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1. Introduction

In this paper we continue the study of the maximal quotient ring of
a group algebra, initiated by Formanek [3]. We begin by fixing some
notation. Throughout, G will denote a fixed group, K a field, and KG
the group algebra of G over K. In addition, we write

so that 4 (G) is the FC-subgroup of G, and

Thus à(G) and à’(G) are characteristic subgroups of G; see [8]
Lemma 19.3 for details.

If R is a ring, (with 1), we shall denote the maximal right quotient
ring of R by Qmax(R), and the classical right quotient ring of R by
Q,I(R), whenever this latter ring exists. For basic properties of

maximal right quotient rings, we refer to [6]. The centre of the ring R
will be denoted by C(R).
The study of quotient rings of arbitrary group algebras was begun

by M. Smith [9], who showed that if KG is a semiprime group algebra
for which Q,I(KG) exists, then

In [7], Passman demonstrated that (1) remains true without the

assumption that KG is semiprime. In [3], Formanek showed that,
assuming once more that KG is semiprime, an identification analo-
gous to (1) can be made for maximal right quotient rings.
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In this paper, we extend Formanek’s work by showing that if we

replace the assumption that KG is semiprime by the hypothesis that
4+(G) is finite, the main result of [3] remains true. That is, we prove

THEOREM A: Let KG be a group algebra, and suppose that 4+(G)
is finite. Then QmuX(C(KG)) may be identified with the centre of
Qmax(KG).

The identification described in Theorem A is "natural" in the sense

that it corresponds to the identification obtained in the semiprime
case by Formanek, and it will be explicitly described in the course of
the proof of the theorem.
There are two main ideas involved in the proof of Theorem A. The

first was observed by Formanek, who proved in [3], Theorem 7, that
if KG is any group algebra, C(Qmax(KG» is a subring of

QmaX(K4 (G)). The second is a result from [2], also obtained by Horn,
[4], which states that if 4 +(G ) is finite, QcI(K,j(G» exists and is a

QF-ring, and so in particular is equal toQma,(KA(G». On combining
these two facts, we obtain, as an intermediate stage in the proof of
Theorem A:

PROPOSITION 8: If,j + (G) is finite,

Theorem A is deduced from Proposition 8 by examining the struc-
ture of Qci(C(KG».

2. Basic results

In this section we restate, in forms adapted to our purpose, some
results from [2], [3] and [7]. We also assemble some facts about

quotient rings. We shall for the most part use the formulation of the
maximal right quotient ring of a ring in terms of homomorphisms
defined on dense right ideals, as introduced by Utumi; see [6], §4.3. In
brief, the maximal right quotient ring Q of a ring R may be viewed as
the set of pairs (D, f), where D is a dense right ideal of R and f is an
R-homomorphism from D to R, and where two such pairs (D,, f,) and
(D2, f2) are identified if f1(d) = f2(d) for all dE Di n D2.
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Let R be a subring of a ring S. Then S is called a partial right
quotient ring of R if, for every O;j: s E S,

is a dense right ideal of R, and s(s-lR) -# 0.
We shall denote the set of regular elements of the ring R by ’CR(O)-

We require the following elementary facts about quotient rings and
dense right ideals.

LEMMA 1: Let Q be the maximal right quotient ring of a ring R.
(a) An element a of Q lies in C(Q)::&#x3E;a commutes with every

element of R.
(b) If S is a partial right quotient ring of R, the identity map on R

can be uniquely extended to a monomorphism of SR into QR, and this
map is a ring homomorphism.

(c) Let T be a multiplicatively closed set of regular elements of R,
and suppose that R satisfies the right Ore condition with respect to T.
Then the over-ring of R obtained by inverting the elements of T is a
partial right quotient ring of R.

(d) If D and E are dense right ideals of R, so is D f1 E.
(e) If D is a dense right ideal of R, and S is a partial right quotient

ring of R, then DS is a dense right ideal of S.
(f) If I --i R, I is a dense right ideal of R::&#x3E;the left annihilator of I is

zero.

PROOF: (a) =&#x3E; Clear.

