)B. But this follows from [2, IV.5.3]
since det : H - (Z/nZ)* is surjective and rm(n) is the inverse image of
H n SL(2, Z/nZ) in SL(2, Z). a

A level (n, m) structure has a simple form when the base has a
primitive mth root of unity:

PROPOSITION 1.3: Let a:(Z/nZ)xCmE be a level (n, m) struc-
ture over S, where n is invertible on S and S has a primitive m th root
of unity. Then there is an isomorphism CX (Z/mZ)s over S.

PROOF: Pick an étale cover {Si - S’},e/ so that (Cm)s is isomorphic to
(Z/mZ)St Let en : En X En - ILn be the usual pairing, and let Cm be a
primitive mth root of unity on S. Over each Si there is a unique
section ui of Cm such that ui generates Cm and en(a(l, 0), a (0, ui» = (m.
Then the ui patch to give an isomorphism (Z/mZ)s - Cm over S..

Thus, whenever S has a primitive mth root of unity, we will write a
level (n, m ) structure as

§2

For every prime p, let 7p be the intersection of SL(2, Z) with an
open subgroup of SL(2, Zp) such that 7p = SL(2, Z) for almost all p.
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Let

which will be fixed throughout this section. r is a congruence sub-
group of SL(2, Z), and let n be its level (so that r(n) G n. We also fix
the subgroup

For our purposes, the way to understand T is to reduce modulo T(n).
We will use the well-known isomorphisms:

induced by the natural maps, where vp is the usual p-adic valuation. 4&#x3E;
will denote map SL(2, Z) - SL(2, ZINZ), and Op will denote the map
SL(2, Z) ---&#x3E; SL(2, Z/p vp(n)z).
We see that r(p vP") ç Tp, and it then follows that

is an isomorphism. We also have an isomorphism:

Combining all of this, we get a bijection

which, combined with the bijection

shows that the natural map

is bijective.
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The cusps of T can be identified with the set

Every cusp has one or two preimages in mSL(2, )/N, and this leads
us to define the sets

Since a double coset Fu(-N) is in C-(n if and only if -u is in ruN,
we see that:

This proves the first two assertions of the following:

LEMMA 2.1: l

1. If - 1 £ r, then C+(I) is the set of regular cusps and C-(I) is the
set of irregular cusps (see [3, p. 29)].

2. If -1 E r, then C+(I) = W.
3. If - 1 £ r and the level of r is odd, then C-(n = 0.

PROOF: To prove 3, assume that C-(n 0 0. By (4), there exist
u E SL(2, Z) and y E r so that _u-Iynu E r(n), and this implies
_yn E r(n) C r. It follows that -1 Er. -

Let vl(F = =ttC+(I) and v-.(n = *C-(I). Then v.(F)
P.’(n + v-.(n is the number of cusps of r, and

We can now compute lIoo(r) in terms of the Tp’s:

THEOREM 2.2: For each odd prime p, definee(p) so that

Then
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PROOF: . then we have an isomorphism

which then gives a bijection:

Interpreting this in terms of cusps (via the analog of (2) for ±r and

:trp) gives the desired formula.
When-iiÉnp dd Fp, the last assertion of Lemma 2.1 implies that

C-(Fp) = 0 for some odd prime p, and then C-(n = 0. The result now
follows from (3), (5) and the last two assertions of Lemma 2.1. Il

§3

We will study the group Tm(n) of the introduction. We will assume
n - 2.

LEMMA 3.1: The index g (I- (n» = [SL(2, Z): :trm(n)] is given by:

PROOF: The index of r(n) in rm(n) is n/m, and the index of -F(n)
in SL(2, Z) is well-known (see [3, p. 22]). ·

We next want to determine the number of cusps of rm(n). The first

step is to prove:

PROPOSITION 3.2:



344

PROOF: Identify SL(2, Z)/ N with the set

via the map sending (f )) to (a). Using [3, Lemma 1.41], it is easy to

see that (a) and (fJ) as above represent the same double coset of
rm(n))SL(2, Z)/N if and only if

Note that Tm(n) has the form of the r in §2, i.e.,

1

where each 7p equals Tp·(ps) for some r and s, r:5 s. By (3), we are
reduced to the case n = pS, m = p’.
For every i between 0 and s there are cp(ps-i) different c’s between

1 and pS with gcd(c, pS) = pi ‘ (cp is the Euler cp-function). By (6), for
every such c there are

double cosets represented by (f) for some a. Forming the appropriate
sum over i and simplif ying yields the formula:

The next step is to determine v.-(F. (n»:

PROPOSITION 3.3:

and
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in ail other cases.

