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A SATURATION PROPERTY ON IDEALS

Richard Laver

It is a theorem of Kunen [6] is that if K is a real valued measurable

cardinal, then for every a ,wi,

K - (K, a )2.

In this paper we consider a saturation property of ideals on K which

implies this partition relation, as well as generalizations to cases

where K &#x3E; 2e". Accounts of the results on saturated ideals are given in
Solovay [14] and Kunen [7].

For K a cardinal, a K-ideal is an ideal J ç g}(K) which is nontrivial
(fal e J, all a  K, and KÉ J) and K-complete. Define a K-ideai Y to
be (A, J.L, v)-saturated if whenever 7le ç g}(K) - §, Card 7le = À, there is
a WCY, CardW=g, such that n$e $J for every 37c(b with

Card $ :5 v. Thus § is À-saturated if and only if J is (A,2,2)-
saturated.

The abovementioned generalizations of the above partition relation
are of the form

for all a  1’+ K’ (K, a)2,

where y is an arbitrary regular cardinal. This relation holds in strong
fashion for a wide class of K with 2’’  K (for example, the Erdôs-Rado
theorem [2] implies that (21)’---&#x3E; ((2’’)+, yl)2) . This relation fails in strong
fashion if 2’ -- K for some 0  y (Sierpinski’s theorem ([13]) states that
2°3 (0+, B+)2). Our interest will be when y is the least cardinal (3 such
that 2/3 2: K.

It is consistent in this situation that K --&#x3E; (K, y + 2)2, namely, Hajnal
[4] showed that if y is regular and 2)’ = y+ then 2Y 3 (2’’, (y : 2))2. Martin’s
axiom +2eo = M 2 implies 2w --&#x3E; (2w, (w : 2))2 [9]. It is consistent that 2)’ = y
and 2Y 3 (2’y, (y : 2))2, where 2’’ is the successor of an arbitrary regular
cardinal (Baumgartner [1]), and where 2)’ is weakly inaccessible ([9],
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relative to the consistency of a Mahlo cardinal). In the last result, 2)’ will
be high in the weak Mahlo hierarchy if the large cardinal in the ground
model was high in the Mahlo hierarchy. An account of these theorems
and of related results is given in [9].’

In section 1 it is shown that if there is a (K, K, y)-saturated K-ideal
(whence K is weakly inaccessible ([15]), in fact high in the weak Mahlo
hierarchy [ 14], and y &#x3E; K ) and ifB"  K, ail /3  K, then for all a  1’+,
K - (K, a)2.

In section 2, assuming the consistency of the existence of a

measurable cardinal, the consistency of the above situation on K and
y is shown, where y is an arbitrary regular cardinal and 2)’ &#x3E; K.

Namely, if Al is a countable transitive model of ZFC in which y is

regular, y  K, and K is measurable, then there is a forcing extension
Al[G] in which no new y-sequences of ordinals have been added,
2y == -y, B y  K, all BK, 2’’&#x3E;K (both 2’y == K, 2 &#x3E; K can be ar-

ranged) and there is a (K, K, y)-saturated normal K-ideal. The ideal will be
y++-saturated but not y+-saturated in Al[G]; if GCH holds in « the ideal
will be (À, À, y)-saturated, for all regular k &#x3E; y+ in Al[G].

For example, the consistency of the existence of a measurable
cardinal implies the consistency that there exists a (2",, 2"-, ?B 1)-
saturated 2e,-ideal and that 8  2e,=&#x3E;,B el 2e,; these properties imply
that 2" ---&#x3E; (2", )2 for all a  W2.

Section 1

Assume K and y are cardinals, 0 is a (K, K, y)-saturated K-ideal and
(3 ‘’’  K, all B  K. Let a  y+ and suppose by induction that K ---&#x3E; (K, a’)2,
all a’ a. Given [K]2 = R U G, we show that either there is an X E [K ]K
with [X]2 C R or there is an A E [K]a with [A]2 C G.
Suppose first that there is a Z E P(K) -.j such that for every z E Z,

{w E Z: {z, w} E G} E $J. Then an X E [Z]K with [X]2 ç R may be
constructed in K steps using the assumption and the K-completeness
of 0.

