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Abstract

Let g be a complex semisimple Lie algebra, U(g) its enveloping
algebra, Prim U(g) the set of primitive ideals of U(g) and b a Cartan

subalgebra for g. For g simple of type An-l (Cartan notation), Jantzen
[3], 5.9 conjectured that the cardinality of each Prim U(g) fibre

projecting onto a fixed regular integral central character and onto a
fixed nilpotent orbit in g* is just the dimension of the appropriate
irreducible representation of the symmetric group Sn. Here it is

suggested that the appropriate formulation of this conjecture for
general g involves the dimensions of certain subspaces of polynomials
on fj* which determine the dimensions of the irreducible finite

dimensional representations of parabolic subalgebras of g. Its reduc-
tion to the Jantzen conjecture for type An-i is essentially a com-
binatorial result of Garnir [14]. Then through a careful study of ad A
finite homomorphisms of induced modules (which gives some results
of independent interest) the Jantzen conjecture is reduced to two

open questions. The first involves the principal series and would give
a lower bound (involving the dimensions of the above-mentioned
subspaces) on the cardinality of each regular integral fibre. In case
An-i this is just the number of involutions in Sn and coincides with
Duflo’s upper bound [13], II.2. The second is a problem of Borho [1],
3.3 which whenever the last part of [21], 4.3 holds (for example in
type An-1 [25], 4.1) fixes the associated nilpotent orbit.

* Work supported by the C.N.R.S.
** Present address: Department of Mathematics, Tel-Aviv University, Ramat Aviv,
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1. Introduction

Unless otherwise specified all vector spaces are assumed over the
complex field C.

1.1 For each vector space V, let S( V) denote the symmetric
algebra over V and V* the dual of V. For each Lie algebra a, let U(a)
denote its enveloping algebra and Z(a) the centre of U(a). For each
associative algebra A let jl(A) (resp. Spec A, Prim A) denote the set
of two-sided (resp. prime, primitive) ideals of A and A A the set of
classes of irreducible representations of A, with a similar convention
for a group. For U (a) A we simply write a". A ring is said to be

Noetherian if it is left and right Noetherian.
1.2 Let g be a complex semisimple Lie algebra. The principal aim

of this paper is the classification of Prim U(g). Take I E Prim U(g).
Then the map 11’: I-I n Z(g) is a surjection of Prim U(g) onto
Max Z(g) with fibres of finite cardinality [10], 8.5.7 (b), [13], II, Thm.
1. Give U(g) the canonical filtration [10], 2.3.1 and identify gr(U(g))
with S(g). Identify g* with g through the Killing form and call X E g*
nilpotent if ad X is nilpotent. As noted in [6], Sect. 7, the zero variety
’(gr I) of gr I is contained in the cone .N’ of nilpotent elements of g*
which under the adjoint group G is a finite union of orbits. Suppose
further that the radical ’B/gr I of gr I is always a prime ideal. Then
since G is algebraic, there is a unique nilpotent orbit 0 c g* whose
Zariski closure 6 coincides with ’V(gr I) and hence a map K of
Prim U(g) into .N’/G (c.f. [3], 2.9). This gives rise to the following
problem. For each Â E Max Z(g), (J E .N’/G determine card{1T-I(Â) rl
J{-I«(J)}. For g simple of type An-i: n = 2, 3,..., (Cartan notation) and
for regular integral A, J.C. Jantzen conjectured [3], 5.9 that these
numbers are just the appropriate dimensions of the irreducible

representations of the symmetric group Sn. (Recall that Sn is in

natural bijection with .N’/G. The non-regular case is handled by [5],
2.12 and it is generally supposed (c.f. [21], Sect. 4) that the non-
integral case mirrors the integral case.)

