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A DECOMPOSITION THEOREM FOR COMODULES

Marjorie Batchelor*

Injective comodules over coalgebras can be decomposed as a direct
sum of indecomposable injective comodules, in a fashion similar to
the dual decomposition of projective modules over algebras, [1]. This
paper gives an elementary proof of this theorem, avoiding the use of
idempotents.

1. Preliminaries and definitions

Let k be a field of unspecified characteristic. A coalgebra (C, 4, e)
is a k-space C together with a comultiplication or diagonal map
A: C—-» C ® C, and a counit (or augmentation) e: C — k such that the
following properties are satisfied.

CA 1. (A®IDHA=UEX A)A Coassociativity
CA2.(e®DA=UIR®e)A=1

A comodule (W, T) for a coalgebra C is a k-space W together with
amap T: W—- W & C such that the following properties are satisfied.

CM1.(T®DT=U® AT
CM2.(I®e)T=I

A subcomodule (subcoalgebra) is a subspace which has a
comodule (coalgebra) structure under the restricted structure maps. If
S is a subset of a comodule (coalgebra) the subcomodule (sub-
coalgebra) generated by S, denoted by ((S)) is defined to be the
smallest subcomodule (subcoalgebra) containing S. If S is a finite set
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142 M. Batchelor [2]

or spans a finite dimensional subspace, ((S)) is in fact a finite
dimensional subcomodule (subcoalgebra).

If W is a comodule and V is a subcomodule, then W/V has a
comodule structure. If (W, T) and (W', T') are comodules and f: W —
W' is a k-map, then f is a comodule map if (f ® I)T = T’f. The usual
isomorphism theorems hold.

A comodule (coalgebra) will be called simple if it contains no
proper non-zero subcomodules (subcoalgebras). Every comodule
contains a simple comodule, and every coalgebra contains a simple
subcoalgebra. If W is a comodule for C, define the socle of W, s(W)
to be the sum of all simple subcomodules of W. Define the coradical
R of the coalgebra C to be the sum of all simple subcoalgebras of C.
If C is considered as the C-comodule (C, A), then s(C)=R.If Visa
subcomodule of W such that T(V)=V ® R, then V = s(W). s(W)
has the property that it decomposes as a direct sum of simple
subcomodules. R decomposes as a direct sum of simple subcoalge-
bras.

The notion of the socle can be extended. Define s,(W) inductively
by setting so( W) =0, and s,.(W)/s,_ (W) = s(W/s,_.(W)). Since every
non-zero subcomodule contains a simple subcomodule, the chain
so(W)=s5:(W)=s5,(W)=... is strictly ascending unless s,(W) is the
whole of W for some k. Since every element w of W is contained in
the finite dimensional subcomodule {w)), W = Us_; s,(W).

The socle can be described in another way. For subspaces X < W,
and Y = C, define the wedge of X and Y, X A Y to be the kernel of
the map

W s W®C— WIXR®CY

Thus XAY=T ' (W® Y +X ®C). It can be shown that 0A R =
s(W). If we define A%R =0 and A%LR =(A%'R) AR, then it follows
that A%ZR = s,(W).!

A comodule (I, T) is injective if for every comodule (W, T’) and
every subcomodule U = W, every comodule map f: U —1I extends
uniquely to a map f: W1 C itself is an injective C-comodule.
Direct summands of injective comodules are injective.

2. The theorem

THEOREM: Let (W, T) be an injective comodule. Let s(W)=
S.em X, be a direct decomposition of the socle of W as a sum of

'For elementary properties of comodules and coalgebras, see Sweedler, [2].



[3] Decomposition theorem for comodules 143

simple subcomodules. This decomposition of s(W) can be extended to
a direct decomposition of W as a sum of indecomposable injective
subcomodules, W =3 ,cm J,. such that s(J,) = X,.

The theorem is proved by constructing inductively a decomposition
of s5.(W) which extends the decomposition of s,_,(W).

For every w in M, let J. = X,. Suppose we have J: ' defined for
some n =2 such that

M s =X.

(i) Y Ji'=s._(W)

REM

(iii) The sum Y, Ji7' is direct.

wEM

We wish to define J.. Set Z, = 2, Xi. Define
B, ={S=J'AR:S=J',SNZ, =0}

%, is nonempty, since J. ' is in %&B,, and by Zorn’s lemma %, has
maximal elements. Choose J) to be a maximal element of %,. It
remains to show that the set {J}.cm satisfies the three conditions of
the inductive hypothesis.

@) s(I2)=X,, since Jo=J."". If s(J2) ¥ X,, it follows that J; N
Z,#0, a contradiction. So s(J,) = X,.

