COMPOSITIO MATHEMATICA

MICHAEL P. ANDERSON

Some finiteness properties of the fundamental group of a smooth variety

Compositio Mathematica, tome 31, nº 3 (1975), p. 303-308 <http://www.numdam.org/item?id=CM_1975__31_3_303_0>

© Foundation Compositio Mathematica, 1975, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 31, Fasc. 3, 1975, pag. 303–308 Noordhoff International Publishing Printed in the Netherlands

SOME FINITENESS PROPERTIES OF THE FUNDAMENTAL GROUP OF A SMOOTH VARIETY

Michael P. Anderson

In this paper we prove that for any smooth variety X over an algebraically closed field of characteristic $p \neq 2, 3, 5$ the group $\prod_{1}^{(p)}(X)$ is a finitely presented pro-(p)-group. We recall that $\prod_{1}^{(p)}(X)$ denotes the maximal quotient of $\prod_{1}(X)$ of order prime to p. In [8] Exposé II this result is demonstrated for smooth X provided there exists a projective smooth compactification \overline{X} of X such that $\overline{X} \setminus X$ is a divisor with normal crossings on \overline{X} and for all X provided we assume strong resolution of singularities for all varieties of dimension $\leq n$. Thus the result was previously known for X of dimension ≤ 2 .

The essential new step is Lemma 1 which allows us to reduce to the case of dimension 2. The proof of this lemma uses Abhyankar's work on resolution of singularities [1] together with the technique of fibering by curves. We follow the notation of [7] Exposé XIII and [8] Exposé II.

Let us now state our proposition.

PROPOSITION 1: Let X/k be a connected smooth variety over the algebraically closed field k of characteristic $p \neq 2, 3, 5$. Then $\prod_{1}^{(p)}(X)$ is a finitely presented pro-(p)-group.

PROOF: By [7] Exposé IX it is sufficient to prove the result for the elements of a Zariski covering of X. Thus the result follows by induction on dimension from the result in dimension 2, [8] Exposé II Theorem 2.3.1, and the following lemma:

LEMMA 1: Let X be a smooth variety of dimension $n \ge 3$ over the algebraically closed ground field k and x a point of X. Then x has a Zariski neighborhood U such that there exists an algebraically closed extension Ω/k and a smooth variety V over Ω of dimension n-1 and a morphism $f: V \to U$ such that f induces a surjection $\prod_1(V) \to \prod_1(U)$ and an isomorphism $\prod_1^{(p)}(V) \to \prod_1^{(p)}(U)$.

M. P. Anderson

PROOF OF LEMMA 1: We proceed by induction on the dimension of X.

Let U be an affine neighborhood of x. By [1] Birational Resolution there exists a smooth projective model of the function field k(U). Let \overline{U} be a projective compactification of U. By [1] Dominance there exists a smooth projective variety X' together with a birational morphism $X' \to \overline{U}$. By [1] Global Resolution there exists a smooth projective variety X" together with a birational morphism $X'' \to \overline{U}$ and such that the inverse image of $\overline{U} \setminus U$ is a divisor with normal crossings on X". Let U" be the complement of this divisor. Then the map $g: U'' \to U$ is a proper birational mapping of smooth varieties. The subvariety of points of U where g is not an isomorphism is of codimension ≤ 2 . Thus by the Purity Theorem [7] Exposé X.3, g induces an isomorphism

$$\prod_1 \left(U'' \right) \to \prod_1 \left(U \right).$$

By [9], [5], or [10], a general hyperplane section of U'', call it V, gives a smooth surface in U'' such that

$$\prod_1^{(p)}(V) \cong \prod_1^{(p)}(U'') \cong \prod_1^{(p)}(U).$$

Thus the lemma is proved for n = 3.