1.3 In attempting to prove Jantzen’s elegant yet mysterious con-
jecture, it is clearly important to find a reinterpretation which applies
to any semisimple Lie algebra. Now although most primitive ideals in
type An-, are not induced ones, they all take the form (c.f. 9.3 and [5],
4.5 d)) of a minimal prime ideal containing an induced one. This leads
us to suggest (see 8.2) that for C polarizable [10], 1. 12. 8, or

equivalently for any Richardson orbit 6 (see 8.2), the cardinality of
7r’*(À) n J{-I«(J) is the dimension of the space generated by the
polynomials on $* which determine all possible dimensions of finite
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dimensional irreducible representations of an appropriate subset of
parabolic subalgebras. Then through a careful study of locally ad g
finite homomorphisms of induced modules (Sects. 4-7) and [21-25],
we are able to reduce the Jantzen conjecture to the following two
open questions, 9.1 and 10.2. First to show that for each induced ideal
J one has VgrJ E Spec S(g) - a problem suggested by Borho [1], 3.3.
Second to show that the simple subquotients of the spherical principal
series of different multiplicity (or just of non-commensurable multi-
plicity, 10.5) in the sense of the Hilbert-Samuel polynomial, neces-
sarily admit different annihilators. Our more general conjecture for an
arbitrary semisimple Lie algebra further requires the solution of

certain combinatorial questions involving the Weyl group and the root
system. In type An-h these are resolved through results of Specht
[33], Garnir [14], Schensted [31] and Knuth [27].

1 should like to thank M. Duflo, G. Cauchon, A. Lascoux and N.

Spaltenstein for useful conversations concerning this work.

2. The Hilbert-Samuel polynomial

To set notation we recall some standard results concerning the
Hilbert-Samuel polynomial.

2.1 Let A be an associative algebra which we shall always assume
finitely generated and with an identity. Given T, T’ subspaces of A we
set TT’ = lin span{tt’: t E T, t’ E T’l and for each k E N, we define Tk
inductively through To = C, Tk = T k- ’T and set T-I = 0. Now suppose
that T is a finite dimensional generating subspace of A containing the
identity. Then the subspaces T-1 C TO C TI C ..., define a filtration
for A. For each k E N, set Tk = Tk/Tk-I and let

denote the associated graded algebra which we shall always assume
commutative. If M is a finitely generated left A module, fix a finite
dimensional generating subspace M° and for each k E N, set Mk-1 =
T k-lMO@ Mk = MkIMk-1 . Then

is a graded module for gr A satisfying the hypotheses of [32], Chap.
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II, Thm. 3. Through its conclusion there exists a polynomial qT(M)
(the Hilbert-Samuel polynomial) such that qT(M)(k) =yk =0 dim M, =
dim Mk, for all k sufficiently large. We set d(M) = deg qT(M) and let
eT(M)/d(M) ! denote the coefhcient of kd(M) in qT(M). We recall that
d(M) + 1, eT(M) are positive integers which do not depend on the
choice of generating subspace Mo and d(M) (denoted by dim M in
[25]) does not depend on the choice of generating subspace T
(whereas eT(M) does). We define d(A) (which coincides with Dim A
defined in [6]) and eT(A) through A considered as a left A module.
When A = U(a), for some finite dimensional Lie algebra a, we shall
always take T to be the image of the canonical embedding of a Q C in
U(a) (which defines the canonical filtration {U(a)k: k = 0, 1, ...}, of
U(a)) and we simply write e(M) for eT(M). We identify gr( U(a)) with
S(a).

2.2 Recall the well-known [32], Chap. II, Prop 10

LEMMA: Let 0 --&#x3E; MI ---&#x3E; M --- &#x3E;M2--*0, be an exact sequence of finitely
generated A modules. Then one of the following hold

(i) d (Mi)  d (M ) and d (M2) = d(M), eT (M2) = eT (M ) .
(ii) d(MI) = d (M) = d (M2) and eT (M) = eT(MI) + eT (M2).
(iii) d (M2)  d (M) and d (Ml) = d(M), eT(MI) = eT(M).

