Primitive idempotents and the socle in group rings of periodic abelian groups
Compositio Mathematica, Volume 32 (1976) no. 2, pp. 203-223.
@article{CM_1976__32_2_203_0,
     author = {Richardson, J. S.},
     title = {Primitive idempotents and the socle in group rings of periodic abelian groups},
     journal = {Compositio Mathematica},
     pages = {203--223},
     publisher = {Noordhoff International Publishing},
     volume = {32},
     number = {2},
     year = {1976},
     mrnumber = {409618},
     zbl = {0328.16011},
     language = {en},
     url = {http://www.numdam.org/item/CM_1976__32_2_203_0/}
}
TY  - JOUR
AU  - Richardson, J. S.
TI  - Primitive idempotents and the socle in group rings of periodic abelian groups
JO  - Compositio Mathematica
PY  - 1976
SP  - 203
EP  - 223
VL  - 32
IS  - 2
PB  - Noordhoff International Publishing
UR  - http://www.numdam.org/item/CM_1976__32_2_203_0/
LA  - en
ID  - CM_1976__32_2_203_0
ER  - 
%0 Journal Article
%A Richardson, J. S.
%T Primitive idempotents and the socle in group rings of periodic abelian groups
%J Compositio Mathematica
%D 1976
%P 203-223
%V 32
%N 2
%I Noordhoff International Publishing
%U http://www.numdam.org/item/CM_1976__32_2_203_0/
%G en
%F CM_1976__32_2_203_0
Richardson, J. S. Primitive idempotents and the socle in group rings of periodic abelian groups. Compositio Mathematica, Volume 32 (1976) no. 2, pp. 203-223. http://www.numdam.org/item/CM_1976__32_2_203_0/

[1] S.D. Berman: Group algebras of countable abelian p-groups. Publ. Math. Debrecen 14 (1967) 365-405 (Russian). | MR | Zbl

[2] B. Hartley: A class of modules over a locally finite group I. J. Austral. Math. Soc. 16 (1973) 431-442. | MR | Zbl

[3] Nathan Jacobson: Lectures in Abstract Algebra, Vol. III - Theory of Fields and Galois Theory. Van Nostrand, Princeton, New Jersey, 1964. | MR | Zbl

[4] Wolfgang Müller: Radikal und Sockel in Gruppenalgebren über lokalendlichen Gruppen. Arch. Math. (Basel) 25 (1974) 476-482. | MR | Zbl

[5] Donald S. Passman: Infinite Group Rings. M. Dekker, New York, 1971. | MR | Zbl