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0. Introduction

The purpose of this paper is to give a formula for the Tamagawa
number of a reductive quasi-split algebraic group G defined over an
algebraic number field in terms of the Tamagawa number of a
maximal torus of G (cf. Theorem 7.1).
The Tamagawa numbers of classical groups were determined by

Weil [23]. In [15] Langlands determined the Tamagawa number of all
split semisimple groups. We extend the result of Langlands to quasi-
split groups.

1 am most grateful to R.P. Langlands for explaining his methods to
me. 1 would like to thank M. Rapoport for sending me his paper [ 18]
and J. Arthur for useful suggestions.

NOTATIONS:

F = number field

Fv = completion of F at the place v
F = algebraic closure of F

v|ce = v is an infinité place
v  oo = v is a finite place

Ov = OFv = ring of integers of Fv (v  ~)
q = order of residue field of Fv
v = uniformizing element of Ov (v  ~)
A = adeles of F, Ây = adeles trivial outside 9’

||v = normalised absolute value at v (v  ~): lv|v = q-t
|| = adelic absolute value.

0010-437X/80/OS/0153-36$00.20/0
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For an algebraic group H defined over F, we write

For a complex valued function f (x), write f(x) for the complex
conjugate of f (x).

1. Quasi-split algebraic groups

1.1. Let G be a connected reductive algebraic group defined over
F. We say that G is quasi-split if one of the following equivalent
conditions is satisfied

(I) G has a Borel subgroup B defined over F,
(II) the centralizer in G of a maximal F-split torus is a maximal

torus of G,
(III) G has no anisotropic roots.

In the following G denotes a connected reductive quasi-split group.

1.2. Let A be a maximal torus of G lying in B and defined over F,
L the group of characters of A, L = Hom(L, Z), 03A3() the set of roots
(coroots) of G with respect to A, â basis of X with respect to B and
â the elements of 1 corresponding to à. There is a bijection between
F-isomorphism classes of triple (G, B, A) and isomorphism classes of
based root system 03C80(G) = (L, 0394, L, Â). This bijection yields a con-
nected reductive C-group Ô’ with based root system qio(à°) =
(, , L, 0394). Let Â° (resp. Êo) be the maximal torus (resp. Borel
subgroup) defined by tPo(âO).
Let E be a Galois extension of F such that G splits over E. If

u E Gal(E/F), À E L, we denote the action of U on À by aÀ where
03C303BB(a) = 03C3(03BB(03C3-1a)) for a E A. As G is quasi-split, 03C30394 = 0394. We can

define a homomorphism 03BC : Gal(E/F)~Aut tPo(G). Since we have
canonical Aut 03C80(G) = Aut 03C80(0), we may view 03BC as a homomor-

phism of Gal(E/F) into Aut tPo(âo). Moreover there is a split exact
sequence
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and a splitting yields a monomorphism

Together with the 03BC above we get a homomorphism

The associated group to, or L-group of, G is then by definition the
semidirect product

(See Borel [3]).

1.3. Let Z be the identity component of the centre of G and G’ be
the derived group of G. Then G = ZG’ and A = ZA’ where A’ =

A n G’. Let °L+ be the group of rational characters of Z and OL- be
the elements of °L+ which are 1 on Z fl A’. Let ’L- be the lattice of
roots of A’. (Note that there is a bijection between the roots of (G, A)
and (G’, A’) and the corresponding Weyl groups can be identified. We
shall not use a separate notation.) We denote the Weyl group of the
root system by W. There exists a non-degenerate W-invariant bilinear
form (. , .) on ’L- ~z C such that its restriction to ’L- ~z R is positive
definite. Let ’L be the lattice of rational characters of A’ and

Set L- = 0L-~1L- and L+ = °L+ (f) 1L+. We define dual lattices by

We then have L-CLCL+CLQ9zC and L-cLcL+cLQ9zc.

