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Introduction

Let X be a scheme of finite type over a finite field Fq with q = pa
elements. Let Ns = # X(Fq.) be the number of F,.-rational points on X.
The p-adic study of the N, is the outgrowth of the classical results of
Warning and Ax on p-divisibility of the number of solutions of equations
over finite fields.

PROPOSITION (Warning [60]): Let F(X1, ..., Xn) E Z[X1, ..., Xn] be a
polynomial of degree d  n. Then the number of solutions of

is divisible by p.

PROPOSITION (Ax [2]): Let F(X1, ..., Xn) ~ Z[X1, ..., Xn] be a poly-
nomial of degree d. Let J1 be the least nonnegative integer such that

Let N be the number of solutions of

in (Fq)n. Then

AU the information about the N, = # X(lFqs) is contained in the
zeta-function

of X over F., which Dwork [10] proved to be a rational function. For
example :

PROPOSITION (Ax [2]): Let X be a scheme of finite type over Fq, and
let J1 be a positive integer. Then the following are equivalent :

(i) the reciprocal of every zero and pole of Z(X/Fq; t) is of the form
ql’ (an algebraic integer);
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Now suppose that X is proper and smooth, dim X = n. Given any
’Weil cohomology’ H* in the sense of [29], the zeta-function is expressed
as an alternating product of the characteristic polynomials of the action
of the pth-power ’Frobenius’ endomorphism F:

In the proper and smooth case, the zeta-function has certain basic

properties, which were conjectured by Weil in 1949 and proved in the
following form by Grothendieck (i), (ii), (iii) and Deligne (iv):

(i) For any prime l ~ p, we have

where

(ii) If X is obtained by reduction from a proper smooth scheme
defined in characteristic 0, then bi = deg Pi is the i-th topological Betti
number of X.

(iii) (Functional Equation)

thus, if aij is a reciprocal root or pole, then so is qnjaij.
(iv) The Pi in (i) are independent of 1 ; Pi(t) E 1 + tZ[t], i.e., the 03B1ij are

algebraic integers; and

Note that the functional equation implies that all the aij are 1-adic
units for all primes 1 ~ p, because both aij and qn/03B1ij are algebraic
integers. Thus, there remains the question of the p-adic ordinals of the
03B1ij. As mentioned above, in classical terms these p-adic ordinals corre-
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spond to p-divisibility properties of the Ns.
In the cases considered in this paper there is only one ’interesting’

polynomial Pi in Z(X/Fq; t). If X is a complete intersection this is the
polynomial Pn, corresponding to middle dimensional cohomology. If X
is an abelian variety it is Pl, corresponding to H1(X). In such a case the
p-adic picture of the zeta-function is given by the ’Newton polygon’ of
Pn (resp. P 1 ). The Newton polygon of a polynomial

is defined as the convex hull of the points (i, v q(ai)), i = 0,..., b, where

v. is the p-adic valuation normalized so that v,(q) = 1.
The ’unit root’ part of the Newton polygon is the segment with zero

slope. Its length equals the number of p-adic unit reciprocal roots of P.
In general, the horizontal length of a segment of slope a/b equals the
number of reciprocal roots of P having vq = a/b. In the case of the zeta-
function of a complete intersection or an abelian variety, the functional
equation imposes the following symmetry on the Newton polygon:
0 ~ a/b ~ n, and the segments of slope a/b and n - (a/b) have the same
length. Here is a typical Newton polygon (here n = 1, b = 6, i.e., X is a
curve of genus 3):

A second constraint on the Newton polygon is that its vertices are
integral lattice points, i.e., the number of roots with vq = c is a multiple
of the denominator of c (cf. Manin, [34], Theorem 4.1, or Katz, [27],
Theorem 2).
A third constraint is imposed by the following special case of a theorem

of Mazur [36] (the ’Katz conjecture’) :

PROPOSITION : Let X/Fq be a projective smooth complete intersection of
dimension n. Then the Newton polygon of Pn lies on or above the Newton
polygon of
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It turns out that the unit root part of Pn is most easily studied, thanks
to the Katz congruence formula [21] :

where H’(X, (9x) is the Cech cohomology of X with coefficients in the
structure sheaf (abbreviated Hi(OX) from now on), and F is the Frobenius,
the ’p-linear’ vector space map induced by f F+ fp on the structure sheaf
(’p-linear’ means F(af + bg) = apF(f) + bpF(g)). Thus, the unit root part
of the Newton polygon of Pn corresponds to the ’semisimple’ part of
the vector space Hn(OX) under the action of the p-linear map F. (Recall
that two exact functors are defined on the category of pairs ( V, F), where
V is a k-vector space, k a field of characteristic p, and F is a p-linear
endomorphism:

’nilpotent part’ :

’semisimple part’ :

When k is a perfect field, we have V = Vnilp ~ Vss with F nilpotent on
Vnilp and bijective on Vss, and dim (Vss) is called the ’stable rank’ of F.)
The action of F on Hn«9x) is classically known as the Hasse-Witt matrix
(see, e.g., [32]). Thus, the number of p-adic unit reciprocal roots of Pn
is equal to the stable rank r(X) of the Hasse-Witt matrix.
The following questions will be investigated in this paper:
(1) As X varies over certain families (hypersurfaces of given dimension

and degree, complete intersections of given dimension and multidegree,
curves of given genus), does r(X) generically attain the maximal possible
value pg(X) = hg,n = dim Hn(OX) ?

(2) If X ~ PN is fixed and H is a varying hypersurface of degree d,
then how does the generic value of r(X. H) compare with pg(X · H),
especially as d ~ oo ? When does X satisfy the ’invertibility conjecture’
of Grothendieck-Miller, which asserts that generically r(X. H) = pg(X · H)
ifd»0?

In answering questions (1) and (2), an essential role is played by the
convenient fact that the Katz congruence formula expresses the unit
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root part as a coherent cohomology phenomenon.
(3) How are various moduli spaces (principally polarized abelian’

varieties, genus g curves) stratified by the stable rank r?
(4) What can be said about the refinement of this stratification accord-

ing to the entire Newton polygon?

1 wish to thank Professors B. Dwork, P. Deligne, B. Mazur, W. Messing,
D. Mumford, and A. Ogus for many valuable discussions, ideas, and
corrections. 1 am especially grateful to my adviser, Professor Nicholas
M. Katz, for suggesting the problem and giving me constant help
throughout my work on the subject.

I. Generic invertibility of the Hasse-Witt matrix

1. Hypersurface sections and their Hasse-Witt
Let X c P§§, where k = Fq, be an arbitrary n-dimensional closed sub-

scheme, corresponding to a homogeneous ideal I c k[X0, Xnl. Let
k be an algebraic closure of k, and let X = X xk k, I = I (8)k K, P N = PNk.
Let Sd ~ PB where v = vN, d = (N + d N) -1, be the projective space of
hypersurfaces H of degree d in PN. Let Sd have homogeneous coordinates
( Yo , ..., Yv).
We are interested in hypersurfaces H whose equation h is not a zero

divisor in (9,y, i.e., for which no irreducible component of X has h vanishing
at all of its points. Such H are said to ’intersect properly’ with X. In terms
of ideals, this means we want to eliminate from Sd those h contained in
any of the associated primes Pi of r (i.e., the minimal primes, corre-
sponding to maximal points of X ; we have r . n Pmi). Take some
P E {Pi} having homogeneous generators gu E k[X0, XNI of degrees
du, respectively. We first replace {gu} by {hj}mj=0, where the hj run through
all products of the gu with monomials of degree d - du, and we leave out a
gu if du &#x3E; d. Then h E P if and only if there exist ao, ..., am E k such that
h = 03A3mj=0ajhj. That is, we want to eliminate from Sd the image of the
morphism

given on closed points by

(ao, ..., am) H hypersurface with equation E ajhj.

This image is closed. Moreover, it does not contain all of Sd : take a
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point xeX in the component corresponding to the prime ideal P,
and take the point in Sd corresponding to a hypersurface H which does
not contain x; then, since all the hj vanish at x, it follows that the equation
of H is not of the form E ajhj. Thus, let Y c Sd be the nonempty Zariski
open set consisting of hypersurfaces which intersect properly with X.