Ç: Let IR denote the injective hull of RR, and put H = HomR(IR, IR).
Then Q = HomH (HI, HI ), (see [6], §4.3), and if a commutes with

every element of R, a E H. Thus a commutes with every element of

Q.
(b) See [6], §4.3, Proposition 8.
(c) This is immediate from the definition.
(d) See [6], §4.3, Lemma 3.

(e) By [6], §4.3, Proposition 4, we must show that if 0 7é si E ,S,
S2 E S, then there exists s E S such that sls:,é 0 and S2S E DS. By (b),
we can consider S as a subring of Q, and by definition, s11R is a

dense right ideal of R. By [6], §4.3, Lemma 2, s2’D is a dense right
ideal of R, so by (d), s11R n s2’D is a dense right ideal of R. It

follows from the proof of [6], §4.3, Proposition 5 that
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since S ç Q. If we choose s E (sllR n s2’D) such that sis # 0, then
s2s E D, and the proof is complete.

(f) See [6], §4.3, Corollary to Proposition 4.

LEMMA 2 [3, Theorem 1]: If H is a subnormal subgroup of G, and D
is a dense right ideal of KH, then DG is a dense right ideal of KG.
Using Lemma 2, Formanek showed in [3], Theorem 2 that, when H

is subnormal in G, Qmax(KH) may be viewed as a certain subring of
Qmax(KG). This is done by identifying the element (D, f) of Qmax(KH)
with the element (DG, f) of Qmax(KG), where

where {gi: i E Il is a right transversal to H in G. Formanek shows that
f is well-defined. Note that DG is a dense right ideal of KG by
Lemma 2.

THEOREM 3 [3, Theorem 7]: C(QmaX(KG)) is a subring of
Qmax(K4 (G)).

In considering the above result, it is important to bear in mind the
nature of the embedding of C(Qmax(KG» in Qmax(K¿j(G». Formanek
shows that if a e C(Qmax(KG», then we can represent a as (D1G, f 1),
where Dl is a G-invariant dense ideal of K4 (G), (so that D1G is an
ideal of KG), f1(D1) ç K4 (G), and fi is a bimodule homomorphism.
Theorem 3 follows from this fact via the embedding of Qmax(K4 (G))
in Qmax(KG) described above.
The results of this paper will follow from an examination of

QmaX(K4(G)), under the assumption that d+(G) is finite. Crucial to

this approach is the following special case of [2], Theorem B.

THEOREM 4: If A l(G) is finite,

PROOF: By [8], Lemma 19.3, à(G)1,1+(G) is a torsion-free abelian
group, so 4 (G) is contained in the class 3 defined in [2].

In terms of the representation of Qmax(K4 (G)) by means of dense
right ideals, (2) can be expressed as follows. The element ac-1 of

Qci(K.d(G» corresponds to the element (cK.d(G), [ac-1]) of
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Qmax (K4 ( G )), where

the identity (2) implies that every element of Qmax(K4 (G)) can be so
represented. If we now embed QmaX(K4(G)) in Qmax(KG) as des-
cribed above, we see that each element of QmaX(Kd (G)) can be
represented by a pair (cKG, [ac-’]), where a, c E K4 (G), c E KG(O),
and

Theorem 4 allows us to apply in the present context the results of
Passman [7] on the structure of the centre of the classical right
quotient ring of a group algebra. In fact, an examination of the proof
of the main result of [7] shows that Passman actually obtains the
following result.

THEOREM 5 [7, p. 224]: Let T be a multiplicatively closed set of
regular elements of the group algebra KG, such that KG satisfies the

right Ore condition with respect to T. Suppose that

If a E C(Q), where Q denotes the partial right quotient ring of KG
obtained by inverting the elements of T, then there exist elements a,
c E C(KG), c E (CKG(O), such that a = ac-1.
An important ingredient of Passman’s proof of the above result is

Lemma 2 of [7], which states that an element of C(KG) is regular in

C(KG) if and only if it is regular in KG. In fact, Passman proves
slightly more than this, and it is this stronger form of his result that

we shall need.

LEMMA 6 [7, Lemma 2]: Let a be a central element of KG, and put
H = (supp a). Then a is regular in KG if and only if a is a regular
element of the ring C(KG) n KH.

