G. VAN DIJK

Smooth and admissible representations of
p-adic unipotent groups

Compositio Mathematica, tome 37, no 1 (1978), p. 77-101

<http://www.numdam.org/item?id=CM_1978__37_1_77_0>
§1. Introduction

A representation π of a totally disconnected group G on a complex vector space V is said to be smooth if for each $v \in V$ the mapping

$$x \mapsto \pi(x)v \quad (x \in G)$$

is locally constant. π is called admissible if in addition the following condition is satisfied: For any open subgroup K of G, the space of vectors $v \in V$ left fixed by $\pi(K)$ is finite-dimensional. An admissible representation is said to be pre-unitary if V carries a $\pi(G)$-invariant scalar product.

These representations play an important role in the harmonic analysis on reductive p-adic groups [6]. The aim of this paper is to emphasize their importance in harmonic analysis on unipotent p-adic groups. Let \mathcal{O} be a p-adic field of characteristic zero. G will denote a connected unipotent algebraic group, defined over \mathcal{O} and G its subgroup of \mathcal{O}-rational points. Let \mathfrak{g} be the Lie algebra of G and \mathfrak{g} its subalgebra of \mathcal{O}-points. G is a totally disconnected group. We show:

(i) any irreducible smooth representation of G is admissible,
(ii) any irreducible admissible representation of G is pre-unitary.

Jacquet [7] has shown that (i) holds for reductive p-adic groups G. Actually, we make use of a remarkable lemma from [7]. The main tool for the proof of (i) and (ii) is the interference of so-called supercuspidal representations, which are known to play a decisive role in the representation theory of reductive groups [6]. We apply some results of Casselman concerning these representations [3], which originally were only stated for $GL(2)$. For the proof, which is by
induction on \(\dim G \), one has to go to the three-dimensional \(p \)-adic Heisenberg group. A new version of von Neumann's theorem ([11], Ch. 2) is needed to complete the induction. All this is to be found in sections 2, 3, 4 and 5.

Section 6 is concerned with the Kirillov construction of irreducible unitary representations of \(G \), which is standard now. In the next section we discuss the character formula, following Pukanszky [12]. As a byproduct we obtain a homogeneity property for the distribution, defined by a \(G \)-orbit \(O \) in \(\mathcal{G}' \): if \(\dim O = 2m \), then

\[
\int_O \phi(tv) \, dv = |t|^{-m} \int_O \phi(v) \, dv \quad (\phi \in C_c^\infty(\mathcal{G}'))
\]

for all \(t \in \Omega, \ t \neq 0 \). Similar results are true for nilpotent orbits of reductive \(G \) in \(\mathcal{G} \) [2]; there they form a substantial help in proving that the formal degrees of supercuspidal representations are integers, provided Haar measures are suitably normalized. Let \(Z \) denote the center of \(G \).

Section 8 deals with square-integrable representations mod \(Z \) of \(G \). Moore and Wolf [10] have discussed them for real unipotent groups. The main results still hold for \(p \)-adic groups.

Let \(\pi \) be an irreducible square-integrable representation mod \(Z \) of \(G \). For any open compact subgroup \(K \) of \(G \), let \(m(\pi, 1) \) denote the multiplicity of the trivial representation of \(K \) in the restriction of \(\pi \) to \(K \). Normalize Haar measures on \(G \) and \(Z \) in such a way that \(\text{vol}(K) = \text{vol}(K \cap Z) = 1 \). Choose Haar measure on \(G/Z \) accordingly. Then, according to a general theorem ([5], Theorem 2) one has:

\[
m(\pi, 1) \leq \frac{1}{d(\pi)}, \quad \text{where } d(\pi) \text{ is the formal degree of } \pi.
\]

Now assume in addition \(K \) to be a lattice subgroup of \(G \): \(L = \log K \) is a lattice in \(\mathcal{G} \). Moreover, let \(m(\pi, 1) > 0 \). Then we have equality:

\[
m(\pi, 1) = \frac{1}{d(\pi)}.
\]

This is proved in section 9.

In section 10 we relate our results to earlier work of C.C. Moore [9] on these multiplicities, involving numbers of \(K \)-orbits. We conclude with an example in section 11.
§2. Smooth representations

We call a Hausdorff space X a totally disconnected (t.d.) space if it satisfies the following condition: Given a point $x \in X$ and a neighborhood U of x in X, there exists an open and compact subset ω of X such that $x \in \omega \subseteq U$. Clearly a t.d. space is locally compact.

Let X be a t.d. space and S a set. A mapping $f: X \to S$ is said to be smooth if it is locally constant. Let V be a complex vector space. We write $C_\infty^\omega(X, V)$ for the space of all smooth functions $f: X \to V$ and $C_\infty^\omega(X, V)$ for the subspace of those f which have compact support. If $V = \mathbb{C}$ we simply write $C_\infty^\omega(X)$ and $C_\infty^\omega(X)$ respectively. One can identify $C_\infty^\omega(X, V)$ with $C_\infty^\omega(X) \otimes V$ by means of the mapping $i: C_\infty^\omega(X) \otimes V \to C_\infty^\omega(X, V)$ defined as follows: If $f \in C_\infty^\omega(X)$ and $v \in V$, then $i(f \otimes v)$ is the function $x \mapsto f(x)v$ ($x \in X$) from X to V.

Let G be a t.d. group, i.e. a topological group whose underlying space is a t.d. space. It is known that G has arbitrarily small open compact subgroups. By a representation of G on V, we mean a map $\pi: G \to \text{End}(V)$ such that $\pi(1) = 1$ and $\pi(xy) = \pi(x)\pi(y)$ ($x, y \in G$). A vector $v \in V$ is called π-smooth if the mapping $x \mapsto \pi(x)v$ of G into V is smooth.

Let V_∞ be the subspace of all π-smooth vectors. Then V_∞ is $\pi(G)$-stable. Let π_∞ denote the restriction of π on V_∞. π is said to be a smooth representation if $V = V_\infty$. Of course π_∞ is always smooth.

We call a smooth representation π on V irreducible if V has no non-trivial $\pi(G)$-invariant subspaces.

Let π be a representation of G on the complex vector space V. π is called admissible if

(i) π is smooth,

(ii) for any open subgroup K of G, the space of vectors $v \in V$ which are left fixed by $\pi(K)$, is finite-dimensional.

An admissible representation π of G on V is called pre-unitary if V carries a $\pi(G)$-invariant scalar product. Let \mathcal{H} be the completion of V with respect to the norm, defined by the scalar product. Then π extends to a continuous unitary representation ρ of G on \mathcal{H} such that $V = \mathcal{H}_\infty$ and $\pi = \rho_\infty$. It is well-known that π is irreducible if and only if ρ is topologically irreducible. Note that V is dense in \mathcal{H}.

Let π be a smooth representation of G on V and V' the (algebraic) dual of V. Then the dual representation π' of G on V' is given by

$$\langle v, \pi'(x)\lambda \rangle = \langle \pi(x^{-1})v, \lambda \rangle \quad (x \in G, \lambda \in V', v \in V).$$
Put $\tilde{V} = (V')_\pi$ and $\tilde{\pi} = (\pi')_\sigma$. Then $\tilde{\pi}$ is a smooth representation which is called contragredient to π. It is easily checked that π is admissible if and only if $\tilde{\pi}$ is.

Let H be a closed subgroup of G and σ a smooth representation of H on W. Then we define a smooth representation $\pi = \text{ind}_{H \backslash G} \sigma$ as follows: Let V denote the space of all smooth functions $f : G \to W$ such that

1. $f(hx) = \sigma(h)f(x)$ \quad ($h \in H, x \in G$),
2. $\text{Supp} f$ is compact mod H.

Then π is the representation of G on V given by

$$\pi(y)f(x) = f(xy) \quad (x, y \in G, f \in V).$$

Let π_1, π_2 be two smooth representations of G on V_1 and V_2 respectively. We say that π_1 is equivalent to π_2 if there is a linear bijection $T : V_1 \to V_2$ such that $\pi_2(x)T = T\pi_1(x)$ for all $x \in G$.

