Compositio Mathematica

John Mitchem
 The point-outercoarseness of complete n-partite graphs

Compositio Mathematica, tome 26, no 2 (1973), p. 101-110
http://www.numdam.org/item?id=CM_1973_26_2_101_0
© Foundation Compositio Mathematica, 1973, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE POINT-OUTERCOARSENESS OF COMPLETE \boldsymbol{n}-PARTITE GRAPHS

by
John Mitchem
\section*{Introduction}

A subdivision of a graph G is a graph G_{1} obtained from G by replacing an edge $x=u v$ of G with a new vertex w together with edges $u w$ and $v w$. Graph H is said to be homeomorphic from graph G if H can be obtained from G by a finite sequence of subdivisions. The subgraph of G induced by a set W of vertices has vertex set W and its edge set is the set of edges of G which are incident with two vertices of W. The subgraph of G induced by an edge set Y has Y as its edge set and contains all vertices incident with at least one edge of Y. For a real number $r,[r]$ denotes the greatest integer not exceeding r, and $\{r\}$ is the least integer not less than r.

Let $p_{1} \leqq p_{2} \leqq \cdots \leqq p_{n}$ be positive integers. Then the complete n-partite graph $K\left(p_{1}, \cdots, p_{n}\right)$ has $p=\sum_{1}^{\mathrm{n}} p_{i}$ vertices, its vertex set can be partitioned into subsets $V_{i}, 1 \leqq i \leqq n$, such that $\left|V_{i}\right|=p_{i}$, and two vertices are adjacent if and only if they are in different V_{i}. The sets V_{1}, \cdots, V_{n} are called the partite sets of $K\left(p_{1}, \cdots p_{n}\right)$. If each $p_{1}=1$, $K\left(p_{1}, \cdots, p_{n}\right)$ is denoted by K_{n} and called the complete graph on n vertices.

An outerplanar graph is a graph which can be embedded in the plane so that every vertex of G lies on the exterior region. In [5] Chartrand and Harary have characterized outerplanar graphs as those graphs which contain no subgraph homeomorphic from K_{4} or $K(2,3)$.

We define, for each positive integer n, the vertex partition number of a graph G, denoted by $\pi_{n}(G)$, as the maximum number of subsets into which the vertex set of G can be partitioned so that each set induces a graph which contains a subgraph homeomorphic from K_{n+1} or the complete 2-partite graph $K([n+2) / 2],\{(n+2) / 2\})$. This general parameter was first introduced by Chartrand, Geller and Hedetniemi in [4].

For $i=1,2,3,4, \pi_{i}(g)$ is the maximum number of point induced disjoint subgraphs of G which are totally disconnected, acyclic, outerplanar, and planar, respectively.

The edge partition number $\pi_{n}^{\prime}(G)$ is defined analogously to $\pi_{n}(G)$ with the word 'vertex' replaced by 'edge'. Then $\pi_{1}^{\prime}(G)$ is simply the number
of lines of G. The only line partition number which has been given considerable study is $\pi_{4}^{\prime}(G)$, which is called the coarseness of G. This has been investigated by Beineke [1], Beineke and Chartrand [2], Guy [9], and Beineke and Guy [3], with the last paper giving a partial formula for $\pi_{4}^{\prime}(K(m, n))$.

The number $\pi_{1}(G)$ is the well-known line independence number, see Harary [10]. The number $\pi_{2}(G)$ has been studied by Corrádi and Hajnal [7], Dirac and Erdös [8], and Chartrand, Kronk, and Wall [6]. In this paper we investigate $\pi_{3}(G)$ which is called the point-outercoarseness of G and is now denoted simply $\pi(G)$.

Preliminary results

We make two easy observations and then commence the development of the formula for $\pi\left(K\left(p_{1}, \cdots, p_{n}\right)\right)$. Any non-outerplanar graph has at least 4 vertices and 6 edges. This implies

Remark 1. If G is a graph with p points and q edges, then $\pi(G) \leqq[p / 4]$ and $\pi(G) \leqq[q / 6]$.

