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1. Introduction

The object of this paper is to prove and apply some formulae concerning
the function

where z E H (the upper half-plane) and 03B6 E R = ~H. These formulae are
merely versions of well-known formulae in the theory of the hyper-
geometric series. However they have considerable relevance to the
theory of the Laplace operator on H. We shall consider two such applica-
tions.

Firstly we shall be able to give an explicit form for the Selberg trace
formula for automorphic forms of fractional weight. In his paper [10]
Selberg gives formulae for the so-called ’Selberg transform’ which

relate a point-pair invariant to the spectral decomposition of the corre-
sponding operator. By means of certain differential operators (the Maass
operators) this extends to integral weights (where differentials are of
weight 1 not 2). The proper interpretation of this is in terms of representa-
tion theory, as in [5]. Our formulae extend these results to forms of
arbitrary weight.

Secondly we can interpret certain series introduced by Elstrodt [1]
as Eisenstein series. Such series were first studied by Maass and Selberg
in connection with various discontinuous groups with non-compact
quotient. In fact, to each ’infinite part’ of the quotient there is a corre-
sponding Eisenstein series. If the discontinuous group is now a Fuchsian
group of the second kind the infinite part is very large and the discussion
of the spectrum of the Laplace operator is complicated (see [1], [2], [3]).
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However, for a certain restricted class of groups we can give a more or
less complete discussion. This is done in section 5. The conclusions are
quite striking and they indicate that such groups are not very different
from groups of the first kind. One would then hope that there results
could be extended to all finitely generated groups of the second kind.
This involves the analytic continuation of certain series. This can be
done by the method sketched by Selberg [11] but it is rather long and
involved. We shall give a sketch of this theory in section 6.
The general philosophy of this paper hinges on two points. The first

is Selberg’s theory of point-pair invariants [10] (which constitutes an
induction on the dimensions of the spaces involved) which is a powerful
technique. The other point is putting the Poisson kernel P(z, Q at the
centre of the discussion. This is the policy generally accepted in the
corresponding theory of general Lie groups. This method 1 learnt through
a study of the work of Elstrodt [1], [2]. He also uses systematically
the technique of first studying any problem first for the trivial and

elementary groups. This is essentially the method used in section 3 of
this paper.

2. The formulae

In this section we shall prove several formulae. The first and most
basic is, for z, w E H, k E R that

where

Most of the other formulae that we shall need can be deduced from this
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so that we prove this first and state the other formulae later. Except for

((w, z))k we shall understand x’ to mean exp (k log x) where

With this convention we define ((z, w))k to be

To prove (1) we expand the integral and we see that it is

where the conventions about the arguments are as follows. Let C be the
circle through z, w, z, w. Let Cl be the arc of C joining z and w and
lying in H. Then we cut C~ along Ci and C1. We take that branch of
(03B6 - z/03B6 - w)-s-k which is 1 at 03B6 = oo ; likewise the branch of (03B6-z/03B6 - w)k-s
which is 1 at 03B6 = oo. Henceforth we regard 03B6 as a complex variable.
Now let

Then t(z) = 0, t(w) = 1, t(f) = oo, t(w) = 1: where, 6 being as above,

Also t(C1) = [0, 1], t(C1) = [T, ~]. The path of integration becomes
a loop y around [0, 1]. On substituting the integral becomes

The integral is a hypergeometric function and on identifying it we see that
the expression above is

The expression (1) follows at once on using the well-known relations
between the hypergeometric functions of argument z and 1 - z.
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In (1) we now let w - oo i. We see that if Re (s) &#x3E; 2 that

Now let

Clearly we have

and

Thus from (2) we have

Define 03B5(03B6, q) by

It is easy to check that this does not depend on z. We can also show that
for 03B6, ~ finite that