§3. Smooth and admissible representations of the three-dimensional p-adic Heisenberg group

Let Ω be a p-adic field, i.e. a locally compact non-discrete field with a discrete valuation. There is an absolute value on Ω, denoted $|\cdot|$, which we assume to be normalized in the following way. Let dx be an additive Haar measure on Ω. Then $d(ax) = |a|dx$ ($a \in \Omega^*$). Let \mathcal{O} be the ring of integers: $\mathcal{O} = \{x \in \Omega : |x| \leq 1\}$; \mathcal{O} is a local ring with unique maximal ideal P, given by $P = \{x \in \Omega : |x| < 1\}$. The residue-class field \mathcal{O}/P has finitely many, say q, elements. P is a principal ideal with generator w. So $P = \pi\mathcal{O}$, $|w| = q^{-1}$. Put $P^n = \pi^n\mathcal{O}$ ($n \in \mathbb{Z}$).

Since P^n is a compact subgroup of the additive group of Ω and $\Omega = \bigcup_n P^n$, any additive character of Ω is unitary. Let $G = H_3$ be the 3-dimensional Heisenberg group over Ω:

$$G = \left\{ [x, y, z] = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} ; \ x, y, z \in \Omega \right\}.$$

G is a t.d. group. The group multiplication is given by:

$$[x, y, z][x', y', z'] = [x + x', y + y', z + z' + xy'].$$
THEOREM 1: (1) Each irreducible smooth representation \(\pi \) of \(H_3 \) is admissible; (2) Each irreducible admissible representation \(\pi \) of \(H_3 \) is pre-unitary.

We make use of the following result of Jacquet [7].

LEMMA 1: Let \(H \) be a group and \(\rho \) an (algebraically) irreducible representation of \(H \) on a complex vector space \(V \) of at most denumerable dimensions. Then every operator \(A \) which commutes with \(\rho(H) \) is a scalar.

Let \(V \) be the space of \(\pi \). Let \(v \in V \), \(v \neq 0 \) and \(K = \{ g \in G : \pi(g)v = v \} \). Then \(K \) is open and \(G/K \) is denumerable. Since \(V = \text{span}\{\pi(g)v : g \in G/K\} \), the lemma applies. \(Z = \{[0, 0, z] : z \in \Omega \} \) is the center of \(G \). Therefore, there exists an additive (unitary) character \(\psi_\pi \) of \(\Omega \) such that \(\pi([0, 0, z]) = \psi_\pi(z)I \) \((z \in \Omega)\), where \(I \) is the identity in \(\text{End}(V) \). We have two cases:

(a) \(\psi_\pi = 1 \). Then \(\pi \) actually is a representation of \(G/Z = \Omega^2 \) which is (again by the lemma) one-dimensional and, as observed above, unitary.

(b) \(\psi_\pi \neq 1 \). Fix \(w \in V \), \(w \neq 0 \). For any \(v \in V \), put \(c_v(g) = \langle \pi(g)v, w \rangle \) \((g \in G)\). The mapping \(v \mapsto c_v \) is a linear injection of \(V \) into the space of smooth functions \(f \) on \(G \), satisfying

\[
f([x, y, z]) = \psi_\pi(z)f([x, y, 0]).
\]

Let \(K \) be a (small) open compact subgroup of \(G \) such that \(\pi(k)w = w \) for all \(k \in K \). Call \(V_K = \{ v \in V : \pi(k)v = v \text{ for all } k \in K \} \). Then \(f = c_v \) satisfies

\[
f(gk) = f(gk) = f(g) \quad (g \in G; \ k \in K)
\]

for all \(v \in V_K \).

Write \(g = [x, y, 0] \), \(k = [x', y', 0] \). Then

\[
f([x, y, 0]) = f([x + x', y + y', xy']) = f([x + x', y + y', x'y]).
\]

Hence

\[
f([x, y, 0]) = f([x + x', y, 0]) = f([x, y + y', 0]).
\]

Therefore \(f([x + x', y + y', 0]) = f([x, y, 0]) \) for all \(x, y \in \Omega \) and \(x', y' \).
small (only depending on K, not on the particular choice of $v \in V_K$). Moreover:

$$f([x, y, 0]) = f([x, y, 0])\psi_\pi(xy') = f([x, y, 0])\psi_\pi(x'y)$$

for x', y' as above. Since $\psi_\pi \neq 1$, $f([x, y, 0]) = 0$ for x or y large enough (only depending on K, not on the particular choice of $v \in V_K$). Since $f([x, y, z]) = \psi_\pi(z)f([x, y, 0])$, f is completely determined by the values $f([x, y, 0])$, $(x, y \in \Omega)$. Consequently, $\dim V_K = \dim\{c_v : v \in V_K\} < \infty$. Part (1) of the theorem is now evident. To prove part (2) it suffices to take the following scalar product on V:

$$(v, v') = \int_\Omega \int_\Omega c_v([x, y, 0])\overline{c_v([x, y, 0])} \, dx \, dy \quad (v, v' \in V).$$

Remark: It is clear that the same observations remain true for the higher dimensional p-adic Heisenberg groups.

§4. Supercuspidal representations

G is a t.d. group and π a smooth representation of G on V. By a matrix coefficient of π, we mean a function on G of the form

$$x \mapsto \langle \pi(x)v, \tilde{v} \rangle \quad (x \in G)$$

where v and \tilde{v} are fixed elements in V and \tilde{V} respectively. Let Z denote the center of G. We call π a supercuspidal representation if each matrix coefficient of π has compact support modulo Z. The proof of Theorem 1 emphasizes the significance of this kind of representations. Actually, one has the following lemma.

Lemma 2: Let π be a smooth representation of H_3 such that $\pi([0, 0, z]) = \psi_\pi(z)I$ $(z \in \Omega)$ for some non-trivial additive character ψ_π of Ω. Then π is a supercuspidal representation.

Assume, from now on, G to satisfy the second axiom of countability. Let π be an irreducible smooth representation of G on V. Then by Lemma 1, there is a character λ_π of Z such that $\pi(z) = \lambda_\pi(z)I$ $(z \in Z)$.

Lemma 3: Let π be an irreducible, admissible and supercuspidal representation of G on V. Assume λ_π unitary. Then π is pre-unitary.
and one has the following orthogonality relations: There exists a positive constant \(d_\pi \) (the formal degree of \(\pi \)), only depending on the choice of Haar measure \(d\hat{g} \) on \(G/Z \) such that

\[
\int_{G/Z} \langle \pi(g)u, \tilde{u} \rangle \langle \pi(g^{-1})v, \tilde{v} \rangle \, d\hat{g} = d_\pi^{-1} \langle u, \tilde{u} \rangle \langle v, \tilde{v} \rangle
\]

for all \(u, v \in V \), \(\tilde{u}, \tilde{v} \in \tilde{V} \).

To make \(\pi \) pre-unitary, choose any \(w \in \tilde{V} \), \(w \neq 0 \) and define the following \(G \)-invariant scalar product on \(V \):

\[
(v, v') = \int_{G/Z} \langle \pi(g)v, w \rangle \overline{\langle \pi(g)v', w \rangle} \, d\hat{g}.
\]

\(\pi \) extends to an irreducible unitary representation on the completion \(\mathcal{H} \) of \(V \) such that \(\mathcal{H}_\pi = V \). The orthogonality relations now follow easily from those for irreducible unitary supercuspidal representations ([5], Theorem 1).

The following theorem is due to Casselman ([3], Theorem 1.6).

Theorem 2: Let \(\rho \) be an irreducible, admissible and supercuspidal representation of \(G \) on \(W \) such that \(\rho(z) = \lambda(z)I \) \((z \in Z)\), where \(\lambda \) is a unitary character of \(Z \). Let \(\pi \) be any smooth representation of \(G \) on \(V \) such that \(\pi(z) = \lambda(z)I \) \((z \in Z)\). Given a \(G \)-morphism \(f \neq 0 \) from \(\pi \) to \(\rho \), there exists a \(G \)-morphism splitting \(f \).

