The whitehead theorem in the proper category
Compositio Mathematica, Tome 27 (1973) no. 1, p. 1-23
@article{CM_1973__27_1_1_0,
     author = {Farrell, F. T. and Taylor, L. R. and Wagoner, J. B.},
     title = {The whitehead theorem in the proper category},
     journal = {Compositio Mathematica},
     publisher = {Noordhoff International Publishing},
     volume = {27},
     number = {1},
     year = {1973},
     pages = {1-23},
     zbl = {0285.55011},
     mrnumber = {334226},
     language = {en},
     url = {http://www.numdam.org/item/CM_1973__27_1_1_0}
}
Farrell, F. T.; Taylor, L. R.; Wagoner, J. B. The whitehead theorem in the proper category. Compositio Mathematica, Tome 27 (1973) no. 1, pp. 1-23. http://www.numdam.org/item/CM_1973__27_1_1_0/

F.T. Farrell and J.B. Wagoner [1] An algebraic criterion for a map to be a proper homotopy equivalence, Notices A. M. S., Nov. 1969.

P.J. Hilton [2] An introduction to homotopy theory, Cambridge University Press, Cambridge Tracts in Mathematics and Mathematical Physics. No. 43. | MR 56289 | Zbl 0051.40302

S.P. Novikov [3] Homotopic and topological invariance of certain rational classes of Pontryagin, Doklady 1965, Tom 162, No. 6. | MR 180989 | Zbl 0146.19503

L.C. Siebenmann [4] Thesis, Princeton University (1965).

L.C. Siebenmann [5] Infinite simple homotopy types, Indag. Nath. 32, No. 5, 1970. | MR 287542 | Zbl 0203.56002

E.H. Spanier [6] Algebraic Topology, McGraw-Hill (1966). | MR 210112 | Zbl 0145.43303

L.R. Taylor [7] Surgery on paracompact manifolds, thesis, University of California at Berkeley, 1971.

J.H.C. Whitehead [8] Combinatorial Homotopy I and II, Bull. Amer. Math. Soc. 55, 3 and 5 (1949). | MR 30759 | Zbl 0040.38801