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In [2; p. 354], K. Borsuk poses the following question: If X is a
metric compactum such that X is shape dominated by a compactum
Y C ""@ q-dimensional Euclidean space, then does there exist a

compactum Z C R q, which has the same shape as X? In this note we
show [Theorem 12] that the answer is yes for a certain class of

compacta. This class of compacta was considered by I. Ivansic [9]
who defined it in non-shape theoretic terms and proved an "embed-
ding up to shape" theorem. We give a shape theoretic description of
this class and study the structure of neighborhoods of nice embed-
dings of members of this class. This work is strongly motivated by
Siebenmann’s thesis [15] and we shall often appeal to it; [16] and [17]
contain many of the concepts which we use from [15].

Since the submission of this paper, A. Kadlof [22] has constructed
a continuum Y in R3 which shape dominates a continuum X which
does not embed up to shape in R3. The authors express their gratitude to
the referee for his comments which have led to a shortening of some
of the proofs and generalization of the results.
We shall use the Mardesic-Segal approach to shape theory [12]; we

use the language of pro-category theory. We refer the reader to [10]
which contains most of the definitions we need. Let CWo [Ho-CWo]
denote the category whose objects are finite connected pointed CW-
complexes and whose morphisms are pointed continuous maps [poin-
ted homotopy classes of continuous maps]. The objects of the cate-
gory pro-CWo are inverse systems X = (Xi, Pij, A) where E object
CWo and the bonding maps pij are morphisms in CWo; in this paper
we shall only consider index sets A which are subsets of the positive
integers. A morphism f : X --&#x3E; Y = (Yi, qij, n consists of an order-

preserving function f : F --&#x3E;A and a family {fi : i E f) of morphisms in
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CWo, fi: Xf(i) ---&#x3E; Yi such that if i  j, then qiJj = fiPf(i)f(j). Two mor-
phisms f, g : X - Y are homotopic, f = g, if, for each i E T, there exists
j &#x3E; f (i), g(i) such that fipf(i)j = gipg(i)j. The identity morphism 1 : X ---&#x3E; X
and the composition of two morphisms are defined naturally (see
[10], [12]). The category pro-Ho-CWo is defined similarly; if X is an

object in pro-CWo, then we will abuse notation by letting X also
designate the corresponding element of pro-Ho-CWo. Let X and Y be
separable metric pointed continua. Then there exists objects X and Y
in pro-CWo such that the inverse limits lim X and lim Yi are

homeomorphic to X and Y respectively. X and Y have the same
pointed shape, designated shape X = shape Y if there exist mor-

phisms f : X ---&#x3E; Y and g: Y --&#x3E; X in pro-Ho-CWo such that fg =1 and
gf = l. If we do not necessarily have the relationship fg =1, we say
that X is pointed shape dominated by Y, designated shape X = shape
Y.

The fundamental dimension of a separable metric continuum X,
Fd(X), is defined to be the minimum of dimensions, dim Y, of all

separable metric continua Y such that shape X = shape Y.
Let X be an n-dimensional continuum in Rq ; X is 1-ULC embedded

if for each E &#x3E; 0 there exists 3 &#x3E; 0 such that any map of the 1-sphere
into Rq - X whose image has diameter  8 extends to a map of the
2-cell into Rq - X whose image has diameter E.
We shall use tools from PL (= piecewise linear) topology. [7] and

[14] are good references. int, bdry and cl will denote interior, boun-
dary and closure, respectively. Since we almost always work with
pointed spaces and pointed maps, we will often "ignore" the base-
point in our notation.
Let X be a pointed metric continuum. X has stable prO-7TI if there

exists an object X in pro-CWo such that shape (lim x) = shape (X)
and the associated object {7T1(Xi)}, the induced system of fundamental
groups, is isomorphic in pro-groups, shortly pro-isomorphic to a

group G; i.e. there exist morphisms f:flr,(Xi)l--&#x3E;GI and g:{G}-&#x3E;
{7T1(Xi)} in the category pro-groups ({G} denotes the inverse system
with one set) such that fg = 1 and gf = 1.