Proof: Let \(S_\lambda(G) \) denote the space of smooth functions \(h \) on \(G \) with compact support mod \(Z \) such that \(h(xz) = h(x)\lambda(z^{-1}) \) \((x \in G, z \in Z)\). \(S_\lambda(G) \) is a \(G \)-module, \(G \) acting by left translation. Fix \(\tilde{w}_0 \in \tilde{W} \), \(\tilde{\tilde{w}}_0 \neq 0 \). The mapping \(F: W \to S_\lambda(G) \), defined by

\[
F(w)(x) = \langle \rho(x^{-1})w, \tilde{w}_0 \rangle \quad (w \in W, x \in G)
\]

is a \(G \)-morphism. Choose \(w_0 \in W \) and \(v_0 \in V \) such that \(\langle w_0, \tilde{\tilde{w}}_0 \rangle = d_\rho \), \(f(v_0) = w_0 \). By \(P \) we denote the \(G \)-morphism from \(S_\lambda(G) \) to \(V \) given by

\[
P(h) = \int_{G/Z} h(x)\pi(x)v_0 \, d\hat{x} \quad (h \in S_\lambda(G)).
\]

Then \(P \circ F \) is the \(G \)-morphism, splitting \(f \).
\[\langle f \circ P \circ F(w), \tilde{w} \rangle = \int_{G/\mathbb{Z}} \langle \rho(x^{-1})w, \tilde{w}_0 \rangle (f(x)v_0, \tilde{w}) \, d\tilde{x} \]
\[= \int_{G/\mathbb{Z}} \langle \rho(x^{-1})w, \tilde{w}_0 \rangle (\rho(x)w_0, \tilde{w}) \, d\tilde{x} \]
\[= d_{\rho}^{-1}(w_0, \tilde{w}_0) \langle w, \tilde{w} \rangle \quad \text{(by Lemma 3)} \]
\[= \langle w, \tilde{w} \rangle \quad \text{for all } \tilde{w} \in \tilde{W}. \]

Hence \(f \circ P \circ F(w) = w \) for all \(w \in W \).

Let us now turn back to \(H_3 \). The irreducible unitary representations of \(H_3 \) are well-known (cf. [11]). Their restrictions to the space of smooth vectors are admissible. Keeping in mind Theorem 1, we have therefore the following list of irreducible admissible representations of \(H_3 \). Let \(\chi_0 \) denote any non-trivial additive character of \(\Omega \). Then:

(a) One-dimensional representations \(\rho_{\mu,\nu} \, (\mu, \nu \in \Omega) \), trivial on \(\mathbb{Z} \);
\[\rho_{\mu,\nu} ((x, y, z)) = \chi_0(\mu x + \nu y). \]

(b) Supercuspidal representations \(\rho_\lambda \, (\lambda \in \Omega^*) \), non-trivial on \(\mathbb{Z} \), on the space \(C_c^\infty(\Omega) \);
\[\rho_\lambda ((x, y, z)) f(t) = \chi_0(\lambda(z + ty)) f(t + x) \quad (f \in C_c^\infty(\Omega)). \]

We have the following analogue of the famous theorem of von Neumann for \(H_3 \) ([11], Ch. 2).

Theorem 3: Let \(\pi \) be a smooth representation of \(H_3 \) such that \(\pi((0, 0, z)) = \chi_0(\lambda z)I \quad (z \in \Omega) \) for some \(\lambda \neq 0 \). Then \(\pi \) is the (algebraic) direct sum of irreducible representations equivalent to \(\rho_\lambda \).

Proof: Let \(V \) be the space of \(\pi \). Due to Theorem 1, every irreducible subrepresentation of \(\pi \) is equivalent to \(\rho_\lambda \). By Lemma 2, \(\pi \) is a supercuspidal representation. We shall prove the following: Given any \(G \)-invariant subspace \(W \) of \(V \), \(W \neq V \), there exists an irreducible subspace \(U \) of \(V \) such that \(U \cap W = (0) \). An easy application of Zorn’s Lemma then yields the theorem.

Let \(W \) be a proper \(G \)-invariant subspace of \(V \). Put \(\tilde{V} = V/W \). \(\tilde{V} \) is a \(G \)-module; the action of \(G \) is a smooth and supercuspidal representation of \(G \). Let \(\tilde{v}_0 \in \tilde{V} \), \(\tilde{v}_0 \neq 0 \). The \(G \)-module \(\tilde{V}_0 \) generated by \(\tilde{v}_0 \) contains a maximal proper \(G \)-module. Therefore \(\tilde{V}_0 \) has an irreducible quotient, which is also supercuspidal, and admissible by Theorem 1. By Theorem 2, \(\tilde{V}_0 \) and hence \(\tilde{V} \), even has an irreducible subspace, say \(\tilde{V}_1 \), on which \(G \) acts as an admissible, supercuspidal representation. Let \(V_1/W \) be its pre-image in \(V \). Then \(V_1/W \) is a \(G \)-invariant subspace of \(V \) and the canonical map from \(V \) to \(\tilde{V} \) induces a
non-zero G-morphism from $V_1 + W$ to \tilde{V}_1. Again Theorem 2 implies the existence of an irreducible subspace U of V such that $U \cap W = (0)$, $U + W = V_1 + W$. This concludes the proof of Theorem 3.

§5. Smooth and admissible representations of unipotent p-adic groups

Let Ω be a p-adic field of characteristic zero. By G we mean a connected algebraic group, defined over Ω, consisting of unipotent elements, with Lie algebra \mathfrak{g}. Let G, G be the sets of Ω-points of G, G respectively. We have the Ω-isomorphism of algebraic varieties $\exp: G \to G$, which map G onto G. Let ‘log’ denote its inverse. We shall call G a unipotent p-adic group and say that G is its Lie algebra.

Let Z be the center of G, its Lie algebra \mathfrak{z}. One has $\exp \mathfrak{z} = Z$. More generally: the exponential of a subalgebra of G is a unipotent p-adic subgroup of G, the exponential of an ideal in G is a normal subgroup of G.

Let G be a unipotent p-adic group.

THEOREM 4: Each irreducible smooth representation π of G is admissible and pre-unitary.

PROOF: We use induction on $\dim G$. Lemma 1 is the main source to prove the theorem in case $\dim G = 1$. Assume $\dim G > 1$. Fix any non-trivial character χ_0 of Ω. By Lemma 1 there exists a (unitary) character $\lambda\pi$ of Z such that $\pi(z) = \lambda\pi(z)I$ for all $z \in Z$. $\lambda\pi \circ \exp$ is an additive character of \mathfrak{z}, hence $\lambda\pi \circ \exp = \chi_0 \circ f$ for some $f \in \mathfrak{z}'$. $\ker(f)$ is a subalgebra of \mathfrak{z}, $\exp(\ker f) = \ker(\lambda\pi)$ therefore a unipotent p-adic subgroup of Z of codimension at most one. If $\dim Z > 1$ or $\dim Z = 1$ and $\lambda\pi = 1$, π actually reduces to an irreducible representation π_0 of $G_0 = G/\ker \lambda\pi$. But $\dim G_0 < \dim G$. The theorem follows from the induction hypotheses.

It remains to consider the case: $\dim Z = 1$ and $\lambda\pi \neq 1$. We will first show the existence of a unipotent p-adic subgroup G_1 of codimension one in G and an irreducible smooth representation π_1 of G_1 such that π is equivalent to $\ind_{G_1 \uparrow \downarrow G} \pi_1$.