PROOF: Let (’), gcd(a, c) = 1, represent a cusp in C-(rm(n». Then
(a) and _ (a C) represent the same double coset in Fn(n)BSL(2, Z)/ N, so
that

by (6). Using the second congruence to simplify the first, we see that
n = 2 or 4. It is easy to compute v+ and v- in these cases to complete
the proof. a

Propositions 3.2 and 3.3, together with the results of §2, give an
immediate proof of:

PROPOSITION 3.4: The number of cusps of rm(n) is given by

and in all other cases,

Next, we consider elements of finite order in Tm(n):

PROPOSITION 3.5:

1. FI(2) has exactly two conjugacy classes of elliptic elements, all of
which have order 4.

2. FI(3) has exactly two conjugacy classes of elliptic elements, all of
which have order 3.

3. For (n, m) -:;é (2, 1) or (3, 1), rm(n) has no elliptic elements.

Since -1 is in Tm (n ) if and only if n = 2, we get:

COROLLARY 3.6: rm(n) is torsion-free if and only if (n, m) 0 (2, 1),
(2, 2) or (3, 1).
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PROOF oF PROPOSITION 3.5: By [3, § 1.4], every elliptic element of
SL(2, Z) is conjugate to one of the following:

Trace considerations now show that Tm(n) has no elliptic elements for
n &#x3E; 3. Also, none of the above elements is congruent to (oo) modulo 2
or 3, so that F(2) and T(3) have no elliptic elements. This leaves only
FI(2) and T,(3), and it is easy to determine their elliptic elements..

Knowing li, v. and the elliptic elements for rm(n) enables us to
compute the genus of Xm (n ) by applying the formula of [3, Pro-

position 1.40]. Then we can prove:

PROPOSITION 3.7: Xm(n) has genus 0 if and only if (n, m) is one of
the 18 following ordered pairs :

PROOF: The genus formula referred to above shows that Xm ( n )
does have genus 0 for the pairs listed in (7). Conversely, assume that
Xm(n) has genus 0. The maps Xn(n)---.&#x3E;Xl(n) and X,,(n)---&#x3E;X(m) show
that both XI(n) and X(m) have genus 0. As is well-known, this

implies 2 s n s 10 or n = 12 and 1:5 m  5. The pairs (n, m) with m 1 n
satisfying these inequalities consist of the 18 listed in (7) and 7 more:
(10, 2), (12, 2), (9, 3), (12, 3), (8, 4), ( 12, 4) and ( 10, S). In each of these 7
cases, one computes that Xm(n) has genus &#x3E;_ 1. Il

We now study the ramification of the natural map from X ( n ) to
Xm(n):

PROPOSITION 3.8: The ramification index of the map

above a cusp of Xm(n) represented by (a) is gcd(n/m, c), except that
when (n, m) = (4, 1), the ramification index above (2) is 4.



347

PROOF: From (6) it is evident that the number of double cosets in

r(n)BSL(2, Z)/ N which are contained in the double coset of

rm(n)BSL(2, Z)/N represented by (’) is n/gcd(n, mc). Proposition 3.3
shows but for the case (n, m) = (4, 1 ) that this is equal to the number of
cusps of X(n) mapping to (a ) in Xm(n). Because r(n) is normal in rm(n),
the degree n/m of the map is the product of the ramification index and
the number of preimages. This together with an examination of the
exceptional case gives the result. a

Proposition 1.2 in § 1 shows that Xm (n) can be regarded as the
complex points of a variety Ma defined over Q. We want to deter-
mine the field of rationality of each cusp. Using [2, VI.5], the action
of Gal(C/Q) on the cusps can be described as follows. The cusps are
rational over O(Cn). Let (f) represent a cusp, and take o- E

Gal(Q(l’n)/Q). If u is an integer relatively prime to c and n whose
image in (ZInZ)* corresponds to u, then u takes (f) to (acu). Using this,
we can prove:

PROPOSITION 3.9: Let (f) represent a cusp of Xm(n), and let

The field of rationality of (f) is the maximal real subfield of Q(£r) if
c = 0 or n/2 mod n, and Q(Çr) otherwise.

