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Introduction

Given a universal algebra 8l, its endomorphism monoid E(u) induces
a monoid E*(8l) of mappings of the subalgebra lattice S(çX) into itself.
Specifically, for 03B1 ~ E(u) define 03B1*: S(u) ~ S(u) by setting X (1* =

{x03B1|x ~ X} for all X E S(u). (Note that 03B1* is determined by its action
on the singleton-generated subalgebras.) The monoid of closure endo-
morphisms (cf. [1], [3], [4]) is then defined as E*(u) = {03B1*|a ~ E(u)}.
Clearly E*(8l) is an epimorphic image of E(u) under the map 03B1 ~ 03B1*;
this epimorphism shall be denoted 03B5(u), or simply e when there is no risk
of confusion.
Given an epimorphism of monoids, 03A6 : M ~ MW, let us say that W is

representable if there exist an algebra 91 and isomorphisms (J : M - E(W)
and r : M03A8 ~ E*(u) such that 03A803C4 = 03C303B5. We shall characterize all re-

presentable epimorphisms defined on a given monoid M. The represent-
ability of an epimorphism IF will be shown to depend on the location
of its kernel in the congruence lattice of M. More specifically, we shall
define on M a congruence p having the property that the representable
epimorphisms on M are precisely those IF for which ker 03A8 ~ p.

Notation and terminology of universal algebra used here will generally
conform to Grâtzer [5]. Exceptions will be the terms epimorphism and
monomorphism for onto and one-to-one homomorphism respectively,
and the notation ker 03A8 for the congruence {~m, n~ ~ M2|m03A8 = nY}
where Y’ is an epimorphism on M. Also, we adopt the convention that
for any set A, any map J : M ~ AA, and any element m E M, the symbol
a. will be used (in place of the customary m6) to denote the image of m
under J. Additional terminology relating to monoids (semigroups with
identity) will conform to Clifford and Preston [2].

1 This work was partially supported by a grant from the Research Council of Vanderbilt
University. Subsequent revision was in part supported by a grant from the National
Research Council of Canada.
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1. A preliminary characterization

Before defining the relation p we note that representability of an
epimorphism is more easily expressed in terms of its kernel.

LEMMA 1.1: An epimorphism IF on a monoid M is representable if and
only if there exist an algebra u and an isomorphism a: M - E(u) such
that ker 03A8 = ker 6E.

PROOF : The reverse implication being obvious, let 8l and 6 be given
as indicated, and define 7: : M03A8 ~ E*(u) by setting (mP)7: = 03C3*m for all
m E M. The inclusion ker W z ker 6E guarantees that 7: is well-defined,
while the reverse inclusion insures that 03C4 is one-to-one. It is readily
verified that i is an epimorphism, and clearly 03A803C4 = 03C303B5, whence 03A8 is

representable.

2. Statement of main result and proof of necessity

Define on the monoid M a binary relation po to consist of those pairs
~m, n~ E M2 having the property that

{~u, v~ EM21mu = mv} = {~u, v~ ~ M2|nu = nvl.
It is easily seen that p° is a right-congruence but generally not a con-
gruence. Thus we define p as the largest congruence contained in p°.
The existence of p follows from the fact that the congruences on M

constitute a complete sublattice of the lattice of all equivalence relations
on M. However, it is easily checked that p can be given explicitly as the
set of those pairs ~m, n~ ~ M2 such that ~tm, tn)EpO for all t E M.

Since the kernel of an epimorphism is a congruence, it is immediate
from the definition of p that the statements (ii) and (iii) of the following
theorem are equivalent. The equivalence of (i) and (ii) constitutes the
main result of this paper.

THEOREM 2.1 : For an epimorphism ’P defined on a monoid M the follow-
ing assertions are equivalent.

(i) W is representable.
(ii) ker Y z p.

(iii) ker Y z p’.