Let $Y_0 \in G$ be such that, $[Y_0, G] \supset \mathfrak{z}$, $Y_0 \notin \mathfrak{z}$. Put $G_1 = \{ U : [U, Y_0] = 0 \}$. G_1 is an ideal in G of codimension 1. Choose $X_0 \notin G_1$ and define $Z_0 = [X_0, Y_0]$. Observe $Z_0 \in \mathfrak{z}$, $Z_0 \neq 0$. Then $\{ X_0, Y_0, Z_0 \}$ is a basis for a 3-dimensional subalgebra of G isomorphic to the Lie algebra of H_3. Let S denote the subgroup of G corresponding to this subalgebra and write, as usual,

\[[x, y, z] = \exp yY_0 \cdot \exp xX_0 \cdot \exp zZ_0 \quad (x, y, z \in \Omega) \]
We can choose $\lambda \in \Omega$, $\lambda \neq 0$ with the following property:

$$\lambda_s([0, 0, z]) = \chi_0(\lambda z) \quad (z \in \Omega).$$

Let us assume, for the moment, that π is an irreducible smooth representation of G on V. By Theorem 3, the restriction of π to S is a direct sum of irreducible representations of S, all equivalent to the representation ρ_s of S in $C_c^\infty(\Omega)$ given by

$$\rho_s([x, y, z])f(t) = \chi_0(\lambda(z + ty))f(t + x) \quad (f \in C_c^\infty(\Omega)).$$

So $V = \bigoplus_{i \in I} V_i^\lambda$ for some index-set I, each V_i^λ being isomorphic to $C_c^\infty(\Omega)$. We may regard I as a t.d. space in the obvious way. Then we have

$$V = C_c^\infty(I, C_c^\infty(\Omega)) = C_c^\infty(I) \otimes C_c^\infty(\Omega) = C_c^\infty(\Omega, W),$$

where $W = C_c^\infty(I)$. Moreover, with these identifications,

$$\pi([x, y, z])f(t) = \chi_0(\lambda(z + ty))f(t + x) \quad (f \in C_c^\infty(\Omega, W)).$$

Let G_1 denote the unipotent p-adic subgroup of G with Lie algebra \mathfrak{g}_1. G_1 is a closed normal subgroup of G and $G = G_1 \cdot (\exp tX_0)_{t \in \Omega}$ (semi-direct product). Since Y_0 is in the center of \mathfrak{g}_1, $\pi(G_1)$ and $\pi(\exp yY_0)$ ($y \in \Omega$) commute. Recall

$$\pi(\exp yY_0)f(t) = \chi_0(\lambda ty)f(t) \quad (y, t \in \Omega; f \in C_c^\infty(\Omega, W)).$$

Our aim now is to prove the following lemma.

Lemma 4: For each $t \in \Omega$, there exists a smooth representation $g_1 \mapsto \pi(g_1, t)$ of G_1 on W such that

(a) $(\pi(g_1)f)(t) = \pi(g_1, t) \cdot f(t)$ for all $f \in C_c^\infty(\Omega, W)$, $g_1 \in G_1$ and $t \in \Omega$;

(b) $\pi(g_1, t + t_0) = \pi(\exp t_0X_0 \cdot g_1 \cdot \exp(-t_0X_0), t)$ for all $t, t_0 \in \Omega$, $g_1 \in G_1$.

Obviously, this lemma implies $\pi = \text{ind}_{G_1 \uparrow G} \pi_1$ where π_1 is given by $\pi_1(g_1) = \pi(g_1, 0)$ ($g_1 \in G_1$). The irreducibility of π yields the irreducibility of π_1.

To prove the lemma, we start with a linear map $A : C_c^\infty(\Omega, W) \rightarrow$
commuting with all operators \(\pi(\exp y_0) \) \((y \in \Omega)\). Thus:

\[
\{A(\chi_0(y \cdot) f(\cdot))(t) = \chi_0(ty)(Af)(t)
\]

for all \(t, y \in \Omega \) and \(f \in C_c^\omega(\Omega, W) \).

Since \(C_c^\omega(\Omega) \) is closed under Fourier transformation, we can easily establish the following: Given \(\phi \in C_c^\omega(\Omega) \) and an open compact subset \(K \) of \(\Omega \), there exists an integer \(m > 0 \), \(\lambda_1, \ldots, \lambda_m \in \mathbb{C} \) and \(y_1, \ldots, y_m \in \Omega \) such that

\[
\phi(t) = \sum_{i=1}^{m} \lambda_i \chi_0(y_i t) \quad (t \in K).
\]

For \(\phi \in C_c^\omega(\Omega) \) let \(L_\phi \) denote the linear map \(C_c^\omega(\Omega, W) \to C_c^\omega(\Omega, W) \) given by \(L_\phi(f)(t) = \phi(t)f(t) \) \((f \in C_c^\omega(\Omega, W))\). Then, putting \(K = \text{Supp} f \cup \text{Supp} Af \), we obtain:

\[
\{A(L_\phi f)(t) = A \left(\sum_{i=1}^{m} \lambda_i \chi_0(y_i t)f(\cdot) \right)(t)
\]

\[
= \sum_{i=1}^{m} \lambda_i \chi_0(y_i t)Af(t) = \{L_\phi(Af)(t) = \{L_\phi(Af)(t)
\]

\((t \in \Omega, f \in C_c^\omega(\Omega, W))\). Hence \(AL_\phi = L_\phi A \) for every \(\phi \in C_c^\omega(\Omega) \). In particular we have: \(\pi(g_1)L_\phi = L_\phi \pi(g_1) \) for all \(g_1 \in G_1, \phi \in C_c^\omega(\Omega) \). Let \(\psi_n \) denote the characteristic function of \(P^n \). In addition, put \(L_n \phi(s) = \phi(s - t) \) \((s, t \in \Omega, \phi \) any function on \(\Omega)\). Define:

\[
\pi(g_1, t)w = \pi(g_1)(L_n \psi_n \otimes w)(t) \quad (g_1 \in G_1, t \in \Omega, w \in W).
\]

Here, as usual, \(L_n \psi_n \otimes w \) is identified with the function \(s \to L_n \psi_n(s) \cdot w \) \((s \in \Omega)\). \(\pi(g_1, t) \) is well-defined: assuming \(n' \leq n \), we obtain

\[
\pi(g_1)(L_n \psi_n \otimes w)(t) = \pi(g_1)(L_n \psi_{n'} \cdot L_n \psi_n \otimes w)(t).
\]

But this equals, by the above result,

\[
L_n \psi_n(t)\pi(g_1)(L_n \psi_{n'} \otimes w)(t) = \pi(g_1)(L_n \psi_{n'} \otimes w)(t).
\]

Let us show now that \(\pi(g_1, t) \) satisfies condition (a) of Lemma 4. Fix \(f \in C_c^\omega(\Omega, W) \) and determine integers \(m, n > 0 \), \(t_1, \ldots, t_m \in \Omega \) and
\(w_1, \ldots, w_m \in W \) such that

\[
f = \sum_{i=1}^{m} L_{\psi_n} \otimes w_i.
\]

Then

\[
\pi(g_1)f(t) = \pi(g_1) \left(\sum_{i=1}^{m} L_{\psi_n} \otimes w_i \right)(t)
\]

\[
= \sum_{i=1}^{m} \pi(g_1)(L_{\psi_n} \otimes w_i)(t)
\]

\[
= \sum_{i=1}^{m} \{ L_{\psi_n} \cdot \pi(g_1)(L_{\psi_n} \otimes w_i) \}(t)
\]

\[
= \sum_{i=1}^{m} \pi(g_1)(L_{\psi_n} \cdot L_{\psi_n} \otimes w_i)(t)
\]

\[
= \sum_{i=1}^{m} \{ L_{\psi_n} \cdot \pi(g_1)(L_{\psi_n} \otimes w_i) \}(t)
\]

\[
= \sum_{i=1}^{m} L_{\psi_n}(t) \cdot \pi(g_1, t)w_i
\]

\[
= \pi(g_1, t) \cdot f(t) \quad (t \in \Omega, g_1 \in G_i).
\]

Condition (b) is also fulfilled. Indeed,

\[
\pi(\exp t_0X \cdot g_1 \cdot \exp -t_0X_0, t)w
\]

\[
= \pi(\exp t_0X_0)\pi(g_1)\pi(\exp -t_0X_0)(L_{\psi_n} \otimes w)(t)
\]

\[
= \pi(g_1)\pi(\exp -t_0X_0)(L_{\psi_n} \otimes w)(t + t_0).
\]

Furthermore,

\[
\pi(\exp -t_0X_0)(L_{\psi_n} \otimes w)(u) = L_{\psi_n} \otimes w(u - t_0)
\]

\[
= L_{t+t_0\psi_n} \otimes w(u) \quad (u \in \Omega).
\]

Hence,

\[
\pi(\exp t_0X \cdot g_1 \cdot \exp -t_0X_0, t)w
\]

\[
= \pi(g_1)(L_{t+t_0\psi_n} \otimes w)(t + t_0) = \pi(g_1, t + t_0)w.
\]

Finally, it is easily checked, that condition (a) forces \(g_1 \mapsto \pi(g_1, t) \) \((g_1 \in G_i)\) to be a smooth representation of \(G_i \) for each \(t \in \Omega \). This concludes the proof of Lemma 4.
Corollary: Each irreducible smooth representation of G is monomial.