2.3 Let a be a finite dimensional Lie algebra, A = U(a) and V a left
and right U(a) module (which we can consider as a left U(a) Q U(a)
module). Set LAnn V = f a E A: a V = 01, RAnn V = la E A : Va = 01.
We shall say that V is ad a finite if for each X E a, the endomorphism
ad X : v - Xv - vX of V is locally finite. Suppose V is ad a finite and
finitely generated as a U(a) Q U(a) module. Then we can choose a
finite dimensional subspace V° of V which generates V as a

U(a) 0 U(a) module and satisfies (ad X) V° C V°, for all X E a. Let
T denote the image of a@C in U(a). Then for all k EN, one has
TkVO = Tk-I VOT = Tk-2VOT2 =... = VOTk, and in particular that

It follows that V is finitely generated as a left and as a right U(a)
module and the Hilbert-Samuel polynomials for these three actions
coincide. We use d(V), e(V) to denote the common invariants.

1 

An elementary computation gives

LEMMA: Suppose V is finitely generated as a left and a right U(a)
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module and Ann V = LAnn Vo U(a) + U(a) @ RAnn V. Then
(i) d(U(a)@ U(a)/Ann V) = d( U(a)/LAnn V) + d( U(a)/RAnn V),
(ii) e(U(a) U(a)/Ann V) = e( U(a)/LAnn V)e( U(a)/RAnn V).

2.4 The f ollowing generalizes [25], 3.1.

PROPOSITION: Let g be a semisimple Lie algebra and V an ad g
finite U(g) 0 U(g) module of finite length. Then

(i) d( U(#)lLAnn V) = d( U(#)lRAnn V) = d(V).
(ii) If -v/gr(LAnn V) and Vgr(RAnn V) are both prime ideals, then

they coincide. (Recall that U(g) is given the canonical filtration).

By 2.3, [13], Prop. 7 and [23], 3.2, 3.6, we have

This gives (i). For (ii) observe that gr(LAnn V) C Ann gr V (with gr V
prescribed by 2.1 and 2.3) and so by (i), d(V) = d ( U(g)/LAnn V) =
d(S(g)/gr(LAnn V)) &#x3E; d (S(g)/Ann gr V) &#x3E; d(gr V) = d(V). Given
Vgr(LAnn V) prime, one obtains Vgr(LAnn V) = VAnn gr V and
hence (ii).

3. Induced modules

3.1 Let g be a semisimple Lie algebra, $ a Cartan subalgebra for g,
R C $* the set of non-zero roots, R+ C R a system of positive roots,
B C R+ a Z basis for R, sa the reflection corresponding to the root a,
W the group generated by the sa : a E R, P(R) the lattice of integral
weights. Fix a Chevalley basis for g and let Xa denote the element in
this basis of weight a E R. Let n (resp. n-) denote the subalgebra of A
spanned by the Xa : a E R+ (resp. a E R-) and set b : = n Q fj. For each
subset B’ C B, set R’= ZB’ f1 R, R’+ = R, fl R’, WB, the subgroup of
W generated by the sa : a E R’, wB, the unique element of WB, taking
B’ to -B’, P(R’)++ = {A E $*: 2(À, a )/(a, a) E N+, for all a E B’),
B" = IA e *: (,k, a) = 0, for all a E: B’l. Let pB, D b (or simply, p)
denote the subalgebra of g with reductive part b (D (@ CXa : a ER’},
mB, (or simply, m) the nilradical of pp and a-B, (resp. p if B’ = B ) the
half sum of the roots in R’+. Given À E P(R’)", let VB,(À) denote the
simple finite dimensional pa module with highest weight À - p and in
the notation of [10], 5.1 set MB,(A) = ind(VB’(À), pB, t #), IB,(A) =
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Ann MB{A). We remark that dim VB{A) = dim VB{A + v), for all v E
B". When B’ is the empty set, MB{A) coincides with the Verma
module M(A) for g, b, B, p as defined in [10], 7.1.14. We let L(A)
denote the unique simple quotient of M(,k) and set I(,k) = Ann L(A).
If MB,(A) is defined it is a quotient of M(A) and so I(A) D IB{A).

Let u H ‘u (resp. M’-&#x3E;M) denote the involutory antiautomorphism of
U(g) defined through ‘Xa = X-a: a E R, tH = H, for all H E t (resp.
X = -X, for all X E g). Set mB’ = tmB’ (or simply, m-).