PROPOSITION 1: Let X be a 1-ULC embedded n-dimensional con-

tinuum in q-dimensional Euclidean space Rq , q - n 2:: 3, q ? 5. Then
there exists a sequence of closed connected PL neighborhoods {Ui} of
X in Rq such that

1.1. Ui C int Ui-l for all i ;
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In addition, if X has stable prO-7TI which is pro-isomorphic to a finitely
presented group, then {Ui} can be chosen so that

1.4. the inclusion Ui C Ui-l induces an isomorphism 7T1( Ui) - 7Tl( Ui-j)
for all i.

PROOF: We need the following result due to Stanko [19]. If X
satisfies the hypotheses of Proposition 1 and if K is a closed poly-
hedron in R q with dim K f:-: q - n - 1, then there exists an arbitrarily
small ambient isotopy of Rq with support arbitrarily close toxnk
which moves K off of X.

Let W be a compact connected PL-neighborhood of X in R q
Suppose that bdry W contains components W’ and W". Let a be a
PL arc in W such that W’ and W" meet a in an endpoint of a. By
the above mentioned result of Stanko, we may assume that a n X =
0. By removing a small regular neighborhood of a, we obtain a closed
connected neighborhood of X with one less boundary component.
Hence, by induction, we can find a sequence of closed connected
PL-neighborhoods {Wi} of X in Rq such that bdry W is connected
and both 1.1 and 1.2 are satisfied.

By using Stanko as above, it can be shown that the inclusion

W - X C W induces isomorphisms on fundamental groups. If X has
stable pro-ir, which is pro-isomorphic to a finitely presented group,
the sequence {7T1(Wi)} is isomorphic in the category of pro-groups to a
finitely presented group. By putting these two results together,
{7T1(Wi - X)} is also isomorphic in the category of pro-groups to a
finitely presented group. It is straightforward to check that the latter
condition implies Siebenmann’s condition that {7T1(Wi - X)} is essen-
tially constant [16, p. 204] or stable [15, p. 14]; hence, by [15;
Theorem 3.10] or [16; Proposition 1.9], we can modify {Wi} so that 1.4
is also satisfied and, in addition, so that bdry W C W induces
isomorphisms of fundamental groups.

Let W’l be the dual (q - n - 1) - skeleton of some triangulation of
Wi. By Stan’ko, we may assume that W n X = 0, and, hence, X lies
in the interior of a regular neighborhood Ul of the n-skeleton of some
triangulation of Wi. Note that 7Tj(UI,bdry U1) = 0 f or j  q - n - 1.
Choose W so that W,i1 1 C int Ul and repeat the construction to obtain
U2 C int Ul. The Proposition follows by induction.

THEOREM 2: Let X be a continuum which has fundamental dimen-
sion n ; then there exists a tower {Xi, Oil in pro-CWo such that

2.1. dimension Xi - n;
2.2. shape (lim Xi) = shape X.
In addition, if X has stable prO-7Tt pro-isomorphic to a finitely
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presented group, the tower can be chosen so that
2.3. Oi induces an isomorphism 7TlXi+1 7TIXi for each i.

Mardesic [11] has obtained 2.1 and 2.2.

PROOF: Let Y be a continuum such that dim Y = n and shape
Y = shape X. By [8] and [19], there exists a 1- ULC embedding
0: y___, R2n+l. Let f Uil be a sequence of closed PL-neighborhoods of
O(Y) in R2n+1 as given in Proposition 1.

Since, by 1.3, the pairs (Ui, bdry U; ) are n -connected f or all i, by
[21] there exist n-dimensional complexes Xi C Ui such that Ui col-

lapses to 3Xi. Let r; : Ui Xi be a retraction which is homotopic to the
identity map on U;. Let Oi =ri 1 Xi+,: Xi+, ---&#x3E;Xi. It is easily checked
that {X;, Oil is a tower in CWo which is isomorphic in pro-Ho-CWo to
f Uil and, hence, shape (lim Xi) = shape X. Since, by 1.4, the inclusion
map Ui+l C Ui induces an isomorphism of fundamental groups and
since the inclusion Xi+l C Ui+l and the retraction ri: Ui --&#x3E;Xi are

homotopy equivalences, Oi also induces an isomorphism of fun-
damental groups for each i, in the special case when X has stable
pro-TTt pro-isomorphic to a finitely presented group.