Lest the above case obtain we may assume that for every Z E

ÉÀ(K)-§,

’ Correction to [9]: on page 1029, lines 8 and 9, change "Cf K &#x3E; (ù" to "K regular &#x3E; w ".
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We claim

, then there is an Y , and a

such that and

Namely, let{y E Z: Ze,0}= Y E [Z]B By (K, K, y)-saturation there is a
Y’ E [Y]K such that if B C Y’ and Card B = y then n,,EB Z,,É -0. By
the induction hypothesis there is an A’ E [Y’]," with [A’]2 ç G. Then
Z’ = nyEA, Zy satisfies (*).

Let a = LOu8 au, where au  a and à s y. We will construct a well

founded tree (T, T) of height 8. T, will be the o-th level of T, and
T,, T«r will be U,,, Te, lÙo*a Te. To each node t of T will be assigned a
pair (Z(t), A(t). For t the root node of T, Z(t) = K, A(t) = 0. In

general,

and

For each is the set of immediate successors of

u, then
(b) ror each

then

min

Suppose T Su has been defined so that (i), (ii), and (iii) hold. Given u
on level a, pick a set Su of immediate successors of u, together with
pairs (Z(t), A(t)), t E Su, such that {Z(t), A(t»: t E Sul forms a

maximal family satisfying (i) and (iii). That Su =/ 0, and more generally
that IZ(t): t E Sul satisfies (ii)(a), follows from (*): if Z =

(Z(u) - Ut.su Z(t)) E J, then by (*) there would be an A E [Z] "-,, and
a Z’ C Z, Z’ §É J, with min A &#x3E; sup A ( u ), [A]2 C G, A0 Z’ C G ; this
would contradict the maximality of {(Z(t), A(t)): t E Su}. By (i), (ii)
and the K-saturation of §, T, has power  K. Thus (ii)(b) holds for
level o, + 1 by K-completeness of J. So T Su+l satisfies (i)-(iii).

Suppose À  8 is a limit ordinal and T A has been defined. For each
maximal branch b through T A, let Z(b) = ntEb Z(t). Let

Letting jg  K be the cardinality of T À, there are at most 0 À s jg ’y  K

branches through T À; this fact, with (i), (ii) and the K-completeness
of 0, implies that (K - UbEB Z(b)) E Y. We may then, for each b E B,
apply (*) to Z(b) as in the u + 1 case, choosing a set Sb of successors
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of b on level À and pairs (Z(t), A(t)), t E Sb, so that T SA satisfies

(i)-(iii).
This completes the construction of T. Since 8  K there is, by

K-completeness of

b is a branch through T of length 6. Let

By construction, tp (A) = a and [A]2 C G, completing the proof.
We note that the tree isn’t needed in the case y = s’to. If J is normal

then the X with [X ]2 c R may be further required in the theorem to
be in P(K) - J.

Section 2

To force to get a model in which there is a (K, K, y )-saturated ideal
on K, Y  K :5 21, we blow up 2" with conditions having a ",à-

system" property such that if a  y’-«[Gl the union of a conditions
in the A -system is still a condition. There is more than one way to do

this (see remarks at the end); we do it the following way here.
Let .JU be a countable transitive model of ZFC in which y is a

regular cardinal, K &#x3E; y is a measurable cardinal, and p ? K satis-
fies p’’ = p. Let -0 be the ideal dual to a normal ultrafilter on K. We
define a partial ordering 9 in Al such that if G is (Al, 9)-generic then
for some 0 with y  e  K, Cards’IGI = Cards"« n ([0, U [ 0, 00», and
in R [G], 2’y = p, {3’Y  K, all 8  K, and

is a (K, K, y)-saturated K-ideal.

REMARKS: 9 will have the o-cc, some U K. Prikry [11] proved
that if in a ground model, u, K are cardinals, a regular  K, and à is a
u-saturated K-ideal, then in any acc forcing extension, § will be a
u-saturated K-ideal. Wagon ([16], Theorem 3.5), proved that con-

versely, if in a ground model, u, K are cardinals, with 01  K, and in a

acc extension J is a K-saturated K-ideal, then for some X F- J and
some K-saturated K-ideal 0 in the ground, i n -ôp(K - X) =
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j n -ôp(K - X). The Kunen-Paris method [8] for constructing saturated
ideals reduces in this case to Prikry’s method. The proof below can be
cast in terms of the Kunen-Paris definition of 9 (X e903p E

GpjpHjpK É jX, where j is the elementary embedding associated with 9 ).
9 is defined as follows. Let 9 be the standard partial ordering (2)’Y

for adding a subset of y with conditions of power  y. Fix a cardinal
’y  0  K, such that

(*) If C is a closed unbounded subset of 0 and f : [C]2___&#x3E; 0 satisfies

f({a, (3})  min{a, 13}, &#x3E; all a &#x3E; E C &#x3E; then for some B E [C](2Y)+,
Card(f"(B]2) = 1.