Now assume n > 3. By [4] Exposé XI, x has a Zariski neighborhood W which admits an elementary fibration $g: W \to W'$ with W' smooth of dimension n-1. Moreover, by [6] Proposition 2.8 we may assume that g admits a finite etale multisection i.e. there exists a finite etale map $s: S \to W'$ together with a closed immersion $i: S \to W$ such that gi = s. Let y = g(x). By induction y admits a Zariski neighborhood U' in W' such that there exists a smooth variety V' of dimension n-2 and a morphism $f': V' \to U'$ such that f' induces an isomorphism of the (p)-completions of the fundamental groups of V' and U'. Let $U = g^{-1}(U')$ and $V = V' \times_{U'} U$ with projections $f: V \to U$ and $g': V \to V'$. Then g' is an elementary fibration admitting an etale multisection. Letting C be a geometric fiber of g', we have, by [7] Exposé XIII Proposition 4.3, exact sequences

$$\begin{split} e &\to \prod_{1}^{(p)}(C) \to \prod_{1}'(V) \to \prod_{1}(V') \to e \\ & & \\ & & \\ e \to \prod_{1}^{(p)}(C) \to \prod_{1}'(U) \to \prod_{1}(U') \to e. \end{split}$$

Let K be the kernel of the homomorphism $\prod_{1}'(U) \to \prod_{1}'(V)$ and K' the kernel of $\prod_{1}(V') \to \prod_{1}(U')$. Then the natural map $K \to K'$ is an isomorphism. Moreover, by hypothesis K' is contained in the closed normal subgroup of $\prod_{1}(V')$ generated by the Sylow p subgroups of $\prod_{1}(V')$. Since any Sylow p subgroup of $\prod_{1}(V')$ is the image of a Sylow p subgroup of $\prod_{1}'(V)$, K is also contained in the subgroup generated by the conjugates of the Sylow p subgroups. Thus K is contained in the kernel of $\prod_{1}(V) \to \prod_{1}^{(p)}(V)$. Therefore the homomorphism

$$\prod_{1}^{(p)}(V) \to \prod_{1}^{(p)}(U)$$

is injective and, by the five lemma, it is surjective. Thus the lemma and proposition are proved.

Using Proposition 1 and standard descent techniques we can weaken the resolution hypotheses required to prove finite presentation of $\prod_{1}^{(p)}(X)$ for arbitrary X. We shall say that a point x of a variety X admits a 'weak resolution of singularities' if there exists a Zariski neighborhood U of x in X and a morphism of effective descent for the category of etale coverings $f: U' \to U$ such that U' is a smooth variety. We have then the following:

PROPOSITION 2: Let X be a variety over an algebraically closed field of characteristic $p \neq 2, 3, 5$. Assume that every point of X admits a weak resolution of singularities. Then $\prod_{1}^{(p)}(X)$ is a finitely presented pro-(p)-group.

COROLLARY: Let X be a variety of dimension 3 over an algebraically closed field of characteristic $p \neq 2, 3, 5$. Then $\prod_{1}^{(p)}(X)$ is a finitely p presented pro-(p)-group.

PROOF: Proposition 2 is a straightforward application of [7] IX.5 together with Proposition 1. The Corollary follows from Proposition 2 and Abhyankar's results on resolution [1].

As another application of the fibering by curves method we will outline a proof of the following result:

PROPOSITION 3 (Kunneth Formula): Let X and Y be connected varieties over the algebraically closed field k of characteristic p. Then the natural homomorphism

M. P. Anderson

$$\prod_{1}^{(p)} (X \times Y) \to \prod_{1}^{(p)} (X) \times \prod_{1}^{(p)} (Y)$$

is an isomorphism.

In [7] Exposé XIII this proposition is demonstrated using the hypothesis of strong resolution of singularities. We avoid the use of resolution of singularities as follows:

First we consider the case where X and Y are normal varieties. Then it is sufficient to prove the formula for some non-trivial open subsets of X and Y. Choose U in X and V in Y such that U and V admit elementary fibrations $f: U \to U'$ and $g: V \to V'$ with etale multisections. By induction on the dimensions of U and V we may assume the proposition holds for U' and V'. Let C and D be geometric fibers of f and g respectively. Since f and g are elementary fibrations admitting etale multisections we have the following exact sequences

$$e \to \prod_{1}^{(p)} (C) \to \prod_{1}^{\prime} (U) \to \prod_{1}^{\prime} (U^{\prime}) \to e$$
$$e \to \prod_{1}^{(p)} (D) \to \prod_{1}^{\prime} (V) \to \prod_{1}^{\prime} (V^{\prime}) \to e$$
$$e \to \prod_{1}^{(p)} (C \times D) \to \prod_{1}^{\prime} (U \times V) \to \prod_{1}^{\prime} (U^{\prime} \times V^{\prime}) \to e.$$

Arguing now as in the proof of Lemma 1, we see that the natural homomorphism

$$\prod_{1}' (U \times V) \to \prod_{1}' (U) \times \prod_{1}' (V)$$

induces an isomorphism on (p)-completions.