3. Proof of Theorem A

Theorem A will be proved by showing that when L1 +(G) is finite, the
rings with which we are concerned are actually classical quotient
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rings; in particular we shall show that C(QmaX(KG)) may be identified
with Qci(C(KG». Without assuming 4+(G) to be finite, we have

PROOF: If a E C(KG) and c E WCÇKG)(0), it follows from Lemma 6

that cKG is a two-sided ideal of KG with zero lef t annihilator - in

particular, cKG is a dense right ideal of KG, by Lemma 1(f). Thus
(cKG, [ac-’]) represents, in our notation, an element of Qmax(KG)"
and it is easy to check that this affords an embedding of Qc/( C(KG»
in Qmax(KG). Now under the representation of Qmax(KG) by
homomorphisms on dense right ideals, KG embeds in Qmax(KG) via
the map

where

It follows that, with a and c as above, the element (cKG, [ac-’]) of
Qmax(KG) commutes with every element of KG, and so lies in the

centre of Qmax(KG), by Lemma 1(a).

PROPOSITION 8:

PROOF: We have to prove that the embedding described in Lemma
7 is actually onto when J’(G) is finite. By Theorems 3 and 4, and in
particular the identity (3), each element a of C(Qmax(KG» can be

represented by a pair (cKG, [ac-’]), where a, c E Kd (G), c E cgKG(O),
and

If r is any element of KG, then since a E C( Qmax(KG», we have

for all d E D, where D, the intersection of the domains of the maps
[ac-’r) and [rac-’], is a dense right ideal of KG, by Lemma 1(d). Now
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K4 (G) has a classical right quotient ring, by Theorem 4, so the subset
cgK.1(GlO) of cgKG(O) is a right Ore set in KG, by [10], Lemma 2.6. Thus
by Lemma 1 (c) we can form the partial right quotient ring Q of KG
obtained by inverting the elements of cg K.1(GlO). By Lemma 1(b), Q is
a subring of Qmax(KG), and by (4),

where we view the multiplication as taking place in Q. However, by
Lemma 1(e), DQ is a dense right ideal of Q, and so

for all r E KG.

We now apply Theorem 5, taking T = WKà(G)(0), so that the partial
quotient ring Q is as defined above, to deduce that there exist b,
d E C(KG), d E CKc(O), such that

Thus the embedding defined in Lemma 7 is onto, and the proof is

complete.
Theorem A will follow from the above result if we can show that

under the assumption that 4 +(G ) is finite. Since

by Lemma 1(c) and (b), to prove (5) it is enough to show that

see [6], §4.3, Proposition 2. This we shall do in Lemma 10, but first we
must prove that Qci(C(KG) is ’locally Artinian’. This follows from
the next result and Lemma 6.

LEMMA 9: Let H be a finitely generated normal subgroup of 4 (G).
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Then

is Artinian.

PROOF: Since H is a finitely generated FC-group, H contains a
central subgroup of finite index. Since this subgroup is also finitely
generated, H contains a torsion-free central subgroup Z, normal in G,
such that IH: Z/  00. Since Z is torsion-free abelian, KZ is a domain.
Let a E KZB{O}; then if

denote the finitely many G-conjugates of a, which all lie in KZ as

Z 1 G, we have

since KZ is commutative. Put R = C(KG) rl KZ, so that R * = R)(0) is
a right divisor set of regular elements of KG. It follows from (6) that
F, the partial quotient ring of KZ formed by inverting the elements of
R *, is a field, the quotient field of KZ. Furthermore, F contains the
subfield

We claim that IF: LI oc. Since Z is a finitely generated subgroup
of à(G), and Z is normal in G, it follows that CG(Z) is a normal

subgroup of finite index in G, so that G = GICG(Z) acts faithfully as a
group of automorphisms of Z, and so of KZ. Notice that G fixes R, so
that G acts on F as a group of field automorphisms, with fixed field L.
To see this, observe that if 88-’c F is fixed by all elements of G,
where 8 E R, then 6 E R and so 83-’e L. Hence by Galois Theory,
[ 1 ], Theorem 14, F : LI = G  ce.