For the pairing L x  ~ C, we use the notation (À, À) = (03BB) where
À E L,  E L and we extend it meaningfully to the other lattices. The
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form on 1+ Q9 C adjoint to the one given above on IL - Q9 C will also
be denoted by (. , .), i.e. if IL, v E 1L- ~ C, and if the elements ,  of
1+ OC satisfy the equations

for all À E IL - Q9 C, then (JL, v) = (il, v).
Suppose v is a finite place of F. We define a map v : A(Fv) ~~Q

by the condition

f or ail À E L and a E A(Fv), where Wv is the unif ormizing element of
Fv and 1.lv is the normalized valuation of Fv. For IL ELQ9C, define

Î E Â 0 = Hom(L, C*) by

for all  E L. We sometimes write t for 03BC.
We write LF for the lattice of F rational characters of A. Similar

notation will be used for the lattices °L+ etc.

1.4. Next we write down explicitly the Galois action on the derived
group ô, of ô,. Put Â’ = Â0 ~ ’. Let à be the Lie algebra of Â’.
Choose H1,..., Hr E à so that

where 03BB ~ 1+ and 0394 = {03B11,..., 03B1r} are the simple roots. Choose
vectors X±âi belong to the ± â; respectively such that

For or E Gal(E/F), 1ià = 03C303B1 for a ~ 0394. If we put 03C3(âi) = â03C3(i), then the
Galois action on the Lie algebra 4’ of G’ is the unique isomorphism
satisfying

(see Jacobson [9] Chap. VII).

1.5. Let XF denote the set of F-roots of G with respect to Ad, the
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maximal F-split torus in A. As G is quasi-split, each element of 03A3 has
a nontrivial restriction to Ad, and 03A3F is eqUal to the set of restriction
to Ad of elements of 03A3. In fact, if G splits over a Galois extension E
of F, the Galois group Gal(E/F) acts on 03A3 and each orbit restricts to
an element of .IF. In each orbit choose a representative a and denote
the corresponding orbit by (fa and the element in 03A3F to which the

elements in (la restrict, is denoted by aF, i.e. aF = 03B1|Ad.
The Weyl group W of 1 is given by N(A)/Z(A) while the rational

Weyl group WF of .IF is N(Ad)/Z(Ad). We can identify WF as a
subgroup of W.
Let OXF be the reduced F-root system consisting of the indivisible

F-roots of 03A3F, Le. 003A3F = aF ~ 03A3F |1 203B1F~ 03A3F}. oIt = 003A3F ~ 03A3+F.
Next we define the elementary subgroup Gap of G f or aF E 003A3+F. Let

AaF = (ker 03B1F)0. Then G03B1F = ZGA03B1F, Le. we take the centralizer in G of
A03B1F.

It can be easily proved that GaF is connected reductive quasi-split
group of semi simple F-rank 1.

1.6. There is a non-empty finite set  of places of F, containing all
the infinite places such that the F-group G can be regarded as defined
above Spec(0q), where 0g is the ring of the elements of F which are
integral outside Y. Thus G(Ov) is defined for those v not in .
For v1 00, let Kv be a maximal compact subgroup of Gv such that

Gv = Bv · Kv is an Iwasawa decomposition. For v  00, let Kv be a

special open maximal compact subgroup of Gv, in the sense of

Bruhat-Tits [4]. In particular, for almost all v, Kv can be taken to be
G(Ov ). Similar considerations can be given to G03B1F. Therefore, when we
consider the finite set {G, G03B1F}03B1F~003A3F of groups taken together, except
for a finite number of places, we have simultaneously

where aF E 003A3F.

Let us now fix Kf = 03A0v~ Kv, K~ = 03A0v|~ Kv, K = K~Kf. Then

G(A) = B(A) . K.