LEMMA: For each B’ C B, A E P (R’)++,
(i) d(MB{Á» = dim mB’.
(ii) e(MB,(,k» = dim VB{A).

Take M = MB{Á), M°= VB,(A) in 2.1. Then M identifies with

U(g)@u(p)Mo= U(m-)@Mo and for all kEN, we have Mk =

U(m-)k@Mo, which gives the required assertions.
3.2 Identify U : = U(g) 0 U(g) canonically with U (g (f) g), set

j(X) = (X, -X), for all X E g and k : = j(g). Given A, IL E fj*, M (resp.
N) a subquotient of M(A) (resp. M(li», define Homc(M, N) as a U
module through «aob),x)m=’âx6m, for all a, b E U(g), x E

Homc(M,N), meM. Let L(M, N) denote the subspace of

Homc(M, N) of all t finite elements (which is a U submodule and ad A
finite in the sense of 2.3). Given A, IL E P(R’)++, then

L(MB,( ), MB,(I£» is non-trivial iff k - 1£ E P(R), [9], 5.8.
3.3 Call A e $* dominant if 2(A, a)/(a, a) e N-, for all a E R+ and

regular if (A, a) 0 0, for all a E R. For each À E $*, set W(A) =
{w E W : wk = A ), R, = f a E R : 2(A, a)/(a, a ) E Z), R1 = R+ fl RA, WA
the subgroup of W generated by the sa : a e RA and WA the unique
element of WA taking R1 to -R1. Given A, IL E fj* such that À - 1£ E
P(R), then WA = WJL and we say that A and 1£ belong to the same
facette of $* if W(A) = W(IL) and there exists w E WA such that wA
and WIL are both dominant. Given A, IL E P(R’)++ consider

(MB{-A)@MB{-IL»* as a U module through transposition and let
LB{A, IL) dénote the subspace of ail r-finite éléments (which is an ad g
finite U module and non-trivial iff A - IL E P(R)). If B’ is the empty
set we simply write L(A, li). If li is dominant, then [12], Thm. 4.2,
L(A, IL) admits a unique simple quotient V(,k,.u) and we set

V(A, WIL) = V(w -’,k, IL), for all w E WJL (c.f. [12], Thm. 4.1).

LEMMA: For all.

are simple U(g) modules, then



41

(i) is clear (see proof of [13], Prop. 9). (ii) follows from (i) and [9],
5.5.

REMARK: We shall eventually see (c.f. 6.2 (iii)) that (ii) holds
without restriction on simplicity.

3.4 Given À E fj*, let À denote its orbit under W, which may be
identified with the element I(A)f1Z(#) of Max Z(g). Set Bei =
(I(&#x3E; ): ..t E Â). Then aei C 7T-l(À) (notation 1.2) and indeed [13], Thm. 1
equality holds. Given k E P(R) we may further identify À with an
element of t" (by taking the unique simple t module with extreme

weight A) and then t" = P(R)IW. Let P (R )+ denote the dominant
elements of P(R). We give P(R)+ (which we sometimes identify with
N": r = rank g) the topology induced by the Zariski topology on $*.

4. The primeness of the ring L(MB,(A), MB,(A»

Retain the notation of Section 3. We start with some standard

reasoning.
4.1 A t-finite U module M is said to admit a f ormal character (with

respect to t) if each isotypical component Mv: v E t" has finite multi-
plicity, which we denote by [M : û].

LEMMA: Suppose M # 0 admits a f ormal character. Then M admits
at least one simple subquotient.

Choose û E t" such that Me 0 0. Let N’ be a submodule of M for
which Ni has minimal non-zero multiplicity and set N = UN . By
construction every proper submodule of N has no isotypical component
of type v. Hence the sum N of all proper submodules of N is a proper
submodule of N and so N/N is the required simple subquotient.

4.2 A U module L is said to admit a central character if there

exists ll E Max(Z(g) @ Z(g» such that z - A (z) - 1 is nilpotent for
every z E Z(g) @ Z(g).