COROLLARY 3: If a continuum X has stable prO-7TI pro-isomorphic
to a finitely presented group and FdX = n - 3, then X can be embed-
ded up to shape in R2n.

PROOF: Corollary follows immediately from Theorem 2 of [9] since
every mapping XI --&#x3E; R In induces an epimorphism of fundamental
groups.

Let lXi, pil and {Yi, qi} be towers in pro-CWo. Suppose that

{fi}:{Xi}{Yi} is a morphism in pro-Ho-CWo ; by [18; p. 404] we may
assume that each fi is a level-preserving cellular map. Let M(fi) be
the reduced mapping cylinder of fi [-i.e., if ai E Yi and x; E X are the
base points, then M(fi) is obtained from the disjoint union (X; x

[0, 1]) U Y; by identifying (x, 1) and fi(x) for all x E X; and by shrink-
ing (x; x [0, 31 ]) U lail to a point mi.] Define ai: Xi --&#x3E; M(fi) and (3i: Yi --&#x3E;
M(fi) by ai(x) = (x, 0) and (3i(y) = y. Note that M(f;) E object CWo.
The bonding maps p; : Xi,, --&#x3E; Xi, qi: z+i - Yi and a homotopy between
f;p; and q f;+1 induce bonding maps Ài: M(fi+l) M(fi) such that

Àiai+ 1 = aiPi and Àif3i+ 1 = Q;q; (for example, the construction in the

proof of Theorem 7 in [10, Part I] can be slightly modified to produce
such maps Ài). Let 7Tj(fi) = 7Tj(M(fi), ai(Xi), m;); by construction ki
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induces a homomorphism (a function, if j = 1) 7Tj(fi+l)  7Tj(fi) for each
i. {f;} is said to be shape r-connected if, for each 1  j s r, the tower of
groups {7Tj(fi)} is isomorphic in the category of pro-groups to the
trivial group and for j = 1, firl(fi)} is isomorphic in the category of
pro-pointed sets to the trivial pointed set. The shape r-connectedness
of {fi} can be equivalently described in the following way: ffil is shape
r-connected if it induces an isomorphism of homotopy pro-groups of
{Xi} and {Yi}, denoted by irj(X) and irj(Y), for each 1 s j  r and an

epimorphism for j = r in the category of pro-groups. Namely, the
above construction gives us the morphisms lai}: fXi} --&#x3E; fm(fi)l and
f,Bi}: f Yi} - IM(fi)} in pro-Ho-C Wo, where a; and f3i are inclusions, {f3i}
admits a shape inverse {g;}:{M(fi)}{Yi} and {fi} = {gi}{ai} holds.
Therefore, in the exact sequence of homotopy pro-groups (e.g. [10, Part

I] p. 56) of the pair {M(f;), X)

where we identify Xi with ai(X;) and ii: M(fi) --&#x3E; (M(fi), Xi) is

the inclusion, one can replace 7Tk(M(f» by ’7Tk(Y) for each k. This

way we obtain the following exact sequence of homotopy pro-groups

induced by a morphism lfil:lXil--&#x3E;IYil. Now, by [10, Part II] if we
have in the category of pro-groups a short exact sequence

then K is an isomorphism, and also, in an exact sequence of the type

K is an epimorphism. The stated equivalence on r-connectedness of
tfil is now obvious.
Let X be a continuum. We say that X has shape finite r-skeleton

(r - 1) if there exists a finite connected pointed CW-complex K
(K E object CWo) and an object {Xi} in pro-CWo such that X = lim X;,
and a morphism Uil:IKI---&#x3E;fXil such that ffil is shape r-connected.
Note that if the latter property is valid for one system {Xi}, then for
each system (XJ) such that X = lim Xi, there exists a shape r-

connected morphism {fi}: {K}{Xi}. 
We leave to the reader to check that if X and Y are continua with

the same shape and if X has a shape finite r-skeleton, then Y also has
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a shape finite r-skeleton. Note that if K is a CW complex such that
the r-skeleton of K is finite, then K has a shape finite r-skeleton.