1.7. Let X(G) be the lattice of rational characters on G. Let

L(s, G) be the Artin L-function corresponding to the Gal(E/F)-module
X(G)Q9Q and let Lv (s, G) be its v-component.
Let X be a nontrivial character on A trivial on F. X defines a
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nontrivial character Xv of Fv at each place v of F. Let dxv be the
additive Haar measure on Fv self-dual with respect to Xv and let
dx = IIv dxv. For v finite, the Haar measure on Fxv is chosen so that

the measure of (Yv is one.
Let 03C9 be an F rational left-invariant nowhere vanishing exterior

form of highest degree on G. For each v, w and dxv defines a measure
|03C9|v on Gv (cf. [23]). We put dgv = Lv(1, G)|03C9|v, for finite v, and

dgv = |03C9|v for infinite v. Then the Tamagawa measure dg on G(A)
is the Haar measure on G(A) defined by

where r the rank of the lattice of F rational characters X(G)F of G
(cf. [17]). This measure is independent of choice of X and w.

Let Xl, ..., Xr a basis of X(G)F. Then the map g -

(IX1(g)I,..., |~r(g)|) defines a homomorphism G(A)~(Rx+)r. Let G1(A)
be the kernel of this homomorphism. Also, the restriction of XI, ..., Xr
to the split component Zd of the radical of G defines an F-homomor-
phism 8 from Zd to GL(1)r. This defines a homomorphism 03B4~ from the

identity component of Zdm to GL(1)r~. For each t ~ Rx+, call 03BE(t) the
idele (03BE(t)v) such that e(t), = 1 for every finite place and 03BE(t)v = t for
every infinite place. Then t ~ 03BE(t) is an isomorphism of R’ onto a
subgroup GL+(1)~ of GL(1)m. Let Z+~ be the identity component of
inverse image of GL+(1)1 under 03B4~. Then Z+~ is isomorphic to (Rx+)r
and G(A) = G(A)1 x Z+~. If we put the measure dt = ^ri-1 (dt;/ti) on Rx+,
then

defines a Haar measure on G’(A). This measure is independent of
choice of ~1,..., X,. The Tamagawa number 7(G) is the finite number
defined by

1.8. Let N be the unipotent radical of B. Then we can define
Tamagawa measures da (resp. dn ) on A(A) (resp. N(A)) as in the
case of G. We normalize the measure on Kv by the condition
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Then we have dk = IIv dkv and

Let p be the half sum of the positive roots of G with respect to A.
To simplify notation we write p for the quasi-character on A(F)BA(A)
determined by p. Since G(A) = B(A) · K = N(A)A(A)K, there exists a
positive constant K such that for any f E Cc (G(A)),

According to the Bruhat decomposition of G we have

But except for the Weyl group élément wo that sends aIl the positive
roots to négative roots, the cosets NAwN has lower dimension than
that of G, and so NAwN has measure zéro. Thus if we write

gv = nvavw0n’v, we have

where dav is the local measure on Av induced by |03C9|v.

2. Eisenstein series and M(w,03BB)

2.1. For our purposes it is sufficient to consider the contribution to

the spectral decomposition of 2(Z+~G(F)BG(A)/K) from the Borel
subgroup B. We can define the adelic analogue of the function spaces
(V, W), D(V, W) and (D(V, W)) of §2 and 3 of [13] with respect
to the Borel subgroup B, the trivial representation of K and a
character À of Z+~A(F)BA(A) which is trivial on the image of B(A) fl
K in N(A)BB(A).

2.2. Define A+~ (resp. A(A)’) in the same way as Z+~ (resp. G(A)’).
Let (Z+~A(F)BA(A))* be the set of characters of Z+~A(F)BA(A). Fix a
basis {~j} of LF. Each élément À = E si~i of LF~ C can be considered
as a character of Z+~A(F)BA(A) via the formula
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In this way LF~C is identified with a subset of (Z+~A(F)BA(A))*.
From now on we shall consider only those À in LF~C.
Let 6(À) be the space of continuous functions on

N(A)B(F)BG(A)/K satisf ying the condition

for a E A(A), g E G(A).
Let (03BB) be the space of functions 0(-, g), with values in (03BB),

which is defined and analytic in a tube in LFQ9 C over a ball of radius
R with R &#x3E; (p, 03C1)1/2 and which goes to zero at infinity faster than the
inverse of any polynomial.