LEMMA: Let L be a t finite U module. If L admits both a f ormal and a
central character, then L has finite length.

Let (À, iî): k, IL E b* define the central character of L (c.f. 3.4). By
[12], Thm. 4.5, the simple subquotients of L form a subset of

( V(A ’, &#x3E; ’): A ’ e Â, &#x3E; ’ e il ). Recall [12], 3.4 that V(À’,li’) has a non-
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zero isotypical component of type (A’- li)^ and this can have at most
(card W)2 values. Now if L has infinite length, then by 4.1 it admits

infinitely many simple subquotients which therefore cannot all belong
to the above set. This contradiction proves the lemma.

REMARK: Obviously L has length --5(card W)2 _ maxf[M: (,k’-
JI’) A]: A’ E Â, ’ E 1}.

4.3 PROPOSITION: For allk, ii E b* and every subquotient M (resp.
N) of M(,k) (resp. M(&#x3E;)) one has

(i) L(M, N) has finite length as a U module. In particular it is

finitely generated as a left or a right U(g) module (cf. 2.2).
(ii) L(M, M) is a Noetherian ring.

It is clear that (- Â, - ¡1) defines the central character of L(M, N).
Identify t with g. Given F a finite dimensional g module consider
M@F as a g module through X(m@f)=Xm@f+m@Xf:XEg,
m E M, f E F. We have Homg(F, L(M, N)) = Homg(M@ F, N) up to
isomorphism (c.f. [8], 6.2). Now M@ F has a formal character

with respect to b and so taking account of the possible simple
subquotients of N (c.f. [10], 7.1.7, 7.4.7, 7.6.1) it follows that L(M, N)
admits a formal character. Hence (i) obtains from 4.2 and (ii) from
the fact that U(g) is Noetherian.

REMARK: B y [5], 3.6 there is integer n(g) depending only on g which
is an upper bound to the length of any Verma module for g. By [20],
2.2 we then have dim Homg(MD F, N) S n (g) dim F.

4.4 In the remainder of Sect. 4, we fix B’ C B and A E P(R’)++. For
all v e B ", the identity map on U(rtt-) (notation 3.1) induces a j(m)
invariant linear isomorphism OÂ-’ (or simply, 0,) of MB,(A) onto

MB{A - v). Suppose further that v E P(R)+. Then by [9], 8.4 we have
OA-’EE L(MB,(A), MB,(A - v)) and we let 0’-’ (or simply, 0,) denote
the unique simple t module it generates. It is clear that for all

,k, li E P(R’)++, 0 # a E L(MB,(Ii), MB,(A )) one has 0»a # 0.
4.5 The action of U(g) in MB{A) defines an embedding of

U(g)/IB{A) in L(MB,(A), MB,(,k» which may be strict [9], 6.5 (see also
10.5) even if MB,(A) is a simple module. Conversely equality can hold
[8], 6.10 even if MB,(,A) is not simple. In fact since L(MB,(A), MB,(A» is
generated by its ad rn- invariant elements, it follows that equality
holds whenever tn- is commutative and dim VB,(A) = 1. Set P(R’)" -
(A E P(R’)++: -wB,A is dominant} = (A E P (R’)++: 2(A, a )/(a, a ) §É N+,
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for all a E R+"R’+}. For all À E P(R’)++, there clearly exists v E

B’.l n P(R)+ such that k - v E P (R’)’. The importance of this set

derives from the following result of Conze-Berline and Duflo [9], 2.12,
4.7, 6.3.

THEOREM: For all B’ C B, and all À E P(R’)V,
(i) MB,(Á) is a simple U(g) module.
(ii) U(g)/IB’(Á) = L(MB’(À ), MB,(Á».

REMARK: (i) is a special case of a result of Jantzen [18].

4.6 A result of Lepowsky [29], Thm. 1.1, states that Ma (À) admits a
unique simple submodule if dim VB,(A) = 1. This presumably fails in
general. Yet it does have the following important variation:

PROPOSITION: Consider MB,(À) as a L(MB,(Á), MB,(A)) module.

Then MB,(À) admits a unique simple submodule.