REMARK 4: If a continuum X has shape finite r-skeleton and r &#x3E; 2,
then X has stable prO-7Tl pro-isomorphic to 7TI(K) which is a finitely
presented group; if r = 1, then X is pointed 1-movable.

THEOREM 5 : Let X be a continuum of fundamental dimension
n - 3. The following are equivalent for 2  r  n.

5.1. X has a shape finite r-skeleton.
5.2. There exists an object {Xi} in pro-CWo such that dim Xi :5 n for

all i, shape (lim Xi)= shape X, and the bonding maps Xi+l  Xi are
r-connected for all i.

PROOF: First let us assume 5.1. Let fzil be a tower in pro-CWo
which satisfies 2.1, 2.2 and 2.3. Let K be an object in CWo such that
there exists a shape r-connected morphism {fi}:{K}-&#x3E;{Z,}. Since the
induced system of groups {7Tj(f;)} is isomorphic in pro-groups to the
trivial group for all j  r, by choosing a subsequence, if necessary, we

may assume that the induced homomorphisms 7Tj(f+l) ---&#x3E; irj(f 1) are the
zero homomorphisms for all i and all 1 j  r. In the case j = 1, we
want 7TI(fi+l) - 7TI(fi) to be the constant map. By chasing around the

following commutative diagram

where the rows are exact and the vertical maps are induced by the
bonding maps, one can show that each fi induces an isomorphism
ir,K --&#x3E; 7TIZi.
By Theorem A of [20], 7T2(fl) is a finitely generated ZzriK-module.

Since 7T2Z1 is mapped onto 7T2(f1), let y,: S2 ___&#x3E; Z @ i = 1, 2,..., m, be
cellular maps of the 2-sphere into Zl whose classes in 7T2Z1 are

mapped onto a set of generators of 7T2(f1). Let Z1 be the CW-complex
obtained from Zi by attaching m 3-cells by means of the mappings y;.
Denote by f’,:K---&#x3E;Z, l the mapping induced by fi. Then this con-
struction implies that the inclusion (M(fl),K)---&#x3E;(M(fl),K) induces
the trivial homomorphism lr2(fl) ---&#x3E; 7T2(fÍ).

Let D, be a closed 3-cell which lies in the interior of the 3-cell



159

which was attached by the map y;. Let Z’ = cl (Zi - U 1 n = i Di); note
that Z’ deformation retracts to Zi. By m applications of van Kam-
pen’s Theorem [3], it follows that the inclusion ZiCZ! induces
isomorphisms of fundamental groups. Let p : -Î’ --&#x3E; Z’ be the universal
covering of Z; and let i’ = p-l(Z’), î = p-I(Ul bdry Di) and D =
P-’(U lm=, Di). From the Mayer-Vietoris sequence, we obtain the exact
sequence

from which it follows that the inclusion Z’ C Z 1 induces an epimor-
phism H2(i’)-H2(Î’). By Hurewicz’s Theorem [18; p. 397] and

covering space theory [18; p. 377] it follows that the inclusion Z’ Ç Z,
induces an epimorphism lT2(Z’) ---&#x3E; ’7T2(ZÍ) and, thus, Z, ç Z, induces an
epimorphism -7r2(Zl) ----&#x3E;7r2(Z’i). The following diagram

shows at once that lr2(fl) = 1.
By an induction argument, one can find a finite CW-complex

Xi D Zl such that the induced map gl : K --&#x3E; X, is r-connected. [We can
use a Mayer-Vietoris sequence argument as above to show that when
we add on higher dimensional cells we do not "undo" the con-

nectivity of the map which we have already achieved.] Notice that the
map Z2 ---&#x3E; XI induced by the bonding map Z2 ---&#x3E; Zl still induces an

isomorphism on fundamental groups.
We now try to do a similar construction for f 2 : K ---&#x3E; Z2 but now we

have to exercise more care. By Theorem A of [20] again, 7T2(f2) is a
finitely generated Z,IK-module. Consider the following commutative
diagram