(*) As a second order property true of K, so there is a (J  K satisfying
(*)-(*) is equivalent to 0 being subtle (Jensen-Kunen [5]) and &#x3E; y. Then
let

and order 9P by

9 is y-closed, so forcing with 9 adds no new y-sequences of
ordinals and thus preserves all cardinals  y. The standard application
of the Marczewski-Erdôs-Rado lemma on A-systems [10], [3], yields
that 9 has the 0’ chain condition, so forcing with 9 preserves

cardinals &#x3E;_ 9+. These two facts, plus the inaccessibility of K, imply
that if G is (M, P)-generic then in Al[G], 8’y  K for all 6  K. In

,«[G], 2Y = p by the usual genericity arguments. The last fact about
cardinalities to show, then, is

LEMMA:

PROOF:

It sufhces to show for each regular B in .lU, with l’  13  (J, that
there is an onto map

in Al[{g t {3: g E GI]. Working in Al, let

Using a well ordering of F, assign to each g E (2)/3 an ordinal o-g  2B
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so that for any f G àF and any U  2B there is a g E (2)B with o-g = u
and g t dom f = f. In M[G] define j: y ---&#x3E; 210 by j(5) = Ug, where, for
a  (3, g(a) = Ga(8). To show j is onto, let p E g}, U  2B. Since 8 is

regular &#x3E; y there must be a 5  y such that, letting f = {(a, (p(a»(5»:
a  (3 and 5 E dom p(a)}, we have Card(,S - dom f ) = 13. Choose g E

(2)" with og = U and g t dom f = f, and extend p to a condition q such
that (q(a)(8) = g(S), all a  13. Thus q- j(s) _ u.

Suppose We find an r &#x3E; p and an a  0 such that

CLAIM: Then there is a q’ 2: q and an a  0
such that q’ t dom q = q and q’]F j(à)  a.

PROOF: Suppose the claim is false. Construct sequences

such that

(a) ly,: v  0) is closed and unbounded in 0
(b) dom q, = lx,: g  yv)
(c) P’ v implies qv r dom qv’ = qv-
(d) there exists a q,, &#x3E; q", dom iiv = dom q," such that qv U q+i]F

j(s) = Zv.

Suppose we have defined q" with domain lx,: li  Yv}; we define qv,
q v+,. By the assumption that the claim is false, qv does not force
i(s) e lz,,: v’  v}, so pick a z" zv, (v’ v) and an r &#x3E;_ q" such that

rlF j(à) = zv. Let

and let

Then enumerate dom q v+l - dom q,, as lx,,: yv   y v+l}.
Suppose À  () is a limit ordinal and the q, x, y and z sequences
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have been defined for aIl 17 À. By (c),

Let U1JA q1J = qa, and let YA = sup,À y,. This completes the con-

struction.

Let v’  v  (J. ijv’ U q v’+1 is incompatible with 4v U qv+l. Since ijv 2:
qv’+1 and (dom q,,,,-dom4,)ndom q,,,,=O, there must be an

f(Yv" y")  yv, such that 1,(xf(y,,,,y,,» is incompatible with q,(xf(y,,,,Y",».
By (*), find

such that

some g. Thus for yv, yv, E B, y,:5x-’ y.", ii.,(J.L)"# ii.,,(J.L). This contradicts
that Cardl4,(M): y, E B}:5 Card 9 = 2’Y, and proves the claim.
To prove (2), use the claim y times to construct a sequence

such that 8’  8 implies ps-r dom ps- = ps- and such that for each 8
there is an a/j  (J with pô]F j(S)  as. Then r = Us ps forces

rng j Ç sups as  0.

This proves the lemma.