We shall also set 03B5(03B6, ~) = 1. With this notation we obtain

(1), (2) and (3) make up the first set of formulae that we need. We have
to look next at how the quantities behave under transformation by
elements of Con (H) (the group of conformal transformations of H,
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isomorphic to PSL(2, H)). For y E Con (H) set

Then after an easy calculation we see that

Now, for gl , g2 E Con (H) define 03C3k(g1, 92) by

We obtain from (4) and (5) that

From (4) and (1) we deduce that

We shall need one more formula which is easily deduced from (1).
This is, for Re (t) &#x3E; 2

To prove this we recall that in [12] it is proved that for a fixed 03B4 &#x3E; 0,
and 6 &#x3E; 1 we have for large s so that 1 arg (s)|  n - b
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where u is the positive solution of

We can now use (1) to evaluate the inner integral in (8). Then (9) justifies
moving the line of integration to the right and the right hand side of (8)
consists simply of the contributions from the poles.

3. The Laplace operators on H

We shall assume the discussion of the operators dk given by Elstrodt
in [2]. Suppose that 2 = t(1- t) with Re (t) &#x3E; 2,

Then the operator (-0394k-03BBI)-1 has the kernel (6 being as in Section 2)

By (8) this is equal to

Let us now interpret this formula. We can check, as in [1], [2], that
P(z, (Y(z, ()k is a generalized eigenfunction of - L1k with eigenvalue s( 1- s).
Also

is, qua function of z, an eigenfunction with eigenvalue
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Hence the formula above represents the spectral decompcsition of
(-0394k-03BBI)-1. It follows that the spectrum is contained in Ci, 00 [u Ek
where Ek = {(|k|-m)(1-|k|+m):0~m  |k| - 1 2}. For simplicity we
shall refer to the part of the spectrum in Ek as the discrete series and the

part in Ci, oo [ as the principal series in accordance with the representation
theory viewpoint. The kernel (10) is, up to a constant factor, a reproducing
kernel on the eigenspace with eigenvalue (|k|-m)(1-|k|+m). The
principal series is spanned by P(z, ’)8(Z, .
Now let the kernel q(z, w) represent an operator commuting with

-0394k. Suppose that

(6 is the hyperbolic measure; the various uses of the symbol 6 should
cause no confusion) converges. Then Selberg’s theory ([10]) shows that,
if we define h by

then the operator represented by q(z, w) is ’diagonal’ with respect to the
spectral decomposition of - L1k and the ’entry’ at the eigenvalue t(1- t)
is h(t). From (11) one sees that h is bounded on the spectrum. Hence one
sees that the operator is L2. Thus we obtain the representation

where the integral over s has to be regarded as

the limit being taken in the L2 sense.
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This representation is not very useful as it stands and it is better to
change our viewpoint (with Selberg) and to take h as the basic function
and then to study the corresponding function q which we denote by qh .
We suppose that h satisfies the following three conditions:

(i) for some e &#x3E; 0 can be extended to an analytic function in

|Re(s-)|  1 2+03B5,
(ii) h(s) = h(1- s), and,

(iii) for some c &#x3E; 0, |h(s)| ~ c(1+|s|2)-1-03B5 in the strip defined in (i).
Note that these conditions say nothing about the value of h(s) when

Re (s) &#x3E; 1+03B5. Under these conditions the double integral in (12)
converges absolutely. Without loss of generality we can suppose that
1 + 03B5/2  {|k| - m: m ~ Z}. Then we can use (1) to evaluate the integral
over 03B6. One sees first of all that there is a function Kh(03C3) so that

This has to be true on general grounds in any case. Using the estimate (9)
we can move the line of integration to Re (s) = l+ë/2. Then we find

From this we deduce that there is a constant A so that, if |k| ~ 1,

Fo prove this we observe that the double integral in (12) converges
àbsolutely and hence we need only prove it for large 6. The conclusion
will then follow directly if we can show that

with 6 ~ 2 is bounded uniformly in 6 on Re (s) = 1 + e/2. However this
function has the integral presentation
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from which our conclusion follows immediately.
The restriction that |k| ~ 1 is unfortunate but not important since

through an application of the theory of Maass operators we can recover
most of the results we need for arbitrary k. If we replace the strip in condi-
tion (i) above by iRe (s - -f)l  |k| + 1 2 + 03B5 then (15) follows.