Choose v E B’.l fl P(R)+ such that À - v E P(R’) v and set

L : = L(MB{Á - v), MB,(Á»6J1 which (c.f. 3.2, 4.4) is a non-zero left

ideal of L(MB,(Á), MB,(A»). Now for all O;;é m E MB{Á), we have
0 0 6J1m E: MB,(,k - v ) and so U(g)O,m = Ma (À - v), by 4.5 (i). It fol-

lows that N : = Lm = L(Mp(À - v), MB,(À»MB,(À - v), is a non-zero

L(MB,(Á), MB«À)) submodule of Ma (À) which is independent of the
choice of m. Consequently for any non-zero simple L(MB(À), MB,(Á»
submodule No of MB{Á), we must have No::&#x3E; LNo = N and so N
satisfies the conclusion of the proposition.

4.7 We denote the submodule in the conclusion of 4.6 by NB,(A).
Consider NB«À) as a U(g) module (the latter given the canonical
filtration).

LEMMA:

(i) d(NB’(Á» = dim mB’,
(ii) e(NB«À )) = dim VB«À ),
(iii) d(MB,(Á)/NB{Á»  dim ma.

Choose v (=- B,l n P (R)’ such that Á - v E P(R’) V. Set A =

U(g)/IB’(Á - v), B = L(MB’(À), MB,(À - V)), C = L(MB’(À - v), MB,(Á»,
V = Va (À - v), M = MB’(À - v), D = End M. By 4.4, we have 0» E B.
By 4.5 (ii), A = L(M, M) and so 0»C is a right ideal of A. Further-
more by [26], 4.2, A m- is a prime Goldie ring which by [24], 5.8 is a
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quotient of U(8)’- and is hence [42] finitely generated. Recall [9], 8.4
that 0, is a j(n) invariant weight vector of j(b) weight v.

Consider A m- / 0,C’- as a finitely generated right A’" module. By
[39], 2.3 (which trivially generalizes to Goldie rings) it is enough to
show that d(A m- / lJvCm-)  d(A m-). This follows easily from the

dimensionality estimates (i) and (ii) given below. First for each

IL E P(R)-, let A-- (resp. B:-, C:-) denote the subspace of A’- (resp.
Bm-, C’-) of j(b) weight vectors of weight 1£ and identify M with
U(rn-) Q V. Then A"’ is a j($) submodule of D’- which is in turn
isomorphic to U(m-) @ End V (c.f. 5.8). This gives dim A:-  00.
Since AO, C B and aO, = 0 : a E A implies a = 0, we obtain

Set JI* = -WBII. Recalling that M is a simple module it follows from
[9], 5.5, 5.8 that dim C:-  dim B*. Yet Olle = 0: c E C implies c = 0
and so

By [26], 4.2 each regular element s E Am is regular in Dm . The
latter identifies with U(m-)@End V in which the elements of U(m-)
act by right multiplication in M = U(m-) @ V. Thus for each m E M
we can choose a E D"’- such that a V = Cm. If sm = 0, then sa V = 0
and so saM = 0. Consequently sa = 0, which by the regularity of s
implies a = 0 and hence m = 0.
By (*) we can choose c E Cm such that s : = Bvc is regular in A m-.

We have shown that cm ¥- 0 for all 0 0 m E M and so

dim(U(m-)kc(1 0 V» = dim(U(m-)k@ V), @ for all k E N . Since cM C
CM C NB{À) it follows by 3.1 that d(NB (À)) &#x3E; d(Mp (À - v)) = dim MB’
and equality implies e (NB«A )) * dim VB,(A - v) = dim VB«A ). Yet the
opposite inequalities obtain from 3.1 and the fact that NB,(,k) is a

submodule of MB{À). This gives (i) and (ii), which combined with 2.2
(i) imply (iii).

4.8 THEOREM: For all B’CB, À E P (R’)++,
(i) NB{À) is a faithful L(MB«A), MB,(A)) module.
(ii) L(MB,(À), MB,(,k» is a prime, Noetherian ring.
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by 4.3 (i), A has finite length as a U module and so by 2.4 (i) we must
have d(U(g)/R) = d(U(g)/L). This contradiction gives (i). Combined
with 4.3 (ii) and 4.6 this gives (ii).