PROOF: Lift the above action of Gal(Q(Çn)/Q) on the cusps of
Xm(n) to rm(n)BSL(2, Z)/N. Let u be an integer relatively prime to c
and n. Then (6) implies that (acu) represents the same double coset as
0 if and only if

au --- a mod gcd( n, m c ), equivalently,

Since a/gcd(m, a ) and r are relatively prime, the last congruence is
equivalent to

u = 1 mod r.

The passage from the above double cosets to cusps is straightforward
and concludes the proof of the proposition. Il
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§4

Let n and m be as usual. In this section k will denote a field of

characteristic p &#x3E;_ 0, where:
1. p § n and p 4 2, 3
2. k contains a primitive mth root of unity.
Assume that (n, m) 0 (2, 1), (2, 2), (3, 1 ) or (4, 1 ). Then F,, (n) is

torsion-free (Corollary 3.6) and all of its cusps are regular (Pro-
position 3.3), so by Theorem A.1, Mk represents JUb i.e., there is a

universal level (n, m) structure

on some generalized elliptic curve Ek over Mk (note that we’re using
Proposition 1.3).
The part of Ek lying over M’ k is a smooth elliptic curve Ek over M’ k -

The complement Mk - M’, when k is algebraically closed, can be
identified with the set

We can prove the following:

PROPOSITION 4.1: Let n and m be as above.

1. If k is algebraically closed, the fiber of Ek ---&#x3E; Mk over the cusp
represented by (a) is of type Ib, where b = n/gcd(n/m, c).

2. Ek - Mk is the Néron model of Ei - Mk.
3. The group of sections of Ek ---&#x3E; Mk having finite order is isomor-

phic to ZINZ EB ZlmZ.
4. Ec - Mc is isomorphic to the elliptic modular surface for Fn (n)

(see [4, §41).

Since all sections of an elliptic modular surface are torsion (see [4,
Theorem 5. 1] or [ 1 , 3.20]), we get an immediate corollary:

COROLLARY 4.2: If k has characteristic 0 (and a primitive m th root
of unity), then the group of sections of Ek - Mk is isomorphic to
ZlnZ (D ZlmZ.

PROOF OF PROPOSITION 4.1: We will use the notation of the ap-

pendix (in particular, the group cP(N) of §2 is written U). The cusp
represented by (f) is a double coset
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The fiber of Ek ---&#x3E; Mk over this cusp is of type Ib, where b is the

unique positive integer dividing n such that

(see (10) in the appendix). It is easy to calculate that b =

n/gcd(n/m, c), as desired.
To prove the second assertion, we first compute the order of

j : Mk --* P’ at (a). Using [2, VI.5.3] and the proof of Proposition 3.8, we
see that j: Mn,n,k ----&#x3E; P k 1 has a pole of order n at every cusp. Then

Proposition 3.8 shows that j has a pole of order b = n/gcd(n/m, c) at
(a). Since Ek has sections which hit every irreducible component of
the fiber over (a), it follows that Ek is the Néron model of E’ --- &#x3E; M’ at
(a).
The third assertion is now easy to prove. We can assume that k is

algebraically closed, and let G be the group of sections of Ek -- Mk.
The map ak (see (8)) gives an injection

The fiber over the cusp represented by (ô) is of type lm by 1, so that

[4, Remark 1.10] gives an injection

It also follows from 1 that for a- in G, nu hits the zero component of

every fiber. Thus, by [4, Proposition 1.6], nGtor = 0. From this we
immediately see that Gtor:::::: ZlnZ EB ZlmZ.
To prove the last assertion, let X---&#x3E;Xn(n) be the elliptic modular

surface for rm(n). Note that X is an algebraic surface. Let f : X ° -
Ym(n) be the restriction of this over Ym(n). For T E J , the fiber of f over
[T] E Yn(n) is the elliptic curve XT = C/(Z + Z T), and the maps sending
[T] to [1 ln] and [T/m ] in X, give holomorphic sections of f which define a
holomorphic injection:

We want to show that â is algebraic.
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X’, the kernel of multiplication by n, is an algebraic curve (being
étale over Ym(n», and so Xn, its closure in X, is finite over Xm(n).
Thus we have a finite map Xn ---&#x3E; Xn (n) and holomorphic sections
(given by à) over Yn(n). These clearly extend and hence are al-

gebraic.
Then, using the fact that.,Uo c is represented by Ym ( n ), there is a map

(3: Ym(n) Ym(n) and a cartesian diagram:

Suppose (3([ ’Tt]) = (3([ ’T2]), ’Ti ES). Then aTj: Z/nZ 0153 Z/mZ 4 XTj (i =
1, 2) are isomorphic level (n, m) structures. From this it is easy to find
y E rm(n) with y(T,) = T2. Thus 13 is injective and hence an isomor-
phism. This proves our assertion.

Let us briefly discuss the cases (n, m) = (4, 1) and (3, 1).
FI(4) is torsion-free, so that Mk represents .1l2 by [2, VI.2.7]. Thus,

there is a universal level (4, 1) structure on an elliptic curve

For k algebraically closed, the Néron model of E’ k --&#x3E;MO k has fibers of
types 7t, 14 and It over the cusps (ô), (0) and (2) (the irregular cusp),
and for any k, its group of sections of finite order is isomorphic to
Z/4Z. Also, the elliptic modular surface for FI(4) is the Néron model
of E’---&#x3E;M’, and E’---&#x3E;M’ has only torsion sections when k has

characteristic zero.

FI(3) has an elliptic element, so that Al2 is not representable. This
corresponds to the fact that over k there is a unique level (3, 1)
structure ao with a nontrivial automorphism (over C, it is given by
[(1- W)/3] E C/Z + Zw, w = e2Tri/3). But the functor il2 defined by

; a never equals ao over il

is representable by M2 ç M2. Thus there is a universal level (3, 1)
structure on an elliptic curve

If k is algebraically closed, then ùi = Mo - laol, and the Néron model
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of Ê’---&#x3E; ll’ has bad fibers of types Il, 13 and IV* over (1), (0) and ao.
For any k, the group of sections is isomorphic to Z/3Z. Also, the
Néron model of E" c ---&#x3E; M’ c is the elliptic modular surface for FI(3), and
all sections are torsion when k has characteristic zero.

§5

Now we come to the main result of the paper. For any field k, k(t)
will denote the field of rational functions in a variable t.

THEOREM 5.1: Let k be a field of characteristic p a 0, and assume
that p 0 2, 3. Let n and m be positive integers with m n, and set
G = Z/nZ E9 Z/mZ. Then the following are equivalent:

1. There is an elliptic curve E over k(t) with nonconstant j-invariant
such that G:::::: E(k(t»,o,, the rational points of finite order not
divisible by p.

2. p does not divide n, k contains a primitive mth root of unity, and
G is one of the following 19 groups :

For k = Q or C, this means:

COROLLARY 5.2: If E is an elliptic curve over C(t) (resp. Q(t» with
nonconstant j-invariant, then E(C(t»tor (resp. E(Q(t»tor) must be one

of the 19 groups of (9) (resp. one of the 15 groups on the first two
lines of (9)). Furthermore, all of these do occur.

PROOF oF THEOREM 5.1 : 1 =&#x3E; 2. Certainly p 4’ n, and since

(ZlmZ)’C G C E(k(t)), k must have a primitive mth root of unity (this
is a well-known consequence of the existence of the pairing em : Em x
E,,, --&#x3E; By Propositions 3.7 and 1.2, we only have to prove that Mk
has genus 0.