It follows from (15) that (11) converges. The correspondence between
(11) and (12) (i.e. between h and Kh) is called the Selberg transform. The
discussion above gives conditions for its validity. For the sake of precision
we give a set of conditions which the reader will have no difficulty in
verifying from the discussion above.

(i’) For some e &#x3E; 0 h can be extended to an analytic function in
IRe (s--lf)l  Ikl +-!+e except for the points Iki -m 0 [0, 1]

at which h has a removable singularity.
(ii’) h(s) = h(1- s).

(iii’) For some c &#x3E; 0, Ih(s)1  c(l + Is12) -l-e in the strip defined in (i’).

Under these conditions (15) holds for a suitable e’ &#x3E; 0. It is worth

remarking that these conditions may be relaxed but for most applications
there is no point in doing so.

Finally we need the special case when 6 = 1. To calculate this we set
z = w in (12). Then

This simplifies and we find
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4. The Selberg trace formula

Let G be a Fuchsian group of the first kind. For simplicity of exposition
we shall assume that there are no parabolic elements in G. In [10]
Selberg showed how to develop his theory for forms of arbitary weight;
the theory is treated in more detail in [9].

Let V be a Hermitian vector space and let x be a multiplier of weight
k taking values in U(h) (the group of unitary operators on V); a version
of the theory suitable for our needs is described in [7; Section 6]. Note
that x is also a multiplier of weight k + m for any integer m and that j( is
a multiplier of weight m - k for any integer m.

Let h be a function satisfying conditions (i’), (ii’), (iii’) of Section 3;
let Kh, qh also be as in Section 3. Define

By (15) this converges. For 9 E G we have

These follow directly from the series definition and (7). Let us also record,
in the notation of (5), that for 91, g2 E G

Let ~x~ ( denote the norm of an element x of E We define L(G, V)
to be the Hilbert space of functions f : H ~ V satisfying, for g E G,

and

The integral (12) converges uniformly on compact subsets of H x H;
hence qh(z, w) is continuous. Again, by (15) the series in (17) converges
uniformly on compact subsets of H x H; hence Qh(z, w) is continuous.
Under our assumptions GBH is compact and so, by (18), (19), Qh(z, w)
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is bounded. Hence the map 03C4: L(G, V) ~ L(G, V) given by

is well-defined (by (18), (19)) and is of trace-class by the remarks above.
Also 1: commutes with - 0394k. It is not difficult to check that if h is real
on Re (s) = 2 (in which case, in view of (ii) it is real on Im (s) = 0) and
h is real at s = |k| - m (m E Z; we have to treat this case differently) then
i is self-adjoint. Now, -0394k is an essentially self-adjoint operator on a
dense subspace of L(G, Tl); its spectrum lies in [0, ro[ u Ek (see [2]). The
dimension of the eigenspace with eigenvalue (|k| - m)(1 + m - Ikl) (m E Z,
0 ~ m ~ |k|) is equal to the dimension of the space of analytic auto-
morphic forms of weight 1 kl - m and multiplier x if k ~ 0, and if k ~ 0
to the dimension of the space of analytic automorphic forms of weight
1 kl - m and multiplier x (see [7]).