PROOF that (i) implies (iii): Given an algebra 8l = ~A; F) and an
isomorphism a : M ~ E(8l) with ker Y = ker 03C303B5, let ~m, n~ E ker P. Then
6m = 03C3*n, and so for each x E A we have [x] 6m = [x]03C3*n (where [x] denotes
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the subalgebra generated by {x}), whence there is a unary polynomial
px such that x03C3n = px(x03C3m).
Now let ~u, v~ ~ M2 such that mu = mv. Then x03C3m 03C3u = x6m 6" for all

x E A and an application of the polynomial px yields x03C3n 03C3u = x6n 6v .
Since this holds for all x, we have 03C3n 03C3u = 03C3n 03C3v whereupon nu = nv.
Likewise nu = nv implies mu = mv, so (m, n) e p° and (iii) is established.
The next three sections will be. devoted to proving that (ii) implies (i).

3. Preliminaries to proof of sufficiency

We shall need to know that when only finitely generated algebras are
considered an apparently weaker form of the condition in Lemma 1.1
is still equivalent to representability. The desired result is Lemma 3.2
below. It is proved with the aid of a lemma whose proof is not given here
because it is virtually contained in the proof of the Lemma of [3].

LEMMA 3.1: An epimorphism 03A8 on a monoid M is representable by means
of a finitely generated algebra if and only if there exist a finitely generated
algebra W and a monomorphism u : M ~ E(21) such that ker ’P = ker 6E.

LEMMA 3.2 : An epimorphism IF on a monoid M is representable by means
of a finitely generated algebra if and only if there exist a finitely generated
algebra % and a monomorphism u : M ~ E(u) such that ker 03A8 ~ ker ae.

PROOF: The reverse implication being obvious, let 8l = ~A; F~ and 6
be given as indicated. Since the nullary operations of an algebra can
always be replaced by constant unary operations without altering the
endomorphisms or the non-void subalgebras, we may assume that all
operations of 8l have positive rank.

Let 0 be any object not an element of M’P and set R = MW w {0}.
View R as a monoid containing MY as a submonoid, and such that the
binary operation in M’P has been extended to all of R in the obvious way:
r0=0r=0for all r E R.

Set B = A x R and observe the following notational conventions.
(1) A pair in B will be denoted xr instead of ~x, r~.
(2) For all C z A the notation Cr will be used in place of C x {r}.
(3) For m ~ M the element 1Jl’P will be denoted m’.
(4) For x E A the symbol [x] will denote the subalgebra of 8l generated

by {x}, while for xr E B the subalgebra generated by {xr} in the algebra
Q3 (defined below) will be denoted IIxrll.

(5) 03B5(u) will be denoted e, while 03B5(B) will be denoted 03B51.
We construct on B the algebra Q3 by defining operations as follows.
For each f E F, define on B a k-ary operation f where k is the rank
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of f, by setting

and r1, ··· rk ~ R.
Also, define for each t E R a binary operation gt by :

for all x, y ~ A and r, s ~ R. Set B = ~B; {f|f ~ F} ~ {gt|t ~ R}~.
It is routine to verify that IIxrll = [x]r for all xr E B.
Now define a map 03B2: M ~ BB by stipulating that xr03B2m = (x03C3m)rm’

for all m E M and x, E B. It is straightforward to verify that fl is a mono-
morphism of M into E(B).
To apply Lemma 3.1 it remains to show that ker Pei = ker Y and Q3 is

finitely generated. We use the fact, noted earlier, that closure endo-
morphisms are determined by their action on singleton-generated
subalgebras.
Now, ~m, n) E ker 03B203B51 means ~xr~03B2*m = IIxrllP: for all xr ~ B: equiv-

alently, ([x]03C3*m)rm’ = ([x]03C3*n)rn’ for all x E A and r ~ R, which holds if and
only if [x]03C3*m = [x]03C3*n for all x E A and rm’ = rn’ for all r E R. But the
last statement says precisely that (J: = 03C3*n and m’ - n’, i.e.,

Thus ker 03B203B51 = ker IF.
To see that 0 is finitely generated, let W be a finite generating set for

8l and set W = W x {e’, 01 where e is the identity element of M. Clearly
B is generated by the set W x R, which in turn can be generated from W
because w, = gt(we’, wo) for all wt E W x R. Thus W is a finite generating
set for B, and the lemma is proved by appeal to the preceding lemma.

