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CHEVALLEY-JORDAN DECOMPOSITION FOR A

CLASS OF LOCALLY FINITE LIE ALGEBRAS

Ian Stewart

COMPOSITIO MATHEMATICA, Vol. 33, Fasc. 1, 1976, pag. 75-105
Noordhoff International Publishing
Printed in the Netherlands

In a series of papers [11, 12, 13] we have developed analogues of the
classical structure theory of finite-dimensional Lie algebras over a field
of characteristic zero for certain classes of infinite-dimensional locally
finite Lie algebras. In [11, 12] the class under consideration comprised
those algebras generated by a system of finite-dimensional ascendant
subalgebras. We discussed radicals and the existence of Levi subalgeb-
ras (semisimple complements to the radical), together with certain
results on the conjugacy of Levi subalgebras. Extensions of these
results to the broader class of Lie algebras generated by a system of
finite-dimensional local subideals may be found in Amayo and Stewart
[1] chapter 13 pp. 256-273. In [13] we took up the conjugacy question
anew for the more restricted class of ideally finite Lie algebras,
generated by a system of finite-dimensional ideals: for technical

reasons the ground field was assumed algebraically closed of charac-
teristic zero. Algebras in this class may be thought of as analogues of
periodic FC-groups (which are generated by a system of finite normal
subgroups, cf. Scott [10] theorem 15.1.12 p. 443), for which there exists
a projective limit technique for proving ’local conjugacy’ theorems (cf.
Kuros [8] p. 169, Tomkinson [19] pp. 682-686). By using elementary
results on algebraic groups we were able to adapt this method to prove
conjugacy, under suitable groups of automorphisms, of Levi, Borel,
and Cartan subalgebras of ideally finite Lie algebras. The existence of
Cartan subalgebras was also proved.

In the present paper we wish to extend to such algebras the

technique of ’nilpotent-semisimple splitting’, otherwise known as the
Chevalley-Jordan decomposition (Humphreys [6] p. 17) and to use this
to extend the results of Mal’cev [9]. As a byproduct we obtain an
alternative proof of the existence of Cartan subalgebras in ideally finite
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Lie algebras, which does not require the projective limit methods of
[13].

In §2 we develop simple properties of the Fitting and Chevalley-
Jordan decompositions (the former relating to ’weight spaces’, the
latter to ’nilpotent-semisimple splitting) and introduce ’cleft’ algebras,
generalizing Mal’cev’s concept of ’splittable’ algebras. In §3 we define
a ’torus’ and show that in any cleft ideally finite Lie algebra the
centralizer of a maximal torus is a Cartan subalgebra. As a corollary we
obtain a conjugacy theorem for maximal tori in the spirit of [13]. In §4
we use an embedding process, similar to Mal’cev’s, to show that every
locally soluble ideally finite Lie algebra has a Cartan subalgebra: it then
follows from a result of [13] on Borel subalgebras that the hypothesis
of local solubility may be removed. The content of §5 is a technical
result weakening the requirements for an algebra to be cleft. It is used
in §6 to prove that every ideally finite Lie algebra embeds in a cleft
ideally finite Lie algebra, a result underlying everything in Mal’cev [9]
in the finite-dimensional case. The proof given here makes no use of
Lie group techniques and provides an alternative to Mal’cev’s proof in
finite dimensions. In §7 we make this construction more precise by
introducing the ’cleft envelope’ (called the ’splitting’ by Mal’cev) of an
ideally finite Lie algebra L. It is in some sense a ’minimal’ cleft ideally
finite algebra É containing L. It always exists, and is unique up to
isomorphism. The properties of L and Ê are closely related: in

particular L2 = L 2 and both algebras have the same centre. In §8 this
construction is applied to describe the conjugacy classes of maximal
locally nilpotent subalgebras.

This work was done with the support of a Forschungsstipendium
from the Alexander von Humboldt-Stiftung, at the University of
Tübingen.

1. Notation

Our notation will be consistent with that of [11, 12, 13] and of the
book [1], which should be consulted for any unexplained terminology.
In particular we shall use S and  to denote the subalgebra and ideal
relations; L n and (n (L) will denote the nth terms of the lower and

upper central series of the Lie algebra L (with L 1 = L and 03B61(L) = the
centre of L); and CL(X) and IL(X) will denote the centralizer and
idealizer of the subset X of L. The Lie algebra of derivations of L is
written Der(L). For any x E L we write x * for the adjoint map
y ~ [y, x] 1 (y E L ): to avoid ambiguity we may also write x*L. Com-
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mutators are left-normed, so that

We write

(n factors y) ; similarly for subspaces X, Y of L we let

(n factors Y). Triangular brackets denote the subalgebra generated by
their contents.