If we choose h so that i is self-adjoint then we can find an orthonormal
base {~j} in L(G, V) with respect to which i is diagonal. As the i for
different h commute (see [10]) we can do this for all such i simultaneously.
It then follows that -.1 k and the i which are not self-adjoint are also
diagonal with respect to this base. Now definte îj by

Also define sj by

(for the moment it does not matter which solution we take.) Then

where * is the anti-linear map of V into its dual space determined by the
Hermitian structure., For reasons explained in [8] this is absolutely
convergent. Hence we can set z = w, take the trace in End (V) and
integrate over GBH,

The sum on the left can be transformed into a sum over conjugacy classes
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in G (as in [10]). The term I E G behaves differently to all the others and
it is for this reason that we need (16). Suppose, for simplicity, that these
are no elliptic elements in G. The evaluation is now standard and we find

In this formula H is a set of primitive hyperbolic elements representing
the primitive hyperbolic conjugacy classes (N(y) is the multiplier of
y E H). g(.) is the Fourier transform of h; it is given by

(22) is the Selberg trace formula and our discussion is substansially
the same as that given by Selberg [10]. It would also be quite possible
to give a representation theoretic discussion (as in [5]) using the ideas of
[7]. We have only shown (22) under the conditions (i’), (ii’), (iii’) of
Section 3. However it follows from the theory of Maass operators that
it in fact holds only under the conditions (i), (ii), (iii). This theory shows
that the spectra of - L1k and -0394k-1 (with multiplier X) are the same
except for the point k(1 - k). Thus we can prove (22) first for Ikl ~ 1
and afterwards extend it to arbitrary k.
Now let s = Ikl - m for some m (m ~ Z, 0 ~ m ~ |k|). Let N(s, x) be

the dimension of the space of analytic automorphic forms of weight s
and multiplier x. First suppose that s &#x3E; 1. Then we can set

This satisfies conditions (i’), (ii’), (iii’) of Section 3). From (22) we obtain
that
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Next take 1 2 ~ k ~ 1. Then 2 is a multiplier of weight 1- k. The

spectrum of d k with multiplier x is the same as the spectrum of 0394-k
with multiplier x (by taking the complex conjugate). The theory of Maass
operators shows that the spectrum of -0394k and -03941-k are the same
outside the point k(1 - k). Comparing the corresponding versions of (22)
and using the remarks made at the beginning of the paragraph we see that

In fact, if k  0, N(k, x) = 0. From (23) we see that (24) is valid for all k.
This is the general form of the Riemann-Roch theorem for Riemann
surfaces.

5. Groups of the second kind

In this section we turn our attention to Fuchsian groups which are

’small’ as opposed to those considered in Section 4 which were as ’large’
as possible. So let G be a Fuchsian group of the second kind and let LG be
its limit set. Let Re (s) = 03B4(G) be the abscissa of convergence of the
Dirichlet series

where still

This does not depend on z1, z2. Clearly 0 ~ 03B4(G) ~ 1; one can say
more - see [6] and the references there.

Let x, V, L(G, V) be as in Section 4. For 03B6 ~ O(G) = (R~{~}) LG
we define the Eisenstein series

This converges uniformly on compact subsets of H if Re (s) &#x3E; 03B4(G).

One verifies that, if g E G,
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and

Also

Here E(-, .) is the function defined in Section 2.
We now make the following two assumptions :

(i) m(LG) = 0 (m = Lebesgue measure)
(ii) l5( G)  2.

It is quite possible that the second of these implies the first; this is
so if G is finitely generated.

Let h be a function satisfying conditions (i’), (ii’), (iii’) of Section 3.

We form qh(z, w) by (12). Now we need the following lemma:

LEMMA: The following expressions are absolutely convergent:

Furthermore both of these expressions represent continuous functions of
z and w.

PROOF : (i) is majorised by

The last term is convergent by our assumptions on h. The first integral
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clearly converges. We can evaluate it by (1) and we see from the properties
of the hypergeometric function that the series is majorised by

This converges as 03B4(G)  t. The continuity either follows from this
argument or directly from (15).

(ii) is majorised by

which converges again as 03B4(G)  1 2  a. The continuity either follows
from this or (15). This proves the lemma.

As in Section 4 we define

which is again a continuous function satisfying (18) and (19). From the
lemma and (12) we see that

converges and is equal to Qh(z, w).