4. Intermediate construction for proof of sufficiency

Let M be a fixed monoid and let p be the congruence defined in

Section 3 ; i.e., p is the set of all pairs ~m, n~ E M2 such that

{~t, u, v) E M31tmu = tmv} = {~t, u, v) E M3|tnu = tnvl.
We define a p-system to be a pair ~u, 03C3~, where 03C5 is a finitely generated

multi-unary partial algebra, 6 is a monomorphism of M into E(8l), and:
(*) For all x ~ A, ~m, n) E p, ~u, v) E M2, and pePi(9î), p(x6mu) = p(Xamv)
implies p(x03C3nu) = p(x6nU), where P1(u) denotes the set of all unary

polynomials of 8l, and the implication is to be taken in the weakest
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possible sensé : whenever all four terms are defined and the first two are
equal, then the second two are equal.
We first show that there exists a p-system and then that any p-system

~u0, 03C30~ can be built up into a pair ~u, 03C3~ where 8l is an algebra and
03C3 is a monomorphism of M into E(8l) such that 03C1 ~ ker Je. By Lemma 3.2
this will complete the proof of Theorem 2.1.
The process by which (8l, a) is constructed from ~u0, 03C30~ involves a

modification of the technique, discussed in Chapters 2 and 4 of [5], of
freely extending a partial algebra to an algebra. Roughly speaking,
we form the union 21 = ~A; F) of an infinite sequence of successive
partial-algebra extensions constructed in such a way that each extension
remedies the defects of the former while introducing new defects that
must be remedied by the next extension.
To ensure that 03C1 ~ ker 6E we will need a kind of ’transitivity’ for the

unary polynomials of 8l ; i.e., we will need to have enough unary poly-
nomials so that whenever ~m, n~ ~ 03C1 and x ~ A, there is a unary poly-
nomial taking x6m to x6" . The condition (*) enables us to define the
needed polynomials as partial operations at each step, and these partial
operations become fully defined in the union. Thus it is necessary for

each successive partial-algebra extension to perform four tasks: (1) to
extend the domain of each previously defined partial operation to

include all of the previous set; (2) to extend to the new elements introduced
in (1) those endomorphisms that correspond to members of M under
the given monomorphism; (3) to introduce new partial operations so
that the ’transitivity’ is maintained with regard to the extended endo-
morphisms ; and (4) to preserve (*) so that the process may be repeated.

LEMMA 4.1: There exists a p-system.

PROOF : For each t E M define a unary operation f on M by: ft(x) = tx
for all x E M. Set F = {ft|t ~ M} and 8l = (M, F). (It will later be of
incidental interest to note that F includes the identity function on M.)

Define 6 : M ~ MM by stipulating that xu. = xm for all m, x ~ M. It
is easy to verify (and also quite well known: see, e.g., Theorem 1.12.3 of
[5]) that u maps M into E(u) and is a monomorphism (in fact, an iso-
morphism).

Clearly 8l is generated by the identity element of M, so to show that
~u, 03C3~ is a p-system it remains only to verify (*). Obviously Pi (8l) = F,
so take ft ~ F, ~m, n~ ~ 03C1, ~u, v~ ~ M2, and x E M. Then ft(x03C3mu) = ft(x03C3mv)
implies txmu = txmv, which by the nature of p implies txnu = txnv,
whence ft(x03C3nu) = ft(x03C3nv) and (*) has been verified.