The Hirsch-Plotkin radical p(L) is the unique maximal locally
nilpotent ideal of L (cf. Hartley [5]).

In dealing with linear transformations of a vector space V we shall
confuse a field element À with the corresponding scalar multiplication
03BB1v, where 1v is the identity on V. In particular if f : V - V is linear,
we write (f - 03BB)" instead of ( f - 03BB 1v)n.
As in [13], throughout the paper 9 denotes an algebraically closed

field of characteristic zero. This convention will be used to shorten
statements of theorems.

A Lie algebra is ideally finite if it can be generated by a system of
finite-dimensional ideals. The class of ideally finite algebras is denoted
by % in [13] but we will avoid this notation here. If L is ideally finite
over R then Y(L) is the group of locally inner automorphisms
introduced in §6 of [13].

2. The fitting and Chevalley-Jordan decomposition

Although a suitable choice of hypotheses allows the extension of
many of the results of this section to a non-algebraically closed field,
we shall state them only in the algebraically closed case since this is
simpler and is the only case we need for applications. Most of the
proofs are routine extensions of the finite-dimensional case

(Freudenthal and de Vries [3] p. 88, Humphreys [6] p. 17, Jacobson [7]
pp. 37, 61) and will be referred back to it. Nonetheless we state the

results in full to provide a solid foundation for subsequent sections.
The traditional terminology with regard to the Chevalley-Jordan de-
composition is confusing and conflicts with some of our previous
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terminology (words like ’semisimple’, ’split’, ’algebraic’ all being used
in at least two different senses) and we shall modify it along the lines
suggested by Freudenthal and de Vries [3].

Let V be a vector space (usually of infinite dimension) over R, and
f : V - V a linear map. We say that f is pure if V has a basis of

f-eigenvectors (or equivalently if V is spanned by f-eigenvectors), and
f is nil if every v ~ V is annihilated by some power of f (perhaps
depending on v ). If there exists a polynomial q(t) ~ R[t] for which
q(t) ~ 0, such that q(f) = 0, then f is algebraic. There is then a unique
monic q of smallest degree such that q (f) = 0, the minimum polyno -
mial of f. We say that f is cleft if we can write

where fp is pure, fn is nil, and fpfn = fnfp.

LEMMA (2.1): If f : V ~ V is algebraic, then f is cleft, fp and fn are
unique, and there exist polynomials q, r E R[t] with zero constant term
for which fp = q(f), fn = r(f). Hence fp and fn leave invariant any

subspace of V which f leaves invariant, annihilate any subspace of V
which f annihilates, and commute with any linear transformation of V
with which f commutes.

PROOF: For all but the uniqueness assertion, mimic Humphreys [6]
p. 17 proposition, but use the minimum polynomial instead of the
characteristic polynomial. To prove uniqueness argue as in

Freudenthal and de Vries [3] p. 89 proposition 18.1.1. The argument in
Humphreys [6] for uniqueness cannot be used because it assumes the
polynomial property of fp, fn : but this will not follow for every choice
of fp and fn until after uniqueness is proved.

If f is algebraic we call fp and fn (now known to be unique) the pure
and nil parts, respectively, of f. The decomposition f = fp + fn is called
the Chevalley -Jordan decomposition of f, following Humphreys [6], or
the cleaving of f, following Freudenthal and de Vries [3].