Let fi,..., F, be classes in 7T2Z2 which map onto a set of generators
of 7T2(f2). Since 7T2(f2) ---&#x3E; 7T2(f1) is the trivial homomorphism, the images
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of Fi in 7T2ZI must lie in the image of IT2K ---&#x3E; 7T2ZI. Suppose that ri is a
class in 7T2K which maps onto the image of Fi in 7T2ZI. Let ri’ be the
image of ri in 7T2Z2. Note that (11 - ri’} still maps onto a set of

generators of 7T2(f2). We choose our attaching maps yi : S’---&#x3E; Z2 so that
y; E Fi - ri’.
Now when we attach 3-cells to Z2, using y;, to obtain Z2, we note

that the image of Ii - ri in 7T2Z1 is trivial and, hence, we can extend
the bonding map Z2 ---&#x3E; Z, to a map Z’ 2 ---&#x3E; Zl. We continue with this type
of alterations to Z2 to obtain an object X2 in CWo which contains Z2
such that the inclusion Z2 C X2 induces isomorphisms on fundamental
groups, the map 92: K --&#x3E; X2 induced by f2 is r-connected and the

bonding map Z2 ---&#x3E; Zl extends to a mapping X2 ---&#x3E; Zl.
By induction and the maximality principle, we obtain a sequence

{Xi} of objects in C Wo and mappings gi: K ---&#x3E; Xi such that (A) Zi C Xi
and the inclusion induces isomorphisms of fundamental groups, (B) gi
is r-connected and (C) the bonding maps Z;+i - Z extend to a map-
ping Ei: X+i -Z;. By composing Ei with the inclusion Zi C Xi, we
obtain an object {Xi} in pro-CWo. It is straightforward to check that
shape (lim X) = shape (lim Z;). {g; } : {K}  {Xi} is a morphism in pro-
Ho-CWo and by using the fact that each 3gi is r-connected, one can

easily check that the bonding maps Xi,, ---&#x3E;Xi are also r-connected.
Since r  n, dimension of X = n for each i and, hence, we have 5.2.

REMARK 6: Note that the restriction r  n is used only to obtain
the fact that dim X = n. Hence if r &#x3E;_ n, then we get 5.2 with the
modification that dim X _ r + 1.

Now let us assume 5.2 and let us choose an object fxil in pro-CWo
as in 5.2. Obviously X has prO-7TI pro-isomorphic to 7TI(X1) which is
finitely presented. Let K be the r-skeleton of Xl and let fi: K - Xl be
the inclusion map. By the cellular approximation theorem [18; p. 404],
f is r-connected. If ei :Xi+, --, Xi is the bonding map, then we want to
define f2: K ---&#x3E; X2 such that elf2 is pointed-homotopic to fi. Express
K = U !"=o k; as the union of cells such that ko is the base-point and
dim kj _ dim kj+l for all j. We define f2 inductively on j; f2(ko) is the
base-point of X2. Suppose that f2 is defined on U J:b kj so that elf2 is
pointed-homotopic to fI 1 U J:b kj. Let s = dim kt; by definition of

CW-complex, there exists a continuous map 0 : [0, 1 ]’ ---&#x3E; cl(k,) such
that 4, I (o, 1 )s : (0, I)S - ki is a homeomorphism. Let Po =

0 bdry[o, 1]s ; then f2oo represents an element of 7Ts-I(X2) [we may
assume that 0([0, l]s-1 x {O}) U (bdry[o, i]s-1 x [o, 1/2])) is the base-

point of K]. Since elf2 is homotopic to fi and el is r-connected, f2oo
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represents the trivial element of 7Ts-I(X2). Hence there exists an
extension of f2, F2: U 1=0 kj  X2. Unfortunately elF2 need not be
homotopic to f, 1 U =o ki. Let us assume that F2 is chosen so that

F20 ([0, l]s-1 x [0, 1 /2]) is the base point of X2. Let e: U 1=t kj x [0, 1] ---&#x3E;