In the following lemma the domain of a partial operation or polynomial
f will be denoted D( f ), and 1X will denote the identity function on a set X.



218

LEMMA 4.2: If ~u, 03C3~ is a p-system then so is (ill, 03C3~, where u and ù
are defined as follows.
For each f E F and each a ~ ABD(f), choose a symbol s( f, a) in such a

way that s(f, a) = s(g, b) implies ~f, a~ = (g,b), and the set S of these
symbols is disjoint from A.

Set A = A ~ S and define partial unary operations on A as follows.
For f E F define f with D( f ) = A, by: 1ID(f) = f and f(a) = s(f, a) for

aEABD(f).
For all a E A and ~m, n~ ~ 03C1 define T[a, m, n] so that D(T[a, m, n]) =

{a03C3mu|u ~ M} and T [a, m, n](a03C3mu) = a7nu .
Set F = {f|f ~ F} ~ {T[a, m, n]|a ~ A, ~m, n~ ~ 03C1} and (A; F~.
Define à : M ~ AÃ by stipulating that for every m E M, 6mI A = am and

s( f, a)6m = f(a03C3m) for all s(f, a) E S.

PROOF : The operations T[a, m, n] are well-defined because ~u, a)
satisfies (*). Also, it is easy to check that a is a monomorphism of M into
E(u). In five steps we verify (*) for (ill, 03C3~. First we fix ~m, n) E p,
(u, v) E M2, and x E A.

Step 1. If g E P1 (u) then g(x6mu) = g(x6m") implies 9(Xanu) = 9(Xanv)
provided all four terms are defined.

If x E A there is nothing to prove, so suppose x = s( f, a) E S. Then
f(a03C3mu) = x03C3mu ~ D(g) ~ A, whence a03C3mu ~ D(f) and likewise for a6nu .
Thus g(xù.u) = g(x6m") implies gf (aumu) = gf(a03C3mv) and the result

follows because (*) holds in ~u, 03C3~.
Step 2. (*) holds for 1 i. 
Again, there is nothing to prove if x E A, so suppose x = s( f, a) E S

and xumu = x6m", i.e., 1(aamu) = f(a03C3mv). Then either aamu E D( f ) and
f (aumu) = f(a03C3mv), or else a03C3mu ~ ABD(f) and a6mu = a6mv . In either case
the result follows because (*) holds in ~u, 03C3&#x3E;.

Step 3. (*) holds for every p ~ P1(u) having the form p = fl f2 ’ ’ ’ fk.
First note that if k &#x3E; 1, then for any y E D(p) we must have

and therefore y E D(fk)’ i.e., fk(y) = fk(y). Continuing in this way we see
that p = f1 f2 ··· fk. Set g = f2 ’ ’ ’ fk if k &#x3E; 1, and g = 1A if k = 1. Thus
p = hg and g ~ P1(u).

If ftg(xamu) == f1g(x03C3mv), then either g(x6mu) E D( fl) and f1g(x03C3mu) =
f1 g(x6m"), or else g(x6mu) E ABD(f) and g(xu..) = g(xamv). In either case
the result follows from Step 1.

Step. 4. Let g ~ P1(u) and suppose (*) holds for g. Let a E A and

x1, x2 E A and (r, s) E p. Set T = T[a, r, s]. Then (whenever all four

terms are defined) gt(xl) = gT(X2) if and only if g(Xl) = g(X2).
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Assuming x1, x2 ~ D(T), choose c, d ~ M such that x1 = a03C3rc and

x2 = a03C3rd. Then gt(xl) = gT(a03C3rc) = g(a03C3sc) and similarly gT(X2) =
g(a6sd). Therefore, since (*) holds in ~u, 03C3~, we have gt(xl) = gT(X2)
if and only if g(a03C3rc) = g(aa,d), i.e., g(xl) = g(X2)’

Step 5. Let p ~ P1(u) and suppose p is neither 1A nor of the form
considered in Step 3. Then (*) holds for p.
To see this, note that p can be written as p = po T0p1 Tl ... Pk-1 Tk-1 pk

where each pi is either 1A or of the form considered in Step 3, and each
T is of the form T[a, s, t]. Set p’ = popi ... pk. Since (*) holds for p’ by
Steps 2 and 3, it suffices to show for all YI y2 ~ A that P(Yl) = P(Y2) if
and only if p’(yl) = p’(y2). However, this follows from Step 4 by a straight-
forward induction on k.