If L is a Lie algebra over ? and x E L we say that x is ad-algebraic,
ad-pure, or ad-nil according as the adjoint map x * is algebraic, pure, or
nil on L. If there exist Xp, xn E L such that x = xp + xn, for which

[xp, xn] = 0 and the decomposition x * = x p + x n is a cleaving, then we
say that x is ad-cleft in L. It follows from lemma 2.1 that if x is

ad-algebraic and ad-cleft then x * and x*n are unique, that is, xp and xn
are unique modulo the centre of L. If every x E L is ad-cleft we say
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that L is cleft. If M is an L-module we say that L is M-cleft if every
x E L can be written as x = xp + xn (xp, xn E L ), [xp, xn ] = 0, in such a
way that the maps induced on M by xp and xn constitute a cleaving of
that induced by x. Thus if L is cleft then it is L-cleft, the action of L on
itself being the adjoint action.
Next we turn to the Fitting decomposition. Let L be a Lie algebra

over U with dual space L *. Let M be any L-module. For any linear

form À E L * define

We refer to À as a weight of M, and call M, its weight space. There is
of course no reason in general to suppose that any non-zero weight
spaces of M exist. However, define M to be locally finite if every finite
subset is contained in a finite-dimensional L-submodule. (The most

important example for us is an ideally finite Lie algebra under the
adjoint action of a subalgebra.) We have:

LEMMA (2.2): Let L be a locally nilpotent Lie algebra over U and M a
locally finite L -module. Then M is the direct sum of its weight spaces,
and these are all L-submodules.

PROOF: Every finite-dimensional L -submodule X of M is a module
for the finite-dimensional nilpotent algebra L/CL(X) and hence a
direct sum of weight spaces under the L /CL (X)-action by Jacobson [7]
p. 42 theorem 6. Since the L-action factors through the L /CL (X)-
action, it follows that X is the direct sum of weight spaces for L. Since
M is the sum of all such X’s it follows that M is the sum of its weight
spaces. That this sum is direct can be shown either by adapting the
usual argument or by looking at the system of finite-dimensional
submodules. That the weight spaces are all L-submodules follows from
the corresponding statement for finite dimensions (Jacobson [7] p. 42
theorem 6).

If N is a submodule of a locally finite module M it is trivial to verify
that for each À E L *
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Further, if L is thought of as an H-module under adjoint action, where
H is a locally nilpotent subalgebra, then as in Jacobson [7] p. 64

corollary we obtain

for all À, JL E L * .
The expression of M as a direct sum of weight spaces,

is the Fitting decomposition of M.
If m E M spans a 1-dimensional L -submodule then mx = 03BB(x)m for

all x E L, where À E L *. We call m an L -eigenvector with eigenvalue
03BB.

LEMMA (2.3): Let f : V - V be a linear map such that V is a locally
finite (f)-module and f is pure. Then every weight space VA consists
entirely of f-eigenvectors with eigenvalue À.

PROOF: Let x EVA. Since f is pure, x is a sum of f-eigenvectors.
Each f-eigenvector lies in some weight space, and the sum of the
weight-spaces is direct; hence x is an f-eigenvector and À is its

eigenvalue.

COROLLARY (2.4): Let f : V ~ V be a linear map such that V is a
locally finite (f)-module, and let W be a submodule.

(i) If f is pure then it induces pure maps on W and on V/W.
(ii) If f is nil then it induces nil maps on W and on V/W.
(iii) Each cleaving of f on V induces cleavings on W and V/W.

PROOF: Part (i) follows from lemma 2.3 together with equations (1)
and (2) above. Parts (ii) and (iii) are obvious.

3. Toral structure of cleft algebras

A torus in a Lie algebra L over Û is a subalgebra T of L such that
every element of T is ad-pure (in its action on L).

LEMMA (3.1): Every torus of a locally finite Lie algebra over U is

abelian.
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PROOF: Let L be locally finite, T a torus. We argue as in Humphreys
[6] p. 35, and show that t*T = 0 for all t E T. Since t*T is pure by
corollary 2.4 (L being a locally finite (t)-module and T being a
submodule) it is sufficient, by lemmas 2.2 and 2.3, to show that t*T has
no non-zero eigenvalues. Suppose on the contrary that ut*T = Au where
0 ~ u ~ T, 0 ~ 03BB ~ R. Now

where the ti are linearly independent elements of T such that [ ti, u ] =
03BBiti (À, ~ R), since u T is also pure. Now

so that A, = 0 for all i, and [t, u ] = 0. But this contradicts 03BB ~ 0.

A maximal torus in L is a torus not properly contained in another
torus. A Zorn’s lemma argument shows that maximal tori exist in any
Lie algebra. Obviously every maximal torus contains the centre.
We recall some definitions from [13]. A Cartan subalgebra (or

locally nilpotent projector in the language of formation theory) of a Lie
algebra L is a subalgebra C such that

(i) C is locally nilpotent,
(ii) If C ~ H ~ L, K  H, and H/K is locally nilpotent, then H =

K + C.