Let us continue the proof of Theorem 4. By induction we assume that π_1 is admissible and pre-unitary. Hence $\pi = \text{ind}_{G_1 \times G} \pi_1$ is pre-unitary. Let K be an open subgroup of G and let V_K denote the space of all $f \in C_c^\infty(\Omega)$ such that $\pi(g)f = f$ for all $g \in K$. Let $f \in V_K$. Since

$$\pi(\exp xX_0)f(t) = f(x + t) \quad (x, t \in \Omega),$$

there exists an integer $n > 0$, only depending on K, such that f is constant on cosets of P^n.

The relation

$$\pi(\exp yY_0)f(t) = \chi_0(\lambda y)f(t) \quad (y, t \in \Omega)$$

implies that $\text{Supp} f \subset P^m$ for some integer $m > 0$, only depending on K. Assume $m < n$. Then $P^m = \bigcup_{i=1}^k (t_i + P^n)$ for some $t_1, \ldots, t_k \in \Omega$. Now consider the mapping

$$f \mapsto (f(t_1), \ldots, f(t_k))$$

of V_K into W^k. This mapping is linear and injective. Since

$$(\pi(g_1)f(t) = \pi_1(\exp tX_0 \cdot g_1 \cdot \exp -tX_0)f(t) \quad (g_1 \in G_1, t \in \Omega)$$

we obtain that $f(t_i)$ is fixed by $\exp t_i X_0 \cdot (K \cap G_i) \exp(-t_i X_0)$, being an open subgroup of G_i ($i = 1, 2, \ldots, k$). Therefore, each $f(t_i)$ stays in a finite-dimensional subspace of W. Consequently $\dim V_K < \infty$.

We have shown that π is admissible. This concludes the proof of Theorem 4.

Remark: Similar to the proof of Theorem 4 one can easily show that the restriction of an irreducible unitary representation of G to its subspace of smooth vectors is an admissible representation of G.

§6. Kirillov’s theory

Let G be as in §5. What remains is to describe the irreducible unitary representations of G. This is done by Kirillov [8] for the real groups G and, as observed by Moore [9], the whole machinery works
in the p-adic case as well. For completeness and for later purposes, we give the result.

Given $f \in \mathscr{G}$, put $B_f(X, Y) = f([X, Y])$ ($X, Y \in \mathscr{G}$). B_f is an alternating bilinear form on \mathscr{G}. A subalgebra \mathfrak{S} of \mathscr{G} which is at the same time a maximal totally isotropic subspace for B_f is called a polarization at f. Polarizations at f exist ([4], 1.12.10). They coincide with the subalgebra's $\mathfrak{S} \subset \mathscr{G}$ which are maximal with respect to the property that \mathfrak{S} is a totally isotropic subspace for B_f (cf. [8], Lemma 5.2, which carries over to the p-adic case with absolutely no change). Let \mathfrak{S} be any subalgebra of \mathscr{G} which is a totally isotropic subspace for $B_f : f \in \mathfrak{S}$, $\mathfrak{S} = 0$. Put $H = \exp \mathfrak{S}$. We may define a character χ_f of H by the formula:

$$\chi_f(\exp X) = \chi_0(f(X)) \quad (X \in \mathfrak{S}).$$

Let $\rho(f, \mathfrak{S}, G)$ denote the unitary representation of G induced by χ_f.

Theorem 5 ([8], [9]):

(i) $\rho(f, \mathfrak{S}, G)$ is irreducible if and only if \mathfrak{S} is a polarization at f,

(ii) each irreducible unitary representation of G is of the form $\rho(f, \mathfrak{S}, G)$,

(iii) $\rho(f_1, \mathfrak{S}_1, G)$ and $\rho(f_2, \mathfrak{S}_2, G)$ are unitarily equivalent if and only if f_1 and f_2 are in the same G-orbit in \mathscr{G}.

§7. The character formula

The main reference for this section is [12]. G acts on \mathscr{G} by Ad and hence on \mathscr{G} by the contragredient representation. It is well-known (and can be proved similar to the real case) that all G-orbits in \mathscr{G} are closed.

Let us fix a non-trivial (unitary) character χ_0 of the additive group of Ω.

We shall choose a Haar measure dg on G and a translation invariant measure dX on \mathscr{G} such that $dg = \exp(dX)$.

Let $f \in \mathscr{G}$, \mathfrak{S} a polarization at f and O the orbit of f in \mathscr{G}. Put $\pi = \rho(f, \mathfrak{S}, G)$. Given $\psi \in C_c^\infty(G)$, we know that $\pi(\psi)$ is an operator of finite rank (§5, Remark). Put $\psi_f(X) = \psi(\exp X)$ ($X \in \mathscr{G}$). Then $\psi_f \in C_c^\infty(\mathscr{G})$. The Fourier transform of ψ_f is defined by:

χ_0 is (as usual) a fixed non-trivial additive character of Ω.\footnote{Here χ_0 is (as usual) a fixed non-trivial additive character of Ω.}
\[\hat{\psi}_t(X') = \int_{\mathcal{G}} \psi_1(X) \chi_0((X, X')) \, dX \quad (X' \in \mathcal{G'}). \]

Observe that \(\hat{\psi}_t \in C_c^\infty(\mathcal{G}'). \)

Theorem 6: There exists a unique positive \(G \)-invariant measure \(dv \) on \(O \) such that for all \(\psi \in C_c^\infty(G) \):

\[\operatorname{tr} \pi(\psi) = \int_O \hat{\psi}_t(v) \, dv. \]

Note that the right-hand side is finite, because \(dv \) is also a measure on \(\mathcal{G}' \), since \(O \) is closed in \(\mathcal{G}' \).

Pukanszky’s proof of ([12], Lemma 2),\(^2\) goes over to our situation with no substantial change. Observe that each \(\psi \in C_c^\infty(G) \) is a linear combination of functions of the form \(\phi \ast \hat{\phi} \) (\(\phi \in C_c^\infty(G) \)) where \(\hat{\phi} \) is given by \(\hat{\phi}(g) = \phi(g^{-1}) \) (\(g \in G \)). The algorithm to determine \(dv \) (given \(dg \) and \(dX \) such that \(dg = \exp(dX) \)) is similar to that given by Pukanszky:

1. Put \(K = \exp \mathcal{H}, \Gamma = K \backslash G \). Choose invariant measures \(dk \) and \(d\gamma \) on \(K \) and \(\Gamma \) respectively such that \(dg = dk \, d\gamma \).
2. Choose a translation invariant measure \(dH \) on \(\mathcal{H} \) such that \(dk = \exp(dH) \).
3. Let \(dX' \) and \(dH' \) denote the dual measures of \(dX \) and \(dH \) respectively.
4. Let \(\mathcal{H}^\perp = \{ X' \in \mathcal{G}': \langle \mathcal{H}, X' \rangle = 0 \} \). Take \(dH^\perp \) on \(\mathcal{H}^\perp \) such that \(dX' = dH' \cdot dH^\perp \).
5. Let \(S \) be the stabilizer of \(f \) in \(G \). Then \(S \subset K \). Choose \(d\lambda \) on \(S \backslash K \) such that \(d\lambda \) is the inverse-image of \(dH^\perp \) under the bijection

\[Sk \mapsto k^{-1} \cdot f \quad (k \in K) \]

of \(S \backslash K \) onto \(f + H^\perp \).
6. Finally, put \(dv = \text{image of } d\lambda \, d\gamma \) under the bijective mapping \(Sg \mapsto g^{-1} \cdot f \) (\(g \in G \)) of \(S \backslash G \) onto \(O \).