5. Proof of sufficiency concluded

We now complete the proof of Theorem 2.1, that is, we show that
ker W z p implies 03A8 is representable. By Lemma 3.2 it suffices to construct
a finitely generated algebra 9t and a monomorphism a : M ~ E(u) such
that 03C1 ~ ker 6E. Actually this inclusion will be equality, since 03C303B5 is

obviously representable and we have proved that (i) implies (ii) in

Theorem 2.1. Moreover, the a we construct will even be an isomorphism.
Let (8lo , 03C30~ be a p-system, as given in Lemma 4.1, and set u0 =

(Ao; F0~. Using Lemma 4.2 we inductively define for all k  0) partial
algebras uk = ~Ak; Fk) by setting Ak = Ak-l and Fk = Fk-1 for

0  k  03C9. Set A = U(Aklk  0)) and define operations on A as follows.
For each foEFo define fk = fk-1 for all 0  k  cv, and set f =

U (hlk  0)).
For each x E A choose the smallest i for which x E Ai, and for all

~m, n~ ~ 03C1 let RO[x, m, n] denote the operation T[x, m, n] ~ Fi+1. For
0  k  0) define Rk[x, m, n] = Rk-1[Xl m, n], and set R[x, m, n] =
U (Rk[X, m, n]|k  0)).

Set F = {f|f0 ~ F0} ~ {R[x, m, n]|x ~ A, ~m, n~ ~ 03C1} and 8l = ~A; F~.
Finally, we define 03C3 : M ~ AA as follows. For 0  k  03C9 set 6k - 03C3k-1,

and for each m ~ M define 6m = U (03C3km|k  0)).
Clearly 91 is an algebra (i.e., the operations in F are defined on all of A)

and is generated by any generating set for 9îo. Moreover, it is straight-
forward to show that a is a monomorphism of M into E(8l).

It remains to show that 03C1 ~ ker 03C303B5, i.e., that ~m, n~ ~ 03C1 implies
X 6m = X03C3*n for all X E S(8l). Since it suffices to consider only singleton-
generated subalgebras, we show that ~m, n~ ~ 03C1 implies [x6m] = [xan]
for all x E A. By symmetry it is enough to show that xan E [x6m] . But
this is clear, since Xun = R[x, m, n](xam).
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Although the proof of Theorem 2.1 is now complete, it is of incidental
interest to observe that the monomorphism 6 is even an isomorphism.
To see this, recall from the construction of ~u0, 03C30~ in Lemma 4.1 that
6° is an isomorphism and that lAo is an operation in Fo. Setting f0 = lAo,
note that Ao = {x ~ A|f(x) = x}. It follows that every endomorphism a
of 8l takes Ao into itself, whereupon 03B1|A0 E E(u0), whence rxlAo = 6m for
some m ~ M. Since A0 generates u, the fact that a and 6m agree on A°
implies a = 6m . Hence the monomorphism u maps M onto E(u).

6. Corrolaries and questions

Since the representability of an epimorphism depends only on its

kernel, let us define a representor of monoid M to be a congruence e
that is the kernel of a representable epimorphism on M. Equivalently,
a congruence 0 is a representor of M if and only if the natural epimorphism
M ~ M/0 is representable, i.e., there exist an algebra 8l and an iso-
morphism a : M ~ E(u) such that 0 = ker ue {~m, n) E M2|03C3*m = 03C3*n}.
In view of the homomorphism theorem for monoids, our main result
states that the representors of M are precisely the congruences of M
contained in p. It is immediate that the equality relation on M is a rep-
resentor (i.e., every isomorphism defined on M is representable), and
this fact generalizes a result of [4].