A subalgebra Q of L is quasiabnormal if for all U, Q ~ U ~ L
implies U = IL ( U).
A result of Stonehewer [18] p. 526, or part of lemma 5.6 of Gardiner,

Hartley, and Tomkinson [4] p. 203, translates with only verbal altera-
tions to yield:

LEMMA (3.2): A subalgebra of a Lie algebra is a Cartan subalgebra if
and only if it is locally nilpotent and quasiabnormal.

This leads us to the main theorem of this section:

THEOREM (3.3): Let L be a cleft ideally finite Lie algebra over R. If T
is a maximal torus of L then CL(T) is a Cartan subalgebra of L.

PROOF: By lemma 3.2 it is enough to prove C = CL(T) locally
nilpotent and quasiabnormal.
By the ’annihilation’ statement in lemma 2.1, C is L -cleft. Since T
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is abelian we have T ~ C. Now T contains every c E C for which c * is

pure on L, for [T, C] = 0 and therefore T + c&#x3E; is a torus for such c.
Now for any c E C we have c* = c*p + c*n, an ad-cleaving: the above
remark shows that c*p annihilates C; and c*n acts nilpotently. Therefore
c * is nil on C. Engel’s theorem, applied to a local system of finite-
dimensional subalgebras of C, shows that C is locally nilpotent.
Next suppose that C --5 U S L and, for a contradiction, that

U ~ IL(U). Then there exists x E L B U such that [U, x ] ~ U. Let
V = U + x&#x3E;, so that C ~ U  V ~ L. Each of U, V is a T-module,
and dim V / U = 1. Decomposing U and V into weight spaces for T it
follows from (1) that there is a unique weight À E T* for which
U, 0 VA, and for this À we have dim V03BB/U03BB = 1. If we pick x’ E V03BBB U,
then V = U + x’&#x3E; and x’ is a T -eigenvector with eigenvalue À by
lemma 2.3. Now for all t E T,

so 03BB(t) = 0. Hence x’ E CL(T) = C, a contradiction. So C is quasiab-
normal.

In [9] Mal’cev proves a conjugacy theorem for maximal tori, which
we generalize as:

THEOREM (3.4): Let L be a cleft ideally finite Lie algebra over R.
Then any two maximal tori of L are conjugate under the group Y(L) of
locally inner automorphisms.

PROOF: Let T and T’ be maximal tori of L. Their centralizers C and

C’ are Cartan subalgebras of L, so by [13] theorem 7.9 there exists
a E Y(L) such that C" = C’. Now the proof of theorem 3.3 shows that
T is precisely the set of ad-pure elements of C, and similarly for T’ ;
and since automorphisms of L preserve ad-purity it follows that

Ta = T’.

4. The existence of Cartan subalgebras

In this section we use an embedding process, suggested by that of
Mal’cev, to construct in any ideally finite Lie algebra a Cartan

subalgebra. The first step involves a property of linear transformations
of finite rank. Let V be a vector space over R and let F(V) be the Lie

algebra of all linear transformations of V of finite rank (i.e. having
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finite-dimensional image). It is well known and easy to prove that F(V)
is locally finite. It is obvious that each f E F( V) is algebraic as a linear
transformation of V.

LEMMA (4.1): The Lie algebra F(V) is cleft.

PROOF: Obviously F( V) is V-cleft: from this we shall deduce that it
is cleft. For each f E F(V) there exists, by lemma 2.1, a unique
V-cleaving f = fp + fn, where fp and fn are polynomials in f without
constant term. We claim that

is an ad-cleaving in F(V). Since [f*p, f*n] = [fp, fn]* = 0 all that is

required is that f*p be pure on F( V) and f*n nil. Now if g, h E F( V) then
an easy induction shows that

so that if h r = 0 then h *2r = 0. Now an algebraic nil transformation is
nilpotent (consider its minimum polynomial) so it follows that f n is nil
on F(V).

If g E F( V) is pure on V we can choose a basis {vi}i~I of V consisting
of g -eigenvectors, so that vig = Xivi (Ai ~ R). The elementary transfor-
mations eji (i, j Ei I) defined by

(k El), where 03B4ki is the Kronecker delta, form a basis for F(V). A
simple computation shows that

hence the eij are g *-eigenvectors and g * is pure. Hence f*p is pure. The
lemma follows.