Xi be a pointed homotopy such that eo = elf2 and el = fl; by the
homotopy extension property for CW-complexes [18; p. 29, 402], e
can be extended to a homotopy (which we will denote also by e) of
U f=o ki x [0, 1 ] to Xi such that eo = el F2. Consider the mappings e,O
and flo which map [0, I]S s into XI; ÇIP ( bdry[0,1]’ = flo ( bdry[0,1]’.
Define

by

Note that 1£ represents an element of 7TsX1; if li represented the
trivial element, then we would have a homotopy between el F2 and fi.
Suppose that 1£ does not represent the trivial element. Since el is

r-connected, we can find &#x3E;’ : [0, Il’ - X2 representing an element of
7TsX2 whose image under the homomorphism induced by el is the

negative of the class containing it. We now redefine F2 on 0([0, l]s-1 x
[0, 1 /2]) so that F20 1 [0, l]s-1 x [0, 1 /2] represents the class of &#x3E; ’. Now
it is straightforward to check that, with this new F2, elF2 and f, are
homotopic. Hence, by induction, we get a map f2: K --&#x3E; X2 such that
elf2 and f are homotopic. It is easy to check that f2 is r-connected. By
another induction argument and the maximality principle, we get a
tower of maps Uil: f KI --&#x3E; Xil such that each f is r-connected. Hence
{fi} is shape r-connected.

REMARK 7: If X is a continuum which has the pointed-shape of a
finite complex, then it is easy to verify that all the homotopy pro-
groups of X are stable and X has a shape finite r-skeleton for all r.

Conversely, if X has a shape finite r-skeleton for all r, and X has

finite fundamental dimension &#x3E; 3, then it f ollows as a Corollary of
Theorem 5 (see Remark 5) and [4; Thm. 1.1 ] that X is a pointed-
fundamental ANR and there is an obstruction in Ko( 7Tl(X» whose
vanishing is a necessary and sufficient condition in order that X has
the pointed-shape of a finite complex.

We now rephrase an embedding theorem of Ivansic [9] in shape
theoretic terms.
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THEOREM 8: Let M be a PL-manifold of dimension q and let X be
a continuum which has f undamental dimension n, q - n &#x3E; 3, has
stable pro-ir, which is pro-isomorphic to a finitely presented group
and has a shape finite (2n - q + 1)-skeleton. If there exists a shape
map {fil: X ---&#x3E; M which is shape (2n - q + l)-connected, then there
exists a compactum Z C M such that shape X = shape Z.

PROOF: Let us first consider the case when 2n - q + 1 - 2. By
Theorem 5, there exists an object {X} in pro-CWo such that dim
X = n for all i, shape (lim 3Xi) = shape X and the bonding maps
Xi+, -Xi are (2n - q + 1)-connected for all i. By hypotheses, there
exists a morphism ffil: fxil ---&#x3E; fMI which is shape (2n - q + 1)-con-
nected. It is easily checked that fi: Xi ---&#x3E; M is (2n - q + 1)-connected.
The result now follows from [9].

If 2n - q + 1 = 1, we use Theorem 2 instead of Theorem 5 in the
above argument. If 2n - q + 1  0, then Y actually embeds in M by
[8] where Y is an n-dimensional continuum with shape X = shape Y.

THEOREM 9: If Y is a continuum which has stable prO-7Tn and X is
a continuum such that shape X:f:-: shape Y, then X has stable prO-7Tn.

PROOF: The proof is motivated by the work of Edwards and
Geoghegan [5] who use the work of Atiyah and Segal [1]. Let Q be
the functor from the category of pro-groups to the category of

topological groups which sends the system of groups {Ga} to its

inverse limit which is topologized as a subgroup of Ma Ga where each
Ga is given the discrete topology. Let P be the functor from the
category of topological groups to the category of pro-groups which
sends the group G to the system (G/I« ) Ia is an open subgroup of G}.