Recall that the Hasse-Witt matrix of an n-dimensional variety X is
defined as the action of the Frobenius F on Hn(OX). However, when
considering high degree hypersurface sections X. H of a fixed variety X,
we modify the definition of the Hasse-Witt of the section as follows.
Under a mild assumption on X which we shall always make - namely,
the Cohen-Macaulay condition - it will follow that the restriction

induces

So if F fails to act bijectively on Hn-1(OX), then it also fails to act

bijectively on Hn-1(OX·H), which is the middle dimensional cohomology
of the (n -1 )-dimensional variety X. H, for any H. Hence, if we are

to have any hope of generic invertibility for high degree sections, we must
consider only the ’truly variable’ part of H*(OX·H) and define the Hasse-
Witt of a hypersurface section of any fixed variety X as the action of F on

Note that for high degree sections X . H the map

is far from surjective, since, as we shall see, dim Hn-1(OX·H) grows with
order D - dn/n!, where D is the ’degree’ of X (i.e., the number of intersection
points with the intersection of n hyperplanes in general position).
Katz [23] proved that, for a fixed Cohen-Macaulay variety X and for

generic H of degree d » 0, the Hasse-Witt matrix of X . H has positive
stable rank, i.e.,
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- in other words, the action of F is not nilpotent - and he conjectured
that much stronger estimates are possible.

2. Flatness and base-changing
We first need a few lemmas. The first lemma asserts the flatness and

properness of the families of varieties that are the primary concern of
this chapter.

(1) Let Yi = Y c Sd be the moduli space of hypersurfaces in PN
which intersect properly with a fixed variety X c PN. Let

be the ’generic’ form of degree d in K[X0, ..., XN] whose coefficient of
the i-th monomial term (i = 0, 1, ..., (N+d N)-1) is the corresponding Yi.
Now h defines a hypersurface H in PN x Sd " PN  Pv, since it is homo-
geneous of degree d in the first set of variables and degree 1 in the second
set. Let Mi = H - (X x Yl ), and let M 1 -+ Yi be the morphism induced
by the projection of X x Yi onto the second factor.

(2) For any fixed multidegree (d1, ..., dr) E 7L’"-t , r ~ 0, let

be the nonempty Zariski open set of r-tuples of hypersurfaces Hi c PN
of degree di which intersect properly, i.e., such that H1 · H2 ... Hr is a
complete intersection. This condition is equivalent to requiring that,
for i = 1, 2, ..., r, the equation of Hi is not a zero divisor in (9Hl - H2 ... Hi -1
(= OPN if i = 1). For each fixed i = 1, 2,..., r, let vi = (N + di N) - 1, and
let hi be the form in

which is the sum of the degree di monomials in the X’s with coefficient
the corresponding Yij, j = 1,..., vi. (The Yi’j with i’ ~ i do not appear
in hi.) Let M’ ~ PN  Sd1  Sd2  ... be the closed subvariety
defined by the ideal (hl,..., hr), let M2 = M’ . (pN x Y2), and let M2 ~ Y2
be the morphism induced by the projection of PN x Y2 onto the second
factor.

LEMMA 1: The families Mi ~ Y, i = 1, 2, are proper and flat.

PROOF: (1) M1 ~ Yi.
The morphism Mi m X x Yl is obtained by restriction of the closed



127

immersion H  P N x Pv and so is itself a closed immersion:

The morphism M1 ~ Yi is the composition of two closed immersions
and one projection:

The third map PN  Yi ~ Yi is proper because PN is proper. over k.
Since all three morphisms are proper, M 1 -+ Yi is also proper.
As for flatness, by [3], ch. 2, § 3, Proposition 15, it suffices to verify

that the localization Bx of (9m, at any closed point x E M1 is flat over the
localization Ay of OY1 at the closed point y E Yl , where x ~ y. If Bx
denotes the localization of OX  Y1 at x ~ M1 = H · (X  Y1) ~ X  Y1,
then:

1. since OX  Y1 is flat (in fact, free) over OY1, it follows that Bx is flat
over Ay ;

2. we have the exact sequence

where the first map is multiplication by the restriction of the equation
of H to Bx . Let k = Ay/my be the residue field at y. Tensoring with k gives

But, by the definition of Yi, h is not a zero divisor in the structure sheaf
of the fibre over any closed point y E Yl . Thus, the map

is injective, and

This implies flatness of Bx over Ay by the ’local criterion for flatness’
(cf. [48]): If R ~ S is a local homomorphism of Noetherian local rings
and m is the maximal ideal of R, then S is flat over R if and only if
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The morphism M2 ~ Y2 is the composition of the morphisms

where the first is a closed immersion, and so M2 ~ Y2 is proper.
We prove flatness by induction on r. If r = 1, we have the special case

X = PN of the first part of this lemma. Suppose that r &#x3E; 1 and flatness

holds for r - 1.