(>ii) It is enough to show that the sum X,c, J} is direct for all finite
subsets A =M. This can be done by induction on |[A|. Assume now
that for any subset A of M with |A| <r, the sum =,c, J% is direct. If
I'=M, |I'| =r, and the sum =, J} is not direct then there is some A
in I' and some simple comodule U =J; such that U =X, <
SCuerudD) =2perun sUD) =Z.erw X, =Z,, which contradicts the
directness of the decomposition of the socle, and completes the
inductive step. (The second equality follows from the directness of
the sum 2 ,.cru J%, by the inductive hypothesis.)

(iii) This condition is shown in three steps.

Step 1. ., 7'AR=I.® Z,

Step2. X Ji=> U 'AR)
rEM

rREM

Step 3. X (Ji'AR)= (2 IZ“') A R = 5,-(W) AR = s,(W).

rEM wEM
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Step 1. Clearly J + Z, <J."' A R. To see the converse, it is suffi-
cient to show that if U = J. ™' is a subcomodule of W such that U/J.™
is simple, then U <J. + Z,. Suppose that U%£J. + Z,. Then U +
Ji# J;. Moreover, U+J. <J."' AR so by the maximality of J” in
A, it must be that (U +J;)N Z,#0. We may pick z# 0 in Z, such
that z=u +j with u in U and j in J.. Now u is not in J, (otherwise z
would be in J; N Z, contrary to the conditions in %,) and hence not
in J37'. Therefore u + J:™' must generate U/J:'. Thus

U=(u+ =N+ N+ =T0+ Z,

which is a contradiction. Thus it must be that U <J} + Z,, and
therefore J + Z, = J.7' A R. Since J.. isin 8,, J. N Z, = 0 and the sum
is direct.

Step 2. This is a direct consequence of step 1 and the definition of
J.

Step 3. The last equality is a property of the wedge, the second
uses the inductive hypothesis, that 2,enJ2 ™' = 5,.(W). Since J. '
Srem i, we have that JJ ' A R<C,en i) AR for all u in M, and
Suem(LT'AR)=Cuem i) AR

Now let U=C,.emJi ')A R. We may assume that U is finite
dimensional. Then

U+ Jz-'/z J:“EU/UO<E J:—‘)EU+ 3 J:"/Z o
nEM'

nEM nEM nweEM rREM'
Where M' is a finite subset of M such that UNC, enJi )=

Suem Ji7. Since U=C.emJi AR, U+Z cn I Suen Ji™" is
completely reducible. Let

k
U+ “gu ! / g&l Jil= 21 (u / > J,’:“)

rEM’

be a direct decomposition as simple comodules. It is sufficient to
show each U, is contained in 2.en(Ji ' A R).

Take U = U,andset Q =3, cn Ji 7' and Q. = Zremrana Jx ', forall
in M'. We have projections (which are comodule maps)

p.: U->U/Q, for all p in M".
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These can be used to get a comodule homomorphism

p:U— z U/ Q. (external direct sum).

weM’

If a is in ker(p), then p,.(a) =0 for all u in M’. That is, a is in Q, for
all w in M'. But the sum X, J. ™' is direct, and so N ey Q. =0,
whence a =0 and p is injective.

Let U'=im(p) in Z,.cm U/Q,. p is an isomorphism of U onto U'.
Let ro: U'— W be the inverse to p on U’. Since W is injective we can
extend r, to a map

rr > UQ-W

wEM’

Im(r)= U and im(r) <= ,.cn r(U/Q,).
It remains to show that r(U/Q,) is contained in J.™' A R. We have a
series

UlQ.=zQlQ.=0

The bottom factor is isomorphic to J.™' and the top factor
(U1QI(QIQ.) is simple. Moreover,

r(QIQ.)=r(p(r) =T

(Notice that p,(Ji. ) =0 if A# u, and thus p(J. H=Q/Q. =U/Q..)
We have an induced homomorphism

F: UlQ.QIQ. —» r(UIQ)IMQIQ.) = r(UIQIIT™

Thus r(U/Q.)/J." is a homomorphic image of a simple comodule and
must therefore be simple or 0. If r(U/Q.)/J:" is simple, then
r(U/Q.)=J" ' AR, by a property of the wedge. If r(U/Q.)/J:"' =0,
then r(U/Q)=J.'=J:"AR

Thus r(U/Q.)=<J."'AR for all w in M’ and U =Z,.ep H(U/Q.) =
3,.em(27 A R), which completes step 3.

Let J, = U5_, J;.. The sum I, J, is direct, since the sum 2 emJ;
is direct for all n, and it is the whole of W since Z,.emJ ;. = s.(W) and
Ui 8.(W) = W. s(J,) = CrenJ) N J, =T, by directness of the sum
Zren Ji. The J, are indecomposable since each J, contains a unique
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simple subcomodule. Each J, is injective since direct summands of
injective comodules are injective.
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