O(G) is open and so we can find B c O(G) so that B is an open funda-
mental domain for the action of G on O(G). From m(LG) = 0 it follows that
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Hence for any integrable function f on R we have

Applying this transformation to the first term in (29) we see that it is
equal to

where * means the adjoint with respect to the Hermitian structure on h
Let

Now we have shown that

Here L is the line Re (s) = !. As h is bounded 6h represents a linear
operator on L(G, V). Let Ek, m(G, V) be the eigenspace with eigenvalue
( |k| - 1 2). Then let Le(G, V) be the orthogonal
complement to

The study of the spaces Ek, m(G, V) can clearly be carried out by means
of the Rk,m(z, w) which represent the projections onto the Ek,m(G, V).
Furthermore from (30) it follows that Le(G, V ) is spanned by the

’Eigenpakete’
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(cp is an L2 function on B; in this connection see [1] especially Satz 4.4).
This could also be phrased in terms of generalised eigenfunctions. This
gives the spectral decomposition of L(G, V) and answers a question put
by Elstrodt [1; p. 91].
The Eisenstein series E03B6(z, s) even satisfies a functional equation.

From (3) we see that, for Re (s) &#x3E; 2, 1

From this it follows that if 2  Re (s)  1- b(G),

By the same transformation as before we can convert the integral in (31)
into an integral over B. We introduce the function

On carrying out the calculations we see that

This equation holds true for 1 2Re(s)1-03B4(G). However the
divergence at s = 1 2 is caused only by the singularity of S(03B6, ~; 1- s)
at the point il. As E03B6(z, s) is differentiable as a function of 03B6 it is then
possible to give the analytic continuation of the integral on the left hand
side into the region 03B4(G)  Re (s)  1- 03B4(G).
The function S(03B6,~; s) plays the same in our theory as the ’constant

term’ of the Eisenstein series associated to a parabolic vertex does in
Selberg’s theory.
There is an interpretation of (33) that is sometimes very suggestive.

We suppose that k = 0 and x = I. The points of B should really be
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regarded as points of GBO(G). This last set is the set of directions at a
point x E GBH which lead to infinity. Then, in quantum mechanical
terms E03B6(z, s) represents a beam of particles of energy s(1- s) (we presume
that Re (s) = -1 coming from the direction represented by C. Then (33)
shows how these particles are scattered to infinity again after passing
through the finite part of GBH. In other words S(·, ·; s) is the S-matrix
in this situation. This is closely connected with some remarks of

Gel’fand [4].
It follows also that the integral operators represented by S(., . ; s) and

S(·, ·; 1- s) are, up to multiplication by a function of s, inverse to one
another. However S(·, ·; s) is defined for Re (s) &#x3E; 03B4(G) and so one would
hope that by inverting the corresponding operator to obtain an analytic
continuation of S(., .; s) to the whole s-plane. If this were possible then (33)
would define an analytic continuation of E03B6(z, s) also to the whole plane.
Unfortunately there seem to be considerable difficulties in carrying out
this programme. However in the case that G is finitely generated this
programme is feasible. This is because there is a good description of
the geometry involved. We shall briefly sketch what can be done in the
next section.

6. Finitely generated groups of the second kind

This section contains only a sketch of the theory. 1 hope to publish
the details at some time in the future. Unfortunately the technical details
become rather involved although the basic ideas are straightforward
enough. So this summary will aid the reader to find his way through
the later work. As a word of caution 1 should say that 1 have only checked
the calculations under simplifying assumptions so that the reader, if

he chooses, may regard the contents of this section as conjecture. There is
no reason however to believe that the extra complications will present
any serious problems.
The new tool which we have now is a much better description of the

geometry involved. Let G be a Fuchsian group of the second kind.
We will also suppose it to be non-elementary. One then knows that

and that, if G has parabolic elements,