2.3. Let Do be the unitary characters of Z+~A(F)BA(A). Then
(Z+~A(F)BA(A))* is also the union of sets of the form

where a is a fixed character with values in R¡. We equip Do with the
dual Haar measure via Pontrjagin duality and give D, the measure
obtained by transport of structure from Do.
We write D for the space spanned by functions of the form

where 0 E W(À ) and 03BB0 is a character with values in Rx+. By means of
Fourier transform we get

According to Langlands [13, 14], for 0 e 2 the theta series

belongs to 2(Z+~G(F)BG(A)). Combining with (2), we get
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where

is an Eisenstein series. It converges uniformly for g in compact
subsets of G(A) and À E LF~ C such that Re(À, a) &#x3E; (p, a) for every
positive root a.
We define the constant term of the Eisenstein series E(g, 03A6, 03BB) by

2.4. PROPOSITION: The constant term is given by the following
formula :

where WF is the F-rational Weyl group of G and

PROOF: We have

The proposition is immediate once we break up the sum over

B(F)BG(F) into a sum over WF = B(F)BG(F)/N(F) (Bruhat decom-
position) and a sum over (w-’B(F)w ~ N(F))BN(F).

2.5. We can define local version of (03BB) as the space v(03BB) of
continuous functions 03A6v on Nv BGv/KU satisfying

(here p(av ) is to be interpreted as |03C1(av)|v).
For 0 E (03BB), we let 03A6v denote its restriction to Gv. Since 0 is

right invariant under K = II Kv where Kv = G(0v) almost all v, and
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G(A) is the direct limit of G’, we can write

(Here it is understood that 0(l) = 1.)
Furthermore, M(w,À) is a linear map from 6(À) to (03BBw) where

À "’(a ) = 03BB(waw-1). In fact it is just multiplication by a constant to be
calculated below. Moreover, M(1,03BB) = 1 because vol(N(F)BN(A)) =
1.

2.6. PROPOSITION: Let "’N = w-1Nw f1 N and NW = w-IÑw ~ N
where 9 is the unipotent subgroup opposite to N. Define a linear
transform Mv(w, À): v(03BB) ~ v(03BB "’) by

for g E Gv. Then we have

(Here one regard the Mv(w, À) as complex numbers.)

PROOF: First we have N = "’N . N "’. So

It f ollows that, for 03A6 ~ (03BB)

The formula (10) now follows from the above and the fact that we
have normalized our measure such that
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3. Mv(w,03BB) in the rank one case

3.1. We shall compute Mv(w,03BB) for those places v of F satisfying
the following conditions:

(i) G is a connected reductive quasi-split group over Fv.
(ii) G splits over an unramified extension of Fv.
(iii) Gv = BvKv and Kv = G(0v).
(iv) G is of semisimple Fv-rank one.
Let us write Ev for the unramified extension of Fv over which G

splits and write Co for the uniformizing element of both Ev and Fv. We
denote by or the Frobenius element in Gal(Ev/Fv).
Under the assumption, the Fv-rational Weyl group WFv = fl, w0},

where wo sends all the positive roots to negative roots. We know that

It remains to calculate Mv(wo, À). As v(03BB) is one dimensional it

suffices to calculate

where 03A6(03BB) is (03BB) is chosen to satisfy

G has Fv-rational rank 1 also implies that LFv Q9 C is isomorphic to
C and hence can be replaced by the set {ps|s ~ C}. Thus it suffices to
consider M(wo, 03C1s). We define 0(p’) by:

Let us write M(s) for M(wo, 03C1s). Then (1) becomes

We can further assume that wo E Kv, then changing variable by the
map n ~ w0nw-10, we have
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and

3.2. PROPOSITION: Let fi be the subspace of the Lie algebra of a
spanned by the positive root vectors. Then

where  = s03C1.