5. Localization

5.1 Let A be a prime, Noetherian ring and S the set of regular
elements of A (so then Fract A = S-’A). Given M a left A module,
set S-’M : = S-IA@AM (or simply, Fract M). We shall say that M is
divisable (by S) if the map m - 10 m of M into S-’M is injective
(equivalently, if for each s E S, 0#m E M one has sm 0 0).
Obviously any submodule of a divisable module is divisable. In

particular any left ideal of A is divisable as a left A module. Suppose
in addition that A and M are finitely generated. Then d(M):5 d(A),
by [25], 2.1. Suppose further that M is divisable. Then we have the

LEMMA: d (M) = d (A).

Suppose d(M)  d(A). Choose 0 # m G M and set N = Am, L =
Ann m. Then for every left ideal K of A we have d (K/(K n L) 
d (A/L) = d (N)  d (M)  d (A). Hence by [39], 2.3 if K 0 0, then K fl
L 0 0 and so ([15], Lemma 7.2.5) L n S 0 0. This contradicts the

divisability of M.
5.2 Retain the notation and hypotheses of 5.1 and suppose in

addition that d(A)  00. Let rk M denote the maximum number of
direct summands of non-zero left A submodules of M. Recall that M

is assumed finitely generated and so S-1M is finitely generated as a
left S-’A module. By ([15], Lemma 4.3.2, Thms. 2.1.6, 7.2.1) we can
write S-1M as a direct sum of k:=rkM simple S-’A modules
Q1, Q2, ..., Qk each isomorphic to a fixed minimal left ideal L of
S-’A. Let N be any A submodule of M.
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(ii) e(M) = e(L fl A) - rk M. In particular rk M divides e(M).

(i) Let Mo be a finite dimensional generating subspace for M. By
the hypothesis of (i) there exists s E S such that sM° C N. Then
d (MIN ) S d(AIAs)  d (A) = d(M).

(ii) Set Pi = A rl Q; : i = 1, 2,..., k. We have S -’Pi = Qi and d (Pi) =

d(M) by 5.1. Let N be the direct sum of the Pi (which may be
considered as a submodule of M). We have S-’N = M and so by (i)
and 2.2 (iii) that e(M) = e(N). Hence it is enough to show that

e(P;) = e(L fl A), for all i. Set P = Pi. Let pO be a finite dimensional

generating subspace for P and cp the S-’A module isomorphism of
S-Ip onto L. Choose s E S such that scp(pf) C A. Then P’ : = ASP° is
an A submodule of P and S-Ip’ = S-’P by the left Ore condition on
A. Hence d(P/P’)d(P) by (i). Again ço(P’) = As ço(PO) C L n A;
S-I(cp(p’» = çP(S-’P’) = L and so d«L n A)/cp(P’»  d(L fl A) by (i).
Hence e(P) = e(P ’) = e(L f1 A), as required.

5.3 (Notation, Sects. 3, 4). Fix Ài E P (R’)++ such that Ài - Àj E
P(R): i, j = 1,2,3.

Choose v EE Bl n P(R)’ such that A2 - V e P(R’)’ and a finite

dimensional t submodule F of L(MB,(À2 - v), MB,(Ai)) such that

L(MB,(À 1), MB’(lk2»F 0 0. Then i9,L(MB, (À 1), MB,(À2» F is a non-zero
two-sided ideal of the prime Noetherian ring U(A)IIB’(À2 - v). By 2.2,
[1], 2.4, [25], 2.1 and [6], 3.6, we have 2 dim ma = d ( U(g)/IB-(A2 - V» =
d(O,,L(MB,(,ki), MB,(À2» F) - d(L(MB.(Àt), MB,(,k2») where the last step
obtains from the fact that 8." F are finite dimensional and t stable. By
4.3 (i), and [25], 2.1, 2.8 we obtain the opposite inequality.