Since Y has stable prO-7Tn and shape X _ shape Y, there exists a
group G and morphisms {fi}: f irnxil --* {G} and {gi}: IGI ---&#x3E; (zrnX) such
that {Xi} is an object in pro-CWo with shape (lim x) = shape X and
{gi} . ffil = {identity}. We will now show that {7TnXi} satisfies the Mit-
tag-Lefller condition: for each i, there exists j &#x3E; i such that, for all
k j, image(ejk) = image(ei;) where : 7r -&#x3E; 7rnXi is the bonding map.
Given i, there exists j a i such that gJmemj = eij. Suppose k - j; clearly
image(ejk) C 3image(eij) by definition of an inverse system. Since eij =

giJ memj - eilrgkJ memj image eik D image ei;.
Q({G}) is a discrete group and, since Q is a functor,

Q({gi}) 0 Q({fi}) = Q({gi} 0 {fi}) = Q(fidentityl) = identity. Hence

Q(f irnxil) is a retract of a discrete group and, thus, is discrete.
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Therefore PQ(f ir,,Xil) is equivalent in the category of pro-groups to a
group. But, by Proposition 2 of [5] (or [1]), {7TnXi} is equivalent in the
category of pro-groups to PQ({7TnXi}).

The following is well-known [5].

COROLLARY 10: If Y is a fundamental ANR, then Y has stable
prO-7T n.

REMARK 11: If, in Theorem 9, we assume that Y has stable pro-wi
which is pro-isomorphic to a finitely-presented group G, then X has
stable prO-7TI which is pro-isomorphic to a retract H of G and, by
Lemma 1.3 of [20], H is finitely presented.

THEOREM 12: Let Y C Rq be an n-dimensional continuum and let X

be a continuum such that fundamental dimension of X - n, X has a
shape finite (2n - q + 1)-skeleton and shape X = shape Y. If n 
2/3(q - 1) and n a 3, then there exists a compactum Z C Rq such that
shape Z = shape X.

PROOF: If q &#x3E;_ 2n + 1, then we can find Z C Rq such that shape
Z = shape X by [8] since Fd(X) = n. Hence, we assume that q 
2n + 1 and, therefore, 2(q - n - 1) + 1  q. By [19], we may assume
that Y C Rq is 1- ULC embedded. By Proposition 1, there exists a

sequence {Ui} of closed connected PL-neighborhoods of Y in Rq
such that 1.1 through 1.3 are satisfied. By Remark 4, X has stable

prO-7Tl pro-isomorphic to a finitely presented group Suppose that
(2n - q + 1) &#x3E;: 2. By Theorem 5, there exists an object {Xi} in pro-CWo
such that dim Xi - n for all i, shape (lim X) = shape X and the
bonding maps Xi+, ---&#x3E; Xi are (2n - q + 1)-connected for all i. Since

shape X shape Y, there exist morphisms ffil:fXil--lUil and

lg;1:lUl-lXl such that lg;1° (f;1=lidentitYl. By choosing sub-

sequences, if necessary, we may assume that we have the following
homotopy commutative diagram

where el is the bonding map. Since the induced map el* on fun-

damental groups is an isomorphism /2* is a monomorphism and gi* is
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an epimorphism. Note that p = f2*el*- Igl. is a retraction of 7Tl (U2)
onto the image of f 2*. From the proof of Lemma 1.3 of [20], there
exists a finite number of non-trivial elements of irl(U2), a,, ..., am,
such that the normal closure of {a!,} in ir, ( U2) is the kernel of p.

Let Oi : SI---&#x3E; bdry U2 be a continuous map such that Oi represents
p(al). Since Rq is contractible, Oi can be extended to the 2-cell D 2
Oi : D2 __&#x3E; Rq. Since 1Tj( U2, bdry U2) = 0 for j s q - n - 1 and q - n - 3,
we can homotope 01 so that we may assume OI(D2) C cl(Rq - U2). By
the simplicial approximation theorem and general position, we may
assume that CPI is a PL-embedding such that OI(D2) n bdry U2 =
OI(S’). Let N be a regular neighborhood of i(Dz) in cl (Rq - U2)
such that N n bdry U2 is a regular neighborhood of CPI(Sl) in bdry U2.
Let Vl = U2 U N. By van Kampen’s Theorem [3], the inclusion