Since éP has the O’cc and 0 = Prikry’s theorem yields thati is
a y"-saturated normal K-ideal in Al[G]. (,0 is not 1’+-saturated, for
instance the sets Xa : a  0 are disjoint members Of e (K) - i, where
,8 E Xa iff .8 + a is the least À &#x3E; /3 with G.B(O) = 0.) We show that 9 is
(K, K, y)-saturated.

Let Za, a  K, be terms which are forced (assume without loss of

generality by the empty condition) to stand for members of g}(K) - 9.
We find a K-subsequence of the Za’s in .Jl[G] and a condition which
forces that any y-intersection from the subsequence belongs to
P (K) - i.
Note that p [F X E g}(K) - j just in case for all p’ 2: p

Call R ç g} a à -system with kernel p if for each r E e, r r dom p =
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p, and if r, s E e, r=/ s, then dom r i-1 dom s = dom p. An application
of the normality of § in the usual way gives that in JU, if X e 9&#x3E;(K) -
J and for each 8 E X, P{3 E g}, then there is a Y C X, Y g $J, with

{P{3: 8 E YI a à -system.
Work in JU. For each a  K pick Ya E 9(K) - Y and Pa{3, {3 E Ya,

such that

Pick Xa ç Ya, XaE $J, and Pa such that {Pal3: {3 E Xa} forms a à -

system with kernel Pa. Pick A E [K]K and p such that fp,,,: a E AI
forms a d -system with kernel p.

If a, a’ E A, a # a’, call {a, a’} good if

We claim that there is an A’ C A, Card A’== K, such that every

la, a’} E [A’]2 is good. For if no such A’ existed, the partition relation
K --,’ (K, 01)2 would give a C C A, Card C = (J+, such that for each

{a, a,l E [C12 there is a Waa, E g}(K) - $J with Pa{3 incompatible with

Pa’/3, all /3 E Waa,. Pick 6 E nl.,«, 1,E[C12 Waa,; then {Pa{3: a E CI would be
a set of 0’ incompatible elements of 9, a contradiction.

Define A" E Al[G] by

Clearly p l Card A" = K. We claim that p forces that any intersection
of y members of Ji,,,: a E À"J is in OP (K) - Î, which will prove the
theorem. Suppose q ? p and Ù is a term such that

Then there is a D c A’, D E ,«, Card D  e, and an r q such that

r]F CGD (the existence of such a D and r is equivalent to the

statement that q - l’ + 0). Since D C A’ and Card D  0.

For /3 E B, let
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Define in .lU [ G],

By construction,

Since any refinement of the se’s to a à -system will be with kernel 0,
and since {{3 E B : dom sg f1 dom r# Z) 3 has power K,

So rit- naEé Za E g}(K) - j, which completes the proof.
The proof shows that J is (A, À, y)-saturated for any À such that in

Al, À is a regular cardinal satisf ying k ---io (,k, 01)2. If, e.g., the GCH

holds in « this relation holds for all regular À &#x3E; 0’.

Another way to force to get a (K, K, y)-saturated K-ideal is to blow up
2’Y to p by adding p Sacks subsets of y (analogs for y of Sacks subsets of
lù ([12])). Regarding the method used in this paper, it is necessary to
collapse an inaccessible cardinal to take care of the case y = lù, but for y
regular &#x3E; w) an alternative proved by Baumgartner is to arrange that
2y = y+ and 0 ’Y hold, and then force to add p subsets of y taking y+
supports.
The existence of a (K, y, y)-saturated K-ideal (y least such that

2’’ &#x3E; K) does not follow from the existence of a y’-saturated
K-ideal. For instance, if 2Y is blown up to rc in the standard way

(2‘’’ = y and K measurable in the ground model), then in the extension
there is a y+-saturated 2Y-ideal, but there is a family {Xa C 2’Y: a  2’Y}
such that the intersection of any y of the X«’s or their complements has
power  y. This property implies that there are no (2’’, y, y)-saturated
2’’-ideals. Similarly, in the model of Kunen and Paris [8] which has a
2’’-saturated 2’’-ideal but no À-saturated 2’’-ideals for any À  2’’, there
are no (2’Y, y, y)-saturated 2’Y-ideals; if those forcing conditions are
replaced by the ones of ([9], page 1036), one obtains a model with those

properties in which 2Y3 (2’’, (y : 2))2.
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