The invariant measure \(dv \) depends on the choice of the character \(\chi_0 \).

Taking instead of \(\chi_0 \) the character \(x \mapsto \chi_0(tx) \) for some \(t \in \Omega, t \neq 0 \), we obtain, by applying the above algorithm, the following homogeneity

\(^2\) Part (d) of his proof has to be omitted here.
property for \(dv \):

COROLLARY: Let \(O \) be a \(G \)-orbit in \(\mathcal{G}' \) of dimension \(2m \). Then

\[
\int_{O} \phi(tv) \, dv = |t|^{-m} \int_{O} \phi(v) \, dv
\]

for all \(\phi \in C_c^{\infty}(\mathcal{G}') \) and all \(t \in \Omega, t \neq 0 \).

Observe that we may choose in the corollary \(dv \) to be any \(G \)-invariant positive measure on \(O \).

Let \(O \) be as above. \(O \) carries a canonical measure \(\mu \), which is constructed as follows. For any \(p \in O \), define \(\alpha_p : G \to O \) by \(\alpha_p(a) = a \cdot p \) (\(a \in G \)). The kernel of the differential \(\beta_p \) of \(\alpha_p \), \(\beta_p : \mathcal{G} \to T_p \) (\(T_p = \) tangent space to \(O \) in \(p \)) coincides with the radical of the alternating bilinear form \(B_p \) on \(\mathcal{G} \). Let \(\text{Stab}_G(p) \) be the stabilizer of \(p \) in \(G \). Then also, \(\ker \beta_p = \text{Lie algebra of Stab}_G(p) \). Hence \(B_p \) induces a non-degenerate alternating bilinear form \(\omega_p \) on \(T_p \). In this way a 2-form \(\omega \) is defined on \(O \). One easily checks that \(\omega \) is \(G \)-invariant (cf. [12] for the real case). Let \(d = 2m \) be the dimension of \(O \). Assume \(d > 0 \). Then \(\mu \) is given by \(\mu = |(1/2^m m!) A^m \omega| \).

THEOREM 7: Let us fix the character \(\chi_0 \) of \(O \) in such a way that \(\chi_0 = 1 \) on \(O \), \(\chi_0 \neq 1 \) on \(P^{-1} \). Let \(O \) be any \(G \)-orbit in \(\mathcal{G}' \) of positive dimension. Then the invariant measure \(dv \) and the canonical measure \(\mu \) on \(O \) coincide.

The proof is essentially the same as in the real case ([12], Theorem).

§8. Square-integrable representations mod \(Z \)

Let \(G \) and \(Z \) be as in §5. An irreducible unitary representation \(\pi \) of \(G \) on \(\mathcal{H} \) is called square-integrable mod \(Z \) if there exist \(\xi, \eta \in \mathcal{H} - (0) \) such that

\[
\int_{G/Z} |\langle \pi(x)\xi, \eta \rangle|^2 \, dx < \infty.
\]

Such representations are extensively discussed by C.C. Moore and J. Wolf for real unipotent groups [10]. For \(p \)-adic unipotent groups, see [13]: the restriction of \(\pi \) to the space \(\mathcal{H}_\infty \) of \(\pi \)-smooth vectors is a
supercuspidal representation. Our main goal is to find a closed formula for the multiplicity of the trivial representation of well-chosen open and compact subgroups K of G in the restriction of π to K.

Let $f \in \mathcal{G}$. By O_f we denote the G-orbit of f in \mathcal{G} and by π_f an irreducible unitary representation of G, corresponding to f (more precisely: to O_f) by Kirillov's theory (§6). Let \mathcal{H}_f denote the space of π_f. Then we have, similar to ([10], Theorem 1):

Theorem 8: The following four statements are equivalent:

(i) π_f is square-integrable mod Z,

(ii) $\dim O_f = \dim G/Z$,

(iii) $O_f = f + \mathcal{X}$,

(iv) B_f is a non-degenerate bilinear form on \mathcal{G}/\mathcal{X}.

Here $\mathcal{X} = \{X' \in \mathcal{G}; (X', \mathcal{X}) = 0\}$.

Now assume π_f to be square-integrable mod Z. The orbit O_f carries the canonical measure μ. We shall define another G-invariant measure ν on O_f. Let us fix a G-invariant differential form ω on \mathcal{G}/\mathcal{X} of maximal degree. Let σ denote the adjoint representation of G on \mathcal{G} and let ρ be the representation of G contragredient to σ. Fix $p \in O_f$. We have $\text{Stab}_G(p) = Z$ and $g \mapsto \rho(g)h$ is an isomorphism of G/Z onto O_f. Call β_p the differential of this map at e; $\beta_p : \mathcal{G}/\mathcal{X} \to T_h$. Define

$$\omega_p(\beta_p(X_1), \ldots, \beta_p(X_n)) = \omega(X_1, \ldots, X_n)$$

$$\quad (n = \dim \mathcal{G}/\mathcal{X}; X_1, \ldots, X_n \in \mathcal{G}/\mathcal{X}).$$

In this way we get a n-form ω' on O_f. We claim that ω' is G-invariant:

$$\omega_p(\beta_p(X_1), \ldots, \beta_p(X_n)) = \omega_q(d\rho_p(a)\beta_p(X_1), \ldots, d\rho_p(a)\beta_p(X_n))$$

if $p, q \in O_f$, $q = \rho(a)p$ (\(X_1, \ldots, X_n \in \mathcal{G}/\mathcal{X}\)). This is a simple exercise:

$$\omega_q(d\rho_p(a)\beta_p(X_1), \ldots, d\rho_p(a)\beta_p(X_n)) = \omega_q(\beta_q(\sigma(a)X_1), \ldots, \beta_q(\sigma(a)X_n))$$

$$= \omega(\sigma(a)X_1, \ldots, \sigma(a)X_n) = \omega(X_1, \ldots, X_n) = \omega_p(\beta_p(X_1), \ldots, \beta_p(X_n)).$$

Call ν the measure on O_f corresponding to ω'; ν is uniquely determined by the choice of the volume form ω on \mathcal{G}/\mathcal{X}. Let $|P(f)|$ denote

3 Here isomorphism is meant in the sense of algebraic geometry.
the constant relating \(\mu \) and \(\nu \): \(\mu = |P(f)|\nu. \) The volume form \(\omega \) fixes, on the other hand, a Haar measure \(d\gamma \) on \(G/Z \). It is obvious that \(\nu \) is the image of \(d\gamma \) under the mapping \(g \mapsto \rho(g)f \) of \(G/Z \) onto \(O_f \). From the definition of \(\nu \) we see that the same is true for the mapping \(g \mapsto \rho(g)h \) of \(G/Z \) onto \(O_h \), for any \(h \in O_f \).

Let us denote by \(d(\pi_f) \) the formal degree of \(\pi_f \):

\[
\int_{G/Z} |\langle \pi_f(g)\xi, \xi \rangle|^2 d\gamma = d(\pi_f)^{-1}\langle \xi, \xi \rangle \quad (\xi \in \mathcal{H}).
\]

Theorem 9: \(d(\pi_f) \) is a positive real number, which satisfies the following identity: \(d(\pi_f) = |P(f)| \).

This is proved exactly the same way as in the real case ([10], Theorem 4).

§9. Multiplicities

Let \(G \) be as usual, \(f \in \mathcal{G}' \) such that \(\pi_f \) is square-integrable mod \(Z \). Let \(K \) be an open and compact subgroup of \(G \). We shall call \(K \) a lattice subgroup if \(L = \log K \) is a lattice in \(\mathcal{G} \), i.e. an open and compact, \(\mathcal{O} \)-submodule of \(\mathcal{G} \).

Theorem 10: Let \(K \) be a lattice subgroup of \(G \), \(L = \log K \). Normalize Haar measures \(d\gamma \) on \(G \) and \(dz \) on \(Z \) such that \(\int_K d\gamma = \int_{K \cap \mathcal{O}} dz = 1 \). Choose a Haar measure \(d\gamma \) on \(G/Z \) such that \(d\gamma = dz d\gamma \). Then the trivial representation of \(K \) occurs in the restriction of \(\pi_f \) to \(K \) if and only if \(f(L \cap \mathcal{L}) \subset \mathcal{O} \); moreover, its multiplicity \(m(\pi_f, 1) \) is \(1/d(\pi_f) \).