Let G’ be the derived subgroup of G. Then the unipotent radical of
the Borel subgroup of G’ is the same as that of the corresponding
Borel subgroup B of G. Thus we only need to compute the integral
M(s) for connected semisimple quasi-split groups of Fv-rank one.
Henceforth, in this subsection we shall assume G to be of such type.
According to Steinberg’s variation of Chevalley’s theme, the quasi-

split form of G is determined up to Fv-isomorphism by its Dynkin
diagram and the twisted action of galois group (modulo inner twis-
ting). As a result, up to central isogeny, G can only be one of the
following types:

(I) G splits over Gv and has a connected Dynkin diagram, i.e.

G = SI.,2.

(II) G is a twisted form of a Fv-split group whose Dynkin diagram
is type A2, i. e. G(Fv) = SU3(Ev/Fv) = (g E SL3(Ev) 1 tgJg = J} where
Ev/Fv is a quadratic extension; the conjugation by the nontrivial

element of the Galois group Gal(Ev/Fv) is denoted by x ~ x; tg is the

conjugate-transpose of the matrix g : J = 1 1 is the matrix of

the Hermitian form with respect to the nontrivial element of

Gal(Ev/Fv).

(III) G is a twisted form of a Fv-split group whose Dynkin diagram
consists of n copies of Ah i.e. there exists an extension Ev/Fv of
degree n and G(Fv) = SL2(Ev).

(IV) G is a twisted form of Fv-split group whose Dynkin diagram
consists of n copies of A2 ; there exists field extensions Ev, Ev of F
such that [Ev : E’] = 2, [Ev : Fv] = 2n. If x - x is the nontrivial action of
the Galois group Gal(Ev/E’ V) then G(Fv) = SU3(Ev/E’v) =
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It is obvious that it suffices to calculate (2) up to isogeny (see for
example [18] §4.3). Moreover Rapoport [18] pointed out that it is

possible to avoid the calculation of (2) for the cases (III) and (IV) by
proving a general lemma on the behaviour of (2) under restriction of
ground field.

3.3. When G is S4, it is well known that

The Lie algebra fi in this case is one dimensional and it is trivial to
check the formula (3). We shall omit the details.

3.4. PROPOSITION: Let Ev/Fv be an unramified quadratic extension
of local fields such that 2 is a unit in Ev. Then for the quasi-split
group SU3(Ev/Fv) we have

PROOF: First we have

E is an unramified quadratic extension of F, so there exists an
element c E 0FV - 0Fv such that its image in 0Fv/0Fv is not a square
and Ev = Fv(c). Let the map ordFv : Fxv ~ Z be defined by the con-
dition 
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Similar condition defines ordEv. Note if x E Fv, then |x|Ev = |x|2Fv im-
pties ordFvx = ordEvx.

Next, let us détermine the measure dn on the nilpotent group
N(Fv). Let x, y E Ev such that y + y + xx = 0. Then we can write

y = y1c - xx 2 where YI E Fv. Note that xx = NEv/Fv(x) also belongs to
Fv.
A typical élément of N(Fv) can now be written as

Thus we can write N(Fv) = N1N2 (as sets) and take dn to be the

image of the product of the measure on Ev and Fv respectively under
the maps;

We normalize the measures on Ev and Fv by the condition that the
volume of the respective maximal compact subrings is one.
The nontrivial element of the Weyl group corresponds to the matrix

We have

If n E Nv, then by Iwasawa decomposition of SU3(Ev/Fv), we get
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for some n E Nv, k E Kv.

As noted we can write y = y1c - xx 2 for some YI E F.