COROLLARY (4.2): Any Lie subalgebra of F(V) which contains the
pure and nil parts of each of its elements (considered as transforma -
tions of V) is cleft.

LEMMA (4.3): Let d be a derivation of the Lie algebra L over R, such
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that d is algebraic on L. Then the pure and nil parts dp and dn are
derivations of L.

PROOF: It is easy to see that L is a locally finite (d)-module, so
lemma 2.2 applies. Using (3) we can mimic Humphreys [6] lemma B p.
18 to obtain the result.

Let L be any ideally finite Lie algebra over R, and let lKi be the
set of all finite-dimensional ideals of L. Let L1 (L ) be the subalgebra of
Der(L ) consisting of those derivations which fix setwise every ideal of
L, so that 0394(L) ~ Inn(L), the latter being the algebra of inner

derivations. For each i E I define Di to be the set of all d E L1 (L ) such
that

It is clear that inner derivations induced by elements of Ki lie in Di.

LEMMA (4.4): With the above notation, each Di is a finite-
dimensional ideal of à (L).

PROOF: Since Ki has finite dimension, CL (Ki) has finite codimen-

sion, so there exists a finite-dimensional vector space complement Wi
to CL (Ki) in L. Each d E Di is (by condition (ii)) uniquely determined
by its restriction to W. Since Wid C Ki by condition (i) we have

dim Di ~ dim Hom(Wi, Ki)  ~.

Hence Di  0394(L).
Hence we can define 0393(L)  0394(L) by
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If i, j, k E I and Kk = Ki + Kj then obviously Di + Dj ::; Dk, so in fact

We then have:

THEOREM 4.5: Let L be ideally finite over 9. Then T(L) is a cleft
ideally finite Lie algebra. The adjoint representation of L induces a
homomorphism

whose kernel is 03B61(L) and image Inn(L).

PROOF: By lemma 4.4, 0393(L) is ideally finite. If dEF(L) then
condition (i) shows that d has finite rank, hence 0393(L) ~ F(L ). Now d
is algebraic, so there exists a cleaving d = dp + dn by lemma 2.1. By
lemma 4.3 each of dp, dn is a derivation of L. By the polynomial
property and other assertions of lemma 2.1 it is easy to check that dp
and dn belong to 0393(L). Now corollary 4.2 shows that 0393(L) is cleft.
The remaining assertion is obvious.

Thus there is an embedding L/03B61(L) ~ 0393(L). For our purposes,
where central extensions cause no trouble, this is quite good enough.
The question of embedding L, rather than a central quotient, in a cleft
ideally finite algebra will be dealt with in §6.
IThe definition of the Di above suggests a method for constructing

ideally finite algebras (ensuring an adequate supply of objects to which
the theory applies). Namely, take a vector space V, a family {Vi}i~I of
finite-dimensional subspaces, and a corresponding family {Wi}i~I of
subspaces of finite codimension. For each i E 1 let Ai be the Lie

algebra of all linear maps V - V which leave invariant each V; and
Wj(j El), map V into Vi, and annihilate Wi. The sum of all the Ai is an
ideally finite Lie algebra. If for all i, j E I there exists k E I with
Vi + Vj ~ Vk and Wk ~ Wi n wi then this algebra is even cleft.

Further, every ideally finite algebra is a subalgebra of a central
extension of some algebra constructed in this way.1
We return to 0393(L) and the map T. If J is an ideal of L, j E J, and

d ~ 0394(L) then

so that 03C4(J) is an ideal of 0393(L). We wish to use Mal’cev’s idea [9] of
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selecting a ’minimal’ cleft subalgebra of 0393(L) containing 03C4(L). Be-
cause of the ambiguity (up to centre) of ad-cleaving the existence of
such a subalgebra is not immediately obvious, and we can manage with
a less precise statement. (The existence is in fact a corollary of the
more general results to be proved in §7.) All we need is that 03C4(L) can
be embedded in a cleft ideally finite algebra Ê with some of the
properties listed by Mal’cev [9] pp. 248-250, namely:

LEMMA (4.6): If L is an ideally finite Lie algebra over R then there
exists a cleft subalgebra Ê of r(L), with 03C4(L) ~ , such that

If L is locally soluble so is L.