Since IH: ZI  00, KH@KzF is a finite dimensional algebra over F,
and so is an Artinian subring of Q,I(KH), so that

Thus, since [F : L[  00, Q,I(KH) is a finite dimensional algebra over L.

By Lemma 6,
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and we deduce that Qcl( C(KG) rl KH) is a finite dimensional L-

algebra, as required.

REMARK: The argument to show that IF: LI  00 in the above proof
is adapted from the proof of [8], Theorem 6.5.

LEMMA 10: If a+(G) is finite,

PROOF: As observed above, it is enough to prove that Q,I(C(KG»
is its own maximal quotient ring. This will be accomplished if we can
show that Qci(C(KG» is the only dense ideal of Qci(C(KG». We
must prove, therefore, that every proper ideal of QI(C(KG» has
non-zero annihilator.

We show first that :-

We shall denote the above ring by R. Take a, c E C(KG), c E CKG(O),
such that a = ac-t E Qci(C(KG»BN[Qci(C(KG»], and put H =

(supp a, supp c), so that H is a finitely generated normal subgroup of
L1(G). By Lemma 9.

is Artinian. Note that

since Qcl(C(KG) n KH) ç Qcl(C(KG», by Lemma 6, and since

Qcl(C(KG» is commutative. Since a E Qcl(C(KG) n KH), there

exists 8 E Qcl(C(KG) n KH) such that

Thus (7) follows, since (3 E Q,I(C(KG».
By [5], Theorem 2.1, R is either Artinian, or R contains an infinite

set of pairwise orthogonal idempotents. If the latter is the case, then
by lifting over N[Qcl(C(KG»] we deduce that Qcl(C(KG» must have
an infinite set of orthogonal idempotents. As previously noted, since
4+(G) is finite Theorem A of [2] implies that Qcl(K.1(G» exists and is



252

Artinian. Now C(KG) is a subring of K4(G), and indeed it follows

from Lemma 6 that Qci(C(KG» is a subring of Qci(Ki1(G». In

particular, therefore, Qci(C(KG» must satisfy the descending chain
condition on annihilator ideals. Since this precludes the existence of
an infinite set of orthogonal idempotents in Qci(C(KG», we deduce
that R is Artinian, say

where é; = ë E R, and Réi is a field, 1  i :5 n.

Now

and N(C(KG’))G N(KG). Since 4 +(G ) is finite, N(KG) is nilpotent,
by [8], Theorem 20.3, and so N[Qc/(C(KO»)] is also nilpotent. Lifting
{e., e2, ..., en} to a complete set of orthogonal idempotents
le,, e2, ..., en) of Qc/( C(KG », we conclude that

where f or i = 1,..., n,

which is a field, and N[Qcf(C(KG»e;] is nilpotent, so that

Qcf(C(KG»e¡ is a local ring. It is now clear that Qcf(C(KG» is the
only dense ideal of Qcf(C(KG», thus proving the lemma.
For convenience, we summarise the main steps in the proof of

Theorem A.

PROOF OF THEOREM A:

We are given that à’(G) is finite, and we have to show that

By Proposition 8,
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and by Lemma 10,

The theorem follows.

REMARKS: (i) In view of the proof of Lemma 10, it is natural to ask
whether Q,(C(KG)) is actually Artinian when d+(G) is finite. 1 do not
know the answer to this question. Clearly it would be sufficient to

show that N[Qci(C(KG»] is a finitely generated ideal of Qci(C(KG»,
but although N(KG) is a finitely generated right ideal of KG when

4+(G) is finite, by [8], Theorem 20.2, it is not clear that the desired

result can be deduced from this fact.

(ii) Since, when 4+(G) is finite, Qci(C(KG» is its own maximal

quotient ring, one might suspect that this ring is always self-injective.
This is the case when G is abelian, for example, by [2], Theorem B,
and when KG is semiprime. However it is certainly not the case in
general. For example, if we take

the quaternion group of order eight, and K is the field of two

elements, then C(KG) is Artinian, and so

Now C(KG) contains the ideals

and since the augmentation ideal A of KG is nilpotent, and KG/A =
K, KG has no non-trivial idempotents. Thus if C(KG) is a self-

injective ring, it must be an essential extension of both I and J. This
is clearly impossible.
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