Then ordEvy = inf(ordEvyl, 2 ordEvx) and

The zero in the "inf" is put into account for the case when both x and

y are integral, and n E Kv.
Direct calculation using the definition of p’ gives

To calculate the value of p"’(ii), we have to consider four cases:

1. ordEvx ? 0 and ordEy1 ~ 0
~ ordEvy ~ 0
~ inf(O, ordEvx, ordEvy) = 0
~ 03C1s+1(n) = 1.

2. 2 ordEvx ~ ord EvYI, ordEvyl  0, ordEvyl is even.
if ordEvx ~ 0 then ordEvy,  ordE,,x.
If ordEvx  0 then ordEvy1 ~ 2 ordEvx  ordEvx.
Thus inf(0, ordEvx, orde y) = orde ,y, and
ps+l(n) = |a-1|s+1Ev = q2(s+1)ordEvy1.

Note: if orde "y, = -2m then

3. 2 ordEvx ~ ordEvYt  0, ordEvYI is odd
~ inf(0, ordEvx, ordEy) = OrdEvy2
~ 03C1s+1(n) = q2(s+1)ordEvy1.
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Note: if orde,,yl = -(2m - 1), m ? 1 then

Now we are ready to calculate the integral M(s). We break the
integral up into four pieces corresponding to the four cases above and
transfer the integral over N(Fv) to those over Ev x Fv, viz.,

where PEv (resp. PEv) is the maximal prime ideal of Ev (resp. FU). We
normalized measure on Ev, Fv by foE dx = 1 and foF dy1 = 1.

Further calculation gives
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Adding all the terms, we have

To complete the proof of the proposition, let us look at the Lie

algebra g of the analytic group  associated with G. We can take g to
be I2(C) and let Î+ = lâl, â2, â3}, â3 = âl + â2. There exists root vec-
tors Xêl 11 Xâ2, Xêl such that

g has a Dynkin diagram of type A2

the arrows indicate the action of a E Gal(E/F), i.e. 03C3(Xâ1) = Xâ2’
Since this action is to be extended to a Lie algebra isomorphism, i.e.

03C3[Xâ1, Xâ2] = [03C3Xâ1, 03C3Xâ2], so UXâ3 = [Xâ2, Xâ1] = -Xâ3.
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Also, we have

or

because ~03C1, à) =  = 1 if a simple and

We take n = CXâ1 + CXâ2 + CXâ3. Then

and

This completes the proof of the proposition.
3.5. Let us now consider the case (III). G is a connected semi-

simple quasi-split algebraic group defined over FV splits over an
unramified extension Ev/Fv of degree n.
The absolute Dynkin diagram of G consists of n copies of Al, and

the action of the Frobenius a in Ga1(Ev/Fv) is the cyclic permutation
as indicated

The action has only one orbit; G is of F-rank 1 and G(Fv) = SL2(Ev).
The integral that we are interested in becomes M(s) = fN v ps+’(n) du
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where

and

So by §3.3

But on the other hand tî = I2x ... xI2. Let Xâ. i be the root vector
corresponding to the positive root âi of the ith copy of I2 in the
product. Then

because p = 1 203A303B1i and as the diagram is disconnected (aj, âi~ = 0 if i ~ j,

and = 1. So,

Similarly,

and we are done.
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3.6. Finally, let us look at the last case IV. Here G is a Fv-form of a
split group with a Dynkin diagram consisting of n copies of A2. G is
defined over Fv splits over an unramified extension EU of degree 2n ;
there exists a field E’ in Ev/Fv such that [E’v:Fv] = n ; the non-trivial
element of Gal(Ev/E’v)(~ Gal(Ev/Fv)) give rise to the twisting; the
action of this element is shown in the diagram

This determines a special unitary group SU3(E,/E’,) with respect to
the form

such that

Thus, using the result in §3.4, we get

(Note: modulus of Ev = q2n.)
To e stablish the formula

we shall evaluate the determinants directly.
Let us denote the simple root system â by (ai, 03B21;...; an, 03B2n}. We

calculate