U2 C V; induces an epimorphism irl(U2) --&#x3E; 7Tt( VÍ) whose kernel is the
normal closure of p(al). Since ai lies in the kernel of p, the com-

position X2 U2 C V’ induces a monomorphism irIX2 7Tl VÍ. By
standard surgery calculations [15; p. 27], r;( V 1, bdry Vl) = 0 for i -
q - n -1. By doing similar modifications for each p (ai), we eventually
obtain a PL-manifold VI:2 U2 such that if 3, denotes the composition
X2 f2 &#x3E; U2 C Vi, then 81 induces an isomorphism of fundamental
groups and 77)( Vi , bdry V,) = 0 for j  q - n - 1.

By Theorem A of [20], lr2(,81) is a finitely generated 7,irIX2-module.
We essentially repeat now the argument above: let CP: S2 - bdry VI
represents an element of lr2(VI) which maps onto a generator of
1T’2(!31) and extend to cP D3 __&#x3E; cl(Rq - VI) since 1T’j(VI, bdry VI) = 0 for
j_q-n-1 and n 2(q-1) implies that 2:52n-q+ 1 q-n-1.
Since 2(q - n - 1) + 1  q, by general position, we may assume that
is a PL-embedding such that CP(D3) n bdry VI = cp(S2). Let N be a
regular neighborhood of CP(D3) in cl(R" - VI) such that N n bdry VI is
a regular neighborhood of O(S2) in bdry VI. Let V2 = Vl U N.

Instead of van Kampen’s theorem, we use the Mayer-Vietoris
sequence of the universal covering space of V2 to show that 7T2( Vi) -
7T2( V2) is an epimorphism whose kernel is the submodule generated
by the class of 0 (see [15; p. 27]). Again by standard surgery

calculations, (A) the mapping 8’,:X2--&#x3E;V’ 2 induced by /31 induces

isomorphisms of fundamental groups; (B) lr2(,8’1) has fewer generators
(as a Z7TIX2-module) than 7T2(f3l) and (C) irj(V’, bdry V2) = 0 for

j - q - n - 1. By induction, we can add a finite number of such

handles to VI to obtain V2 so that the induced map 82: X2 ---&#x3E; V2 is

2-connected and r; ( V2, bdry V2) = 0 for j  q - n - 1.
Now we proceed to construct, by induction, V2n-q+1 such that the

induced map f32n-Q+I: X2 ---&#x3E; V2n-Q+1 is (2n - q + 1)-connected. To make
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the above argument work we need the inequality (2n - q + 1) 
(q - n - 1). By [9] or Theorem 8, there exists a compactum Z C
v2n-q+1 such that shape Z = shape X.
The remaining case 2n - q + 1 = 1 follows immediately from

Remark 4 and [9].
Recall McMillan’s cellularity criterion (CC) [13]. Y C Rq satisfies

CC if each neighborhood U of Y contains a neighborhood V of Y
such that every map S’ into V - Y is homotopically trivial in U - Y.

COROLLARY 13: Let Y C Rq, q &#x3E; 5, be an n-dimensional continuum
which satisfies (CC). If X satisfies the same conditions as in Theorem
11, then X can be embedded up to shape into Rq.

PROOF: It suffices to show that Y has stable pro-iri. Since Y C Rq
satisfies CC there is a sequence of neighborhoods V; such that hold:

But 13.3 says that {17"t( Vi - Y)l is essentially constant, and hence by
Theorem 3.10 of [15] we can modify V;’s getting U;’s such that

Y = n ; U and the inclusions Vi+l ç Vi induce isomorphisms
zri(U+i) - zri(U;) for all i. This just says that Y has stable prO-7Tl
pro-isomorphic to 3irl(UI).

COROLLARY 14: Let Y C Rq be an n-dimensional continuum and let

X be a continuum which has the shape of a finite complex of
dimension n and shape X  shape Y. If n  2/3(q - 1) and n &#x3E; 3,
then there exists a compactum Z C Rq such that shape Z = shape X.
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