The proof of Theorem 10 is rather long and proceeds by a careful induction on \(\dim G \). The theorem is obvious if \(\dim G = 1 \). So assume \(\dim G = n > 1 \). Put \(\mathcal{L}^0 = \ker f \cap \mathcal{L} \) and \(Z^0 = \exp \mathcal{L}^0 \). We have two cases:

1. \(\mathcal{L}^0 \neq 0 \). Replace \(\mathcal{G} \) by \(\mathcal{G}/\mathcal{L}^0 \) and \(G \) by \(G/Z^0 \). The center of \(G/Z^0 \) is \(Z/Z^0 \) (cf [13], proof of Theorem, (i)). Replace also \(K \) by \(K^0 = KZ^0/Z^0 \). \(K^0 \) is a lattice subgroup of \(G/Z^0 \); \(\log K^0 = L/L \cap \mathcal{L}^0 \). Let \(f^0 \), \(\pi_f^0 \) be the pull down of \(f \), \(\pi_f \) to \(\mathcal{G}/\mathcal{L}^0 \) and \(G/Z^0 \) respectively. It is well-known that \(\pi_f^0 \) is equivalent to \(\pi_f^0 \). Hence \(m(\pi_f, 1) = m(\pi_f^0, 1) \).

\(P(f) \) actually is the Pfaffian of the canonical differential form, defining \(\mu \), relative to \(\omega \) ([1], §5, no. 2).
Furthermore, $f(L \cap Z) = f_0(L^0 \cap Z/\mathcal{Z}^0)$. Normalizing the Haar measures on G/Z^0, Z/Z^0 and $G/Z^0/Z/Z^0$ as prescribed in the theorem, one obtains $d(\pi_f) = d(\pi_{f_0})$. The assertion for G now follows immediately from the result for G/Z^0, which is of smaller dimension.

2. dim $\mathcal{Z} = 1$ and $f \neq 0$ on \mathcal{Z}. $L \cap \mathcal{Z}$ is a lattice of rank one. Let Z be a generator of $L \cap \mathcal{Z}$. Choose $X \in \mathcal{Z}$ such that $[X, \mathcal{Z}] \subset \mathcal{Z}$. Put $\mathcal{G}_0 = \{U : [U, X] = 0\}$. \mathcal{G}_0 is an ideal in \mathcal{Z} of codimension one with center $\mathcal{Z}_0 = \mathcal{Z} + (X)$ (cf. [13], p. 149). $\mathcal{Z}_0 \cap L$ is a lattice of rank two; $\mathcal{Z}_0 \cap L/\mathcal{Z} \cap L$ is a lattice of rank one. We may assume that X is chosen in such a way that $X \mod(\mathcal{Z} \cap L)$ generates $\mathcal{Z}_0 \cap L/\mathcal{Z} \cap L$. Then obviously,

$$\mathcal{Z}_0 \cap L = \mathcal{O}X + \mathcal{Z} \cap L = \mathcal{O}X + \mathcal{O}Z.$$

Since $L/L \cap \mathcal{G}_0$ is a lattice of rank one, we can choose $Y \in L$, $Y \in \mathcal{G}_0$ such that $L = \mathcal{O}Y + L \cap \mathcal{G}_0$. Put $G_0 = \exp \mathcal{G}_0$, $G_1 = \exp(sY)$ for $s \in \Omega$. Then $G = G_0 \cdot G_1$ and $G_0 \cap G_1 = \{e\}$.

Now choose a basis $Z, X, e_1, \ldots, e_{n-3}$ of \mathcal{G}_0 such that $L \cap \mathcal{G}_0 = \mathcal{O}Z + \mathcal{O}X + \mathcal{O}e_1 + \cdots + \mathcal{O}e_{n-3}$ and such that e_1, \ldots, e_{n-3} is a supplementary basis of \mathcal{Z}_0 in the sense of Pukanszky ([12], section 3). One easily checks that this is possible. Given $X_0 \in \mathcal{G}_0$, write

$$X_0 = zZ + tX + t_1e_1 + \cdots + t_{n-3}e_{n-3}$$

and choose $(z, t, t_1, \ldots, t_{n-3})$ as coordinates of the second kind on G_0. Then $d\mathcal{G}_0 = dz \cdot dt \cdot dt_1 \cdots dt_{n-3}$ is a Haar measure on G_0 and $ds \cdot d\mathcal{G}_0$ is a Haar measure on G. Moreover, if $Z_0 = \exp \mathcal{Z}_0$, $K_0 = K \cap G_0$, we now have:

$$\text{vol}(K) = \text{vol}(K_0) = \text{vol}(K \cap Z) = \text{vol}(K_0 \cap Z_0) = 1 \cdot 5$$

Let f_0 denote the restriction of f to \mathcal{G}_0. It is part of the Kirillov theory that π_f is equivalent to $\text{ind}_{G_0}^{G} \pi_{f_0}$. Moreover, π_{f_0} is square-integrable mod Z_0 ([13], p. 149). We need a relation between $d(\pi_f)$ and $d(\pi_{f_0})$. The Haar measures on G/Z and G_0/Z_0 should be chosen as prescribed in the theorem. The following lemma is proved by computations, similar to those given in ([13], Section 5).

Lemma 5: Let $r = f[X, Y]$. Furthermore, put for any $s \in \Omega$, $f_s(X_0) = f(Ad(exp-sY)X_0)$ $(X_0 \in \mathcal{G}_0)$ and $\pi_s = \pi_f$. Then π_s is square-
integrable mod Z_0 and

$$d(\pi_s) = \frac{1}{|r|} d(\pi_f)$$

for all $s \in \Omega$.

Proof: The space \mathcal{H}_f of π_f may be identified with $L^2(\Omega, \mathcal{H}_f)$. Fix a smooth vector $v \in \mathcal{H}_f$, $v \neq 0$. Choose $\psi \in C_c^\infty(\Omega)$, $\psi \neq 0$ and put $\psi_v(x) = \psi(x)v$ ($x \in \Omega$).

Then $\psi_v \in \mathcal{H}_f$. Furthermore, the computations in ([13], Section 5), show

$$\int_{G/Z} |(\pi_f g) \psi_v, \psi_v|^2 dg$$

and

$$\frac{1}{|r|} \int_\Omega \int_\Omega |\psi(s + s_1) \bar{\psi}(s)|^2 \left\{ \int_{G_0/Z_0} |(\pi_s(g_0) v, v)|^2 dg_0 \right\} ds ds_1.$$

Moreover,

$$\int_{G_0/Z_0} |(\pi_s(g_0) v, v)|^2 dg_0$$

$$= \int_{G_0/Z_0} |(\pi_0(\exp s \cdot g_0 \cdot \exp - s \cdot Y) v, v)|^2 dg_0$$

$$= \int_{G_0/Z_0} |(\pi_0(g_0) v_1 v)|^2 |\det_{g_0(Z_0)} Ad(\exp - s \cdot Y)| dg_0$$

$$= \int_{G_0/Z_0} |(\pi_0(g_0) v, v)|^2 dg_0 \quad \text{for all } s \in \Omega.$$}

Hence, π_s is square-integrable mod Z_0 and $d(\pi_s) = d(\pi_0)$ for all $s \in \Omega$. In addition:

$$\langle \psi_v, \psi_v \rangle d(\pi_f)^{-1} = \frac{1}{|r|} \langle v, v \rangle \langle \psi, \psi \rangle d(\pi_0)^{-1},$$

or $d(\pi_0) = \frac{1}{|r|} d(\pi_f)$.

This completes the proof of the lemma.