Let  be the Y2 for r -1, i.e., the moduli space of complete intersections
of multidegree (dl, ..., dr-1) in P’. Let M be the closed subvariety of
PN x Sd 1 x ... x Sdr defined by the ideal (h1 , ..., hr-1). Let M’ be the
closed subvariety of

defined by the ideal (h1, ..., hr-1). (Recall that h1, ..., hr-1 do not involve
the coordinates Yr0,..., Yrvr of Sdr.) Let

The expression in brackets is the M2 for r - 1. Hence, the induction
assumption and the fact that flatness is preserved under change of base
imply flatness of the morphism

induced by the projection PN x  x Sdr ~  x Sdr . The morphism
M* ~ Y x Sdr remains flat when restricted to the Zariski open set over
Y2 c  x Sdr . That is, the following morphism is flat :

Now M2 = M’ · (PN x Y2) is the closed subvariety of  · (PN x Y2)
given by the equation hr. We are hence in the same situation as in part (1)
of this lemma. Namely, we must prove flatness of a morphism whose
local ring Bx at any point is the quotient of multiplication by hr in a
flat local ring B’x:
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The rest of the proof is identical to the proof of the first part of the
lemma. QED

LEMMA 2: Suppose that for some positive integer d

Then the cohomology along the fibers of the structure sheaf of the
family of properly intersecting hypersurface sections parametrized by
Yi c Sd is locally free on Yi, and its formation commutes with change of
base. 7hat is, the cohomology of the hypersurface section corresponding
to a point y E Yi is naturally isomorphic to the restriction to the fibre of
the cohomology of the family.

PROOF: Let f denote the morphism M1 ~ Yi. Let ff = OM1. By
Lemma 1, we may apply the base-changing theorems in Mumford, [42],
p. 50-51, which give the following information :

(a) For each i ? 0, the function Yi ~ Z given by

is upper semicontinuous on Yl .
(b) The function Yi ~ Z given by

is constant on Yl .
(c) If, for some i ~ 0,

is a constant function, then the direct image sheaf Rir*(F) is a locally
free sheaf on Yl , and for all y E Yi the natural map

is an isomorphism.
If y is a closed point in Yi, then
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corresponds to taking specific values in k for the coefficients of h to
obtain a hypersurface Hy c PN.
Suppose that X and d are such that

For example, this is true for

or

(cf. [14], XII, § 1.4). Then

Now for y a closed point in Yi the sequence

is exact. The resulting long exact cohomology sequence gives

Hence the function Y1 ~ Z given by

is constant on closed points of Yi, and hence, by (a), is constant on Yi.
By (b), the function

is also constant on Y,. Hence we have the conclusion in (c) for all i,
and Lemma 2 is proved.

LEMMA 3: Let F : V ~ V be a p-linear endomorphism of an m-

dimensional vector space V over a perfect field of characteristic p. Then
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PROOF: Since V = VS QQ Vnilp, we immediately reduce to the case
V = Vnilp But then, if FiV ~ (0), i ~ 0, we have

Thus, dim FiV ~ m - i, i = 0, 1, ..., m, and FmV = (0). QED
For any closed point y E Yl , consider the semisimple part of

V = Hn-1(OX·Hy) under the action of the Frobenius F. Let m = dim V,
and let mss = dim Vss. Let Y’ = Spec A be an affine open neighborhood
of y over which  = Rn-1 f*(F) is free (for example, without loss of
generality we may take

That is,

(For any A-module we let the tilde denote the associated sheaf over
Spec A.)
We claim that for closed points y’ in some (perhaps smaller) neighbor-

hood Y’ of y, we have

Now the action of Fm on | Y0 ~ Ãm is given by an m x m matrix with
entries in A. Consider the map

induced by Fm on the mgg -th exterior product. By Lemmas 1 and 2, the
left side of (*) equals

For any point y’ E Y° this dimension is ~ mss if and only if

The set
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is open because Fmss, being an endomorphism of a free finitely generated
A-module, is given by a matrix with entries in A, so that Y° - Y’ is the
set of common zeros of all these entries. Since Y’D y, Y’ is a neighborhood
of y in which (*) holds.