PROOF: Let r = r(L). We define an increasing sequence of sub-
algebras

of r, as follows: each L i+1 is the subalgebra of T generated by all Xp and
xn for x E Li. The polynomial property of cleavings (lemma 2.1) shows
that each Li is an ideal of T. Now define L = U~i=0Li. We claim that
L2i+1 = L2i. For x E Li the polynomial property implies that

and similarly

Therefore

A repetition of this argument shows that

so that L 7 = L’ 0 for all i. But 2 = U 7=o L 7 = L20. It is clear that L is
T-cleft, hence cleft. The last assertion of the theorem is obvious.

The task of proving existence of Cartan subalgebras is lightened by
the following theorem.
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THEOREM (4.7): If L is ideally finite over R and C is a subalgebra of L
then the following are equivalent :

(i) C is a Cartan subalgebra of L.
(ii) C is locally nilpotent and quasiabnormal in L.
(iii) C is locally nilpotent and self-idealizing.
(iv) C is equal to the 0-weight space of its adjoint representation on

L.

PROOF: We have proved (i) ~ O (ii) in lemma 3.2. It is obvious that
(i) ~ (iii). We shall show (iii) ~ (iv) ~ (ii), from which the result
follows.

(iii) ~ (iv): Let C be locally nilpotent, so that C ~ Lo (the 0-weight
space), and suppose C = IL (C). If L0 ~ C choose x E LoBC. Now x is
contained in a finite-dimensional ideal X of L, and Xo = Lo n X is the

0-weight space of X as C-module, or equivalently as a module for the
finite-dimensional nilpotent algebra C/CL(C). It follows from Jacob-
son [7] theorem 1 p. 33 that there exists an integer r such that

Choose m maximal subject to

Then

so that

a contradiction. Therefore C = Lo as claimed.

(iv) ~ (ii): Suppose C = Lo. Then Engel’s theorem, applied on a
local system of finite-dimensional subalgebras, shows that C is locally
nilpotent. To prove C quasiabnormal suppose

where x E IL ( U). Then U and U + x&#x3E; are C-modules. Since C = Lo it
follows that x E U + L03BB for a non-zero weight A. Hence the coset
U + x is a C-eigenvector in (U+x&#x3E;)/U with eigenvalue À. But since
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[x, C] C [x, U] C U in fact U + x has eigenvalue 0. This contradiction
shows that U = IL ( U), hence C is quasiabnormal and (ii) holds.
Had this result, which depends on lemma 2.2, been known at the time

[13] was written, it would perhaps have been better to use the more
familiar (iii) as a definition of ’Cartan subalgebra’ and to prove (i), or
what amounts to the same thing, homomorphism invariance of Cartan
subalgebras, as above. We would still need (i) to prove conjugacy of
Cartan subalgebras, which result we need for the existence proof as
will emerge in due course.

A final preliminary result which we need is a generalization of a
theorem of Stitzinger [17].

LEMMA (4.8): Let L be a locally soluble ideally finite Lie algebra over
R, and C a subalgebra. Then the following are equivalent :

(i) C is a Cartan subalgebra of L.
(ii) C is a maximal locally nilpotent subalgebra of L, and L =

p(L) + C.

PROOF: That (i) ~ (ii) is clear from the projector property, since
L/03C1(L) is abelian by [11] ] lemma 3.12 p. 86. To prove (ii) ~ (i) it is

sufficient, by theorem 4.7, to show that C is self-idealizing under
hypothesis (ii). If not, then I = IL(C) &#x3E; C. Suppose if possible that
I ~ 03C1(L) = C ~ 03C1(L). Then

a contradiction. Therefore i fl p (L ) &#x3E; C fl p (L ). Pick x E (I n p (L ))B
C, and consider M = C + x&#x3E;. Now x * is nil and of finite rank, hence
nilpotent. From [15] lemma 3.3.4 p. 319 it follows that

Hence if x1, ..., xs E C then x1, ..., xs E Çm (C) for some m, and then

03B6m(C) + x&#x3E; is nilpotent by [16] lemma 2.1 p. 15. Therefore M is locally
nilpotent. Also L = p (L ) + M, which contradicts maximality of C.

Hence in fact C = IL (C) and (ii) ~ (i).

We may now give an existence proof for Cartan subalgebras,
different from corollary 7.5 of [13].