Let ϕ, ϕ_0 denote the characteristic functions of K, K_0 respectively. Given $\psi \in L^2(\Omega, \mathcal{H}_f)$, we have
Hence, by a p-adic analogue of Mercer's theorem,

\[\text{tr } \pi_f(\phi) = \int_\Omega \text{tr} \left\{ \int_{G_0} \phi(g_0) \pi_{b_0}(\exp s \cdot g_0 \cdot \exp -s \cdot \exp s \cdot g_0) \psi(s) \, ds \right\} \, ds. \]

So, we obtain the following relation:

\[\text{tr } \pi_f(\phi) = \int_\Omega \text{tr } \pi_s(\phi_0) \, ds. \]

Equivalently:

Lemma 6: \(m(\pi_f, 1) = \int_\Omega m(\pi_s, 1) \, ds. \)

Now assume \(m(\pi_f, 1) > 0 \). Then \(m(\pi_s, 1) > 0 \) for some \(s \in \Omega \). By induction, \(f_s(L_0 \cap \mathcal{Z}_0) \subset \mathcal{O} \), where \(L_0 = L \cap G_0 \). Hence

\[f(L \cap \mathcal{Z}) = f_s(L \cap \mathcal{Z}) \subset f_s(L_0 \cap \mathcal{Z}_0) \subset \mathcal{O}. \]

Conversely, assume \(f(L \cap \mathcal{Z}) \subset \mathcal{O} \). Let \(s \in \Omega \). Then \(f_s(L_0 \cap \mathcal{Z}_0) \subset \mathcal{O} \) if and only if \(f_s(X) \subset \mathcal{O} \). We have:

\[f_s(X) = f(X) + sf[X, Y] = f(X) + sr. \]

Hence, by induction, \(m(\pi_s, 1) > 0 \) if and only if \(s \in (1/r)(-f(X) + \mathcal{O}) \).

Moreover, again by induction, applying Lemma 5 and 6,

\begin{align*}
m(\pi_f, 1) &= \int_{(1/r)(-f(X) + \mathcal{O})} \frac{1}{d(\pi_s)} \, ds = \frac{|r|}{d(\pi_f)} \text{vol} \left(\frac{1}{r}(-f(X) + \mathcal{O}) \right) \\
&= \frac{|r|}{d(\pi_f)} \cdot \frac{1}{|r|} = \frac{1}{d(\pi_f)}. \end{align*}

This completes the proof of Theorem 10.
§10. Multiplicities and K-orbits

Let K be a lattice subgroup of G, $L = \log K$. Choose a basis e_1, \ldots, e_p of \mathcal{H} and let e_{p+1}, \ldots, e_n be a supplementary basis of \mathcal{H} such that $L = \sum_{i=1}^n a_i e_i$ ($n = \dim \mathcal{G}$). Choose (t_1, \ldots, t_n) as coordinates on \mathcal{G}. Then (t_1, \ldots, t_n) can also be used as coordinates of the second kind on G. Similarly (t_1, \ldots, t_p) will denote coordinates on Z. Choose corresponding Haar measures on G and Z, as usual. Then $\text{vol}(K) = \text{vol}(K \cap Z) = 1$. Moreover, fix a volume form ω on \mathcal{G}/\mathcal{H} by $\omega = dt_{p+1} \wedge \cdots \wedge dt_n$.

Let ϕ denote the characteristic function of K. Fix $f \in \mathcal{G}$. To compute $m(\pi_f, 1)$ we can apply the character formula (§7). We obtain:

$$m(\pi_f, 1) = \text{tr} \pi_f(\phi) = \int_{O_f} \hat{\phi}(v) \, d\mu_f(v),$$

where μ_f is the canonical measure on O_f.

Observe that $\hat{\phi}$ is the characteristic function of the lattice L', dual to L; $L' = \{l \in \mathcal{G} : l(L) \subseteq \mathcal{O}\}$. Hence $m(\pi_f, 1) = \mu_f$-measure of $L' \cap O_f$. K acts on $L' \cap O_f$; $L' \cap O_f$ is a disjoint union of finitely many, say l_f, K-orbits.

Now assume π_f to be square-integrable mod Z. Then we have the measure ν, relative to ω, (§8) on O_f. It follows from its construction, that all K-orbits in $L' \cap O_f$ have the same ν-measure, namely, one. Since $\mu_f = d(\pi_f)\nu$ (§8), we get:

$$m(\pi_f, 1) = l_f \cdot d(\pi_f).$$

On the other hand, $m(\pi_f, 1) = 1/d(\pi_f)$, provided $m(\pi_f, 1) > 0$ (Theorem 10). So we have the following result:

Theorem 11: Let K be a lattice subgroup of G, $L = \log K$ and $L' = \{l \in \mathcal{G} : l(L) \subseteq \mathcal{O}\}$. Fix $f \in \mathcal{G}$ and let O_f denote the G-orbit of f. Let l_f be the number of K-orbits in L'. Then $m(\pi_f, 1) > 0$ if and only if $l_f > 0$. Moreover, if π_f is square-integrable mod Z, then $m(\pi_f, 1) = \sqrt{l_f}$.

This theorem is related to work of C.C. Moore [9]. Actually, Moore proves the inequality:

$$m(\pi_f, 1) \leq l_f$$

for all $f \in \mathcal{G}$.
§11. An example

We consider the p-adic Heisenberg group H_3, consisting of matrices of the form

\[
\begin{pmatrix}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{pmatrix}
\]

where $x, y, z \in \mathbb{Q}_p$, $p \neq 2$. Put

\[K = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{Z}_p \right\}.\]

K is easily seen to be a lattice subgroup of H_3 and

\[\log K = L = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix} : x, y, z \in \mathbb{Z}_p \right\}.\]

Choosing Haar measures $dx\,dy\,dz$ on G and dz on the center Z of H_3, we have $\text{vol}(K) = \text{vol}(K \cap Z) = 1$. Normalize the Haar measures on G/Z and \mathcal{G}/\mathcal{Z} in the usual way.

Given $f \in \mathcal{G}'$, we shall write $f = \{\alpha, \beta, \gamma\}$ if

\[f \begin{pmatrix} 0 & x & z \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix} = \alpha x + \beta y + \gamma z \quad (x, y, z, \alpha, \beta, \gamma \in \mathbb{Q}_p)\]

Similar to the real case, we have $|P(f)| = |\gamma|$ ([10]). Put $f_0 = \{0, 0, \lambda\}$, $\lambda \neq 0$. Then π_{f_0} is square-integrable mod Z and $d(\pi_{f_0}) = |\lambda|$. The G-orbit of f_0 consists of all triples

\[\{y\lambda, -x\lambda, \lambda\} \quad (x, y \in \mathbb{Q}_p)\]

Assume $|\lambda| \leq 1$. $L' = \{\{\alpha, \beta, \gamma\} : \alpha, \beta, \gamma \in \mathbb{Z}_p\}$ and

\[L' \cap O_{f_0} = \left\{ \{y\lambda, -x\lambda, \lambda\} : x, y \in \frac{1}{\lambda} \mathbb{Z}_p \right\}.\]
K acts on $L' \cap O_{l_0}$; if

$$k = \begin{pmatrix} 1 & u & w \\ 0 & 1 & v \\ 0 & 0 & 1 \end{pmatrix},$$

then

$$k \cdot \{y\lambda, -x\lambda, \lambda\} = \{y\lambda + u\lambda, -x\lambda - v\lambda, \lambda\};$$

therefore $l_{f_0} = 1/|\lambda|^2$.

On the other hand, π_{f_0} is given on $L^2(\mathbb{Q}_p)$ by:

$$\pi_{f_0} \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \phi(t) = \chi_0(\lambda(z + ty))\phi(t + x).$$

We have

$$m(\pi_{f_0}, 1) = \dim\{\phi \in C^\infty_c(\mathbb{Q}_p) : \chi_0(\lambda ty)\phi(t + x) = \phi(t)$$

for $t \in \mathbb{Q}_p; \ x, y \in \mathbb{Z}_p\} = \dim\{\phi \in C^\infty_c(\mathbb{Q}_p) : \text{Supp } \phi \subset (1/\lambda)\mathbb{Z}_p, \ \phi \ \text{Z}_p - \text{periodic}\} = 1/|\lambda|.$

Similar computations can be done for the higher dimensional Heisenberg groups.

REFERENCES

Wassenaarseweg 80
Leiden, The Netherlands