Finally, because

is injective, it follows that the stable and nilpotent ranks of

under the Frobenius - that is, of the Hasse-Witt - differ by constants
independent of Hy, from the stable and nilpotent ranks of Hn-l«(9X’Hy’).
Hence we have proved :

LEMMA 4: If X c PNk is a projective Cohen-Macaulay scheme (resp.
a complete intersection) and if for some hypersurface Ho c PNk of degree
d » 0 (resp. d &#x3E; 0) which intersects properly with X = X x k k the

nilpotent rank of the Hasse- Witt matrix (the ’defect’) of X. Ho is given by
e(X, HO), then for general H (i.e., for all H in a nonempty Zariski open
set of the space Sd of hypersurfaces of degree d in PNk) the defect of X. H
is ~ e(X, HO).

3. Degree of a generically reduced projective scheme
We next discuss how to assign a degree D to an arbitrary n-dimensional

projective scheme X c P’ ail of whose n-dimensional irreducible

components are reduced, and how to bound dimk Hn(OX) in terms of n
and D.

Let X ° be the union in X of all n-dimensional components of X.
Then the closed immersion i : X ° y X gives an exact sequence of
sheaves on X

where the kernel K has support of dimension  n. Then the resulting
long exact cohomology sequence gives

so that lower dimensional components may be ignored in estimating
dimk Hn«9,).
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If X is reduced and irreducible, then from Safarevic ([5 1 ], ch. 1, § 6.5)
we know how to define deg X. Namely, let P* be the dual projective
space of hyperplanes in PN . Let

be the closed subvariety defined by the incidence relation: a closed point
(11, ..., ln+ 1, x) E S if and only if l1(x) = ... = ln+ 1(x) = 0. Let

be the projection. Then 03C0(S) turns out to have codimension one in
P*  n+1 times  P* and so is given by a reduced polynomial homogeneous
of some fixed degree D in each of n + 1 sets of N + 1 variables. By defini-
tion, deg X = D.

If we choose hyperplanes (Hi , ..., Hn) in the nonempty Zariski open
subset of P* x n times  P* in which Hi intersects properly with

then Xi H1 ... Hn consists of ~ D points, and consists of precisely D
reduced points for (H1, ..., Hn) in a nonempty Zariski open subset of
P*  n times  P* (cf.[51]).
If X c pN is an arbitrary n-dimensional projective scheme all of whose

n-dimensional irreducible components X1,..., X m are reduced, then we
define

Equivalently, we may define deg X as the number of points of intersection
of X with the intersection of n general hyperplanes, since the intersection
of n general hyperplanes misses both the lower dimensional components
of X and also all intersections Xi Xi of different n-dimensional
irreducible components. Thus

We further note that
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for r ~ n general hyperplanes H1, ..., Hr .
Finally, we shall need a slight generalization of the method for deter-

mining deg X by intersection with general hyperplanes. Namely, let

P c PN be a linear subspace disjoint from X, and let P* c P* be the
linear subspace of [* whose points correspond to hyperplanes con-
taining P. The exact same reasoning as for (H1, ..., Hn) ~ P* x n times x P*
will show that the intersection of general (H1, ..., Hn) E P* x ntimes x P*
meets X in D reduced points. We are now ready for

LEMMA 5: If X c PN (X c PNk, X = X x kk) is an arbitrary n-dimen-
sional projective scheme all of whose n-dimensional irreducible components
are reduced, and if D = deg X, then

PROOF : As mentioned above, we may assume that X is an equidimen-
sional projective variety of dimension n. We use the following

FACT : There exists a finite birational morphism

where X’ c Pn+1 is a hypersurface of degree D.
This fact is essentially proved in Mumford, [44], p. 373-378, using

a projection ç from a subspace P disjoint from X. The only new assertion
here is that deg X’ = deg X. But, as noted above, the hyperplanes used
to determine deg X may be chosen generically from among those con-
taining P. In addition, the n general hyperplanes in pn+1 used to determine
deg X’ may be chosen so that their intersection misses the closed sub-
variety of X’ where the birational morphism ç is not an isomorphism.
Thus, deg X’ - deg X.

So let ç : X - X’ be as in the above fact. We have the short exact sheaf

sequence

where the quotient sheaf Q has support of dimension ~ n -1, since ç
is birational. Then we have exactness of

so that