Consider now the case in which Y is assumed normal, and X is arbitrary. Let $X' \to X$ be the normalization of X, and define

$$X^{\prime\prime} = X^{\prime} \underset{X}{\times} X^{\prime}, \qquad X^{\prime\prime\prime} = X^{\prime} \underset{X}{\times} X^{\prime} \underset{X}{\times} X^{\prime}.$$

Let X'_{α} , $\alpha \in \prod_{0}(X')$, be the connected components of X'. Then by [7] IX Theorem 5.1, $\prod_{1}(X)$ is the free product of the groups $\prod_{1}(X_{\alpha})$ and the

306

free group generated by the elements of the set $\prod_{0}(X'')$ modulo certain relations defined by the projections:

$$X^{\prime\prime\prime\prime} \rightrightarrows X^{\prime\prime} \rightrightarrows X^{\prime} \to X.$$

Thus the same description holds for $\prod_{1}^{(p)}(X)$ after replacing all the groups involved by their prime to p completions. Moreover, the same result applies to $X' \times Y \to X \times Y$. This gives a description of $\prod_{1}^{(p)}(X \times Y)$ as the free product (in the category of pro-(p)-groups) of the groups $\prod_{1}^{(p)}(X_{\alpha} \times Y)$ and the free pro-(p)-group generated by the elements of the set $\prod_{0}(X'' \times Y)$ modulo relations defined by the projections:

$$X''' \times Y \rightrightarrows X'' \times Y \rightrightarrows X' \times Y \to X \times Y.$$

It is long and tedious, but straightforward, to check that, since

$$\prod_{1}^{(p)}(X_{\alpha} \times Y) = \prod_{1}^{(p)}(X_{\alpha}) \times \prod_{1}^{(p)}(Y) \text{ and } \prod_{0}(X'' \times Y) = \prod_{0}(X''),$$

the above relations force

$$\prod_{1}^{(p)} (X \times Y) = \prod_{1}^{(p)} (X) \times \prod_{1}^{(p)} (Y).$$

Now applying the same argument as above without the assumption that Y is normal (which is valid because we just verified that

$$\prod_{1}^{(p)} (X_{\alpha} \times Y) = \prod_{1}^{(p)} (X_{\alpha}) \times \prod_{1}^{(p)} (Y)$$

for X_{α} normal and Y arbitrary) gives the result for X and Y arbitrary varieties.

BIBLIOGRAPHY

- [1] S. ABHYANKAR: Resolution of Singularities of Embedded Algebraic Surfaces. Academic Press, New York, 1966.
- [2] MICHAEL P. ANDERSON: Profinite Groups and the Topological Invariants of Algebraic Varieties. Princeton Ph.D. thesis, 1974.
- [3] MICHAEL P. ANDERSON: EXACTNESS PROPERTIES OF PROFINITE COMPLETION FUNCTORS. Topology 13 (1974) 229–239.
- [4] M. ARTIN, A. GROTHENDIECK, J. L. VERDIER: Theorie des Topos et Cohomologie Etale des Schemas. Lecture Notes in Mathematics 305 (1973).

- [5] WOUT DE BRUIN: Une forme algebrique du theoreme de Zariski pour Π_1 . C. R. Acad. Sci. Paris Ser. A-B 272 (1971) A769–A771.
- [6] E. M. FRIEDLANDER: The Etale Homotopy Theory of a Geometric Fibration. Manuscripta Mathematica 10 (1973) 209–244.
- [7] A. GROTHENDIECK et al.: Revetements Etales et Groupe Fondamental. Lecture Notes in Mathematics 224 (1971).
- [8] A. GROTHENDIECK et al.: Groupes de Monodromie en Geometrie Algebrique. Lecture Notes in Mathematics 288 (1972).
- [9] HERBERT POPP: Ein Satz vom Lefschetzschen Typ Uber die Fundamentalgruppe quasi-projectiver Schemata. *Math. Z. 116* (1970) 143–152.
- [10] M. RAYNAUD: Theoreme de Lefschetz en Cohomologie des Faisceux coherents et en cohomologie etale. Ann. E. N. S. 4 (1974) 29-52.

(Oblatum 31–I–1975 & 26–VI–1975)

Department of Mathematics Yale University New Haven, Connecticut 06520 U.S.A.