But G C E(k(t» gives a level (n, m) structure on E, so that we get a
commutative diagram:
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where j = j(E) is the j-invariant of E. Since j is dominating, u must be
dominating. Thus the function field of Mk injects into k(t), which
shows that Mk has genus 0.
2# 1. First, assume that G40, Z12Z or (Z/2Z)2. Let K be the

function field of M,,,,,,k. Then Proposition 4.1 and the discussion of
level (3, 1) and level (4, 1) structures give us an elliptic curve E over
K with nonconstant j-invariant such that E(K)tor = G.

In §3 we described the Galois action on the cusps of Xn(n).
Construction 5.3 of [2, VI.5] shows that this description also applies
to the cusps of Mk. It is then easy to see that the cusp represented by
(°) is rational over k. Since Mk has genus 0 (Propositions 3.7 and 1.2),
we see that Mk = P’. Thus K = k(t).
To show that the groups 0, Z/2Z and (Z/2Z)2 can occur, consider

the following elliptic curves over k(t), defined by the equations:

Each of these equations has a Néron model over Pk. The bad fibers
are of types Il, h and II * for the first equation, I,, I2 and III * for the
second and I2, I2 and I 2 for the third. Then, working over k and
using [4, Proposition 1.6] as in §4, one easily sees that the group of
torsion solutions is 0, Z/2Z and (Z/2Z)2 respectively. ·

Appendix

Let H be a subgroup of GL(2, ZINZ). The algebraic stack «’ H [lin]
has a compactification «H[Iln] relative to Z[Iln] (see [2, IV.3]), and
we set .JlH[I/n] = «H[Iln] -.,«’ H [Iln].

Let r be the inverse image of H n SL(2, ZINZ) in SL(2, Z). The
purpose of this appendix is to relate the representability of .ÁlH [1/6n]
and .l H [ 1 /n ] to some well-known properties of r. Specifically, we will
prove:
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THEOREM A.l: AtlH[1/6n] is an algebraic space if and only if r is
torsion-free and all of its cusps are regular.

THEOREM A.2: «Ir[l/n] is an algebraic space if and only if
C-(D = 0 (see §2).

The first theorem follows from the second using Lemma 2.1 and [2,
VI.2.7]. To prove the second, we use the interpretation of ,«Z[I/n]
given in [2, IV.6]. Let k be an algebraically closed field whose

characteristic does not divide n, and let C be a Néron polygon with b
sides, b 1 n, over k.
A level H structure on C is described as follows. Let C° = creg =

Gm,k x ZlbZ, and let Ûo = Gm,k x ZINZ. There is a natural inclusion

C° C Û’. An isomorphism JLn,k = Z / n Z defines an isomorphism s : C° -&#x3E;
(ZInZ)’, and let B be the image of Cn under s. In GL(2, ZINZ), define
the subgroups:

Then, from [2, IV.6], a level H structure on C is a double coset

HaU(B), a E GL(2, ZlnZ), such that

Next we describe how automorphisms of (C, +) (see [2, II.I]) act on
level H structures on C. Let Uo be the image of the map Aut(C, +) ---&#x3E;
Aut(C" . Every automorphism of Cn extends to an automorphism of
Cn, and using [2, II.1.10], we get an exact sequence

Then an automorphism 4&#x3E; of (C, +) takes a level H structure Ha U(B)
to the level H structure HauU(B), where u in ± U and 0 map to the
same thing in Uo.

LEMMA A.3: A level H structure Ha U(B) on C has a nontrivial
automorphism if and only if
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PROOF: The case n = 2 is trivial. When n  3, the lemma is an easy
consequence of (10) and the fact that Uo is isomorphic to Aut(C, +).

Il
Now Theorem A.2 follows easily. An element in C-(n gives us, via

(4) in §2, an element E SL(2, ZlnZ) such that

By the above lemma, HaU(B) has a nontrivial automorphism. Con-
versely, again using Lemma A.3, suppose we have a-Iha E - U for
some a E GL(2, Z/nZ) and h E H. Note that h lies in Hn

SL(2, Z/nZ). Let 16 = (o " , where r = det(a)-’. Then u=a{3 is in

SL(2, ZINZ) and satisfies (11). From (4) in §2, we get an element of
C-(r). a
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