It is natural to classify representors in terms of properties of the factor
monoids. Given a class K of monoids, call a representor 0 of M a K-
representor if M/0 e K. In the following corollaries and questions only
group and semilattice representors will be considered.
The first corollary notes that the algebras we have constructed are

finitely generated.

COROLLARY 6.1. Every representable epimorphism is representable by
means of a finitely generated algebra.
The following corollary generalizes a result of [3].
COROLLARY 6.2: Given a monoid M, the following are equivalent.
( 1 ) M is left cancellative.
(2) The universal congruence M x M is a representor.
(3) Every congruence on M is a representor.
(4) There exists a group-representor of M.

PROOF : (1) implies (2) because p = M x M if M is left cancellative.

From Theorem 2.1 it is immediate that (2) implies (3), and obviously (3)
implies (4). To see that (4) implies (1), consider an algebra 9t for which
E*(u) is a group. Then cx E E(u) implies a* is invertible, whence a* maps
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S(8l) onto S(8l). Thus there is some X ~ S(u) with A = Xa*. But then
A = X03B1* ~ A03B1* ~ A implies A = Aa, i.e., a is onto. Hence a is a left
cancellative transformation of A, and so E(u) is a left cancellative monoid.

COROLLARY 6.3: If the monoid M is a semilattice, then the only rep-
resentor of M is the equality relation.

PROOF : Suppose ~m, n~ ~ 03C1 and let e denote the identity element of M.
Then eme = emm implies ene = enm, so n = nm. By symmetry m = mn.
By commutativity n = m, whence p is the equality relation and the
corollary is an immediate consequence of the theorem.

COROLLARY 6.4: Let M be a periodic, commutative monoid that has a
semilattice-representor. Then p is the unique semilattice-represenor of M.

PROOF: Let 0 be a semilattice-representor of M; then 0 - p by the
theorem. Thus M/p is a homomorphic image of MIO, and so M/p is a
semilattice.

To show that e ;2 p we show that p = ~, where q is the smallest con-
gruence on M whose factor monoid is a semilattice. Clearly 1 g p. To
see that 11 ;2 p we use the following explicit description of 11 for com-
mutative M (see [6] or [2]): ~ = {m, n&#x3E; ~ M2| There exist positive
integers i and j such that m divides ni and n divides mj.}.
Now, let (m, n) E p. Since M is periodic, m has finite order, and so

mk is idempotent for some k &#x3E; 0. Because p is a congruence, (mB nk&#x3E; E p
and therefore emkmk = emke implies enkmk = enke (where e is the identity),
whence m divides nk. By symmetry n divides a positive power of m, so
m, n) E q and the corollary is proved.

QUESTION 6.5: If M is a finite monoid, is every representable epi-
morphism on M representable by means of a finite algebra?

QUESTION 6.6: Given a monoid M, set M, = Mlp and let p, denote
the relation p as defined on Ml. Is it always true that Pl is the equality
relation on M 1 ? If not, then for which M is it true?

QUESTION 6.7: Is representability transitive? That is, if 03A8 : M ~ N

and 0 : N --+ P are representable epimorphisms, is ’Po representable?
Note that an affirmative answer to 6.7 implies an affirmative answer

to 6.6. To see this, take N = M1 and P = M1/03C11, and let IF and 0 be the
respective natural epimorphisms. Then representability of ’P cjJ implies
ker 03A8~ ~ p, and it follows that Plis equality.

In a letter to the author dated June 1, 1974 Professor B. M. Schein
states that 6.6 ’is known to have an affirmative answer for inverse semi-

groups.’
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