The maximum number of vertices in any complete subgraph of G is denoted $\omega(G)$ and is called the clique number of G.

Remark 2. If G has p vertices and $\omega(G) \leqq 3$, then $\pi(G) \leqq[p / 5]$.
Theorem 1. Let $G=K\left(p_{1}, \cdots, p_{n}\right)$ with $n \geqq 2$. If $p_{n} \geqq\left(\frac{3}{2}\right)\left(p-p_{n}\right)$, then $\pi(G)=\left[\left(p-p_{n}\right) / 2\right]$.

Proof. In any decomposition of G into non-outerplanar subgraphs, each subgraph must include at least two vertices from $\bigcup_{1}^{n-1} V_{i}$. There are $p-p_{n}$ vertices in this set so that $\pi(G) \leqq\left[\left(p-p_{n}\right) / 2\right]$.

Any subgraph induced by a set consisting of three vertices from V_{n} and two vertices from $\bigcup_{1}^{n-1} V_{i}$ is not outerplanar. From the hypothesis that $p-p_{n} \leqq\left(\frac{2}{3}\right) p_{n}$ it follows that there are $\left[\left(p-p_{n}\right) / 2\right]$ disjoint induced non-outerplanar subgraphs of G. Thus $\pi(G)=\left[\left(p-p_{n}\right) / 2\right]$.

Theorem 2. If $G=K\left(p_{1}, \cdots, p_{n}\right)$ where $n=2$ or 3 , and $p_{n} \leqq\left(\frac{3}{2}\right)$ $\left(p-p_{n}\right)$, then $\pi(G)=[p / 5]$.

Proof. Since $\omega(G) \leqq 3$, Remark 2 implies that $\pi(G) \leqq[p / 5]$. In order to show that $[p / 5$] non-outerplanar, mutually disjoint, induced subgraphs of G exist we consider two cases.

CASE (i). $n=2$. Since $p_{1} \leqq p_{2} \leqq\left(\frac{3}{2}\right) p_{1}$, there are $p_{2}-p_{1}$ mutually disjoint sets of vertices such that each set contains three vertices from V_{2} and two vertices from V_{1}. Each of these sets induces a non-outerplanar
copy of $K(2,3)$. There are $p_{1}-2\left(p_{2}-p_{1}\right)=3 p_{1}-2 p_{2} \geqq 0$ other vertices in V_{1} and $p_{2}-3\left(p_{2}-p_{1}\right)=3 p_{1}-2 p_{2} \geqq 0$ other vertices in V_{2}. Call these sets V_{1}^{\prime} and V_{2}^{\prime} respectively. If $3 p_{1}-2 p_{2}=0$, 1 , or 2 , then we have partitioned G into [$p / 5$] non-outerplanar subgraphs. If $3 p_{1}-2 p_{2} \geqq 3$, then by alternating the use of three vertices from V_{2}^{\prime} and two vertices from V_{1}^{\prime} with two from V_{2}^{\prime} and three from V_{1}^{\prime}, we can complete the partition of $V(G)$ into $[p / 5]$ sets of cardinality five, each of which induces a non-outerplanar graph. Thus $\pi(G)=[p / 5]$ in this case.

CASE (ii). $n=3$. If $p_{1}+p_{2} \leqq p_{3}$ we consider graph H which is G minus all edges joining V_{1} to V_{2}. From case (i). $\pi(G) \geqq \pi(H) \geqq[p / 5]$. Thus we suppose $p_{3}<p_{1}+p_{2}$. For $i=1,2,3$, let $V_{i}^{0}=V_{i}$. Form one copy of $K(2,3)$ with three vertices v_{1}, v_{2}, v_{3}, of V_{3}^{0} and two vertices v_{4}, v_{5} of V_{2}^{0}. Let V_{1}^{1}, V_{2}^{1} be an ordering of V_{1} and $V_{2}-\left\{v_{4}, v_{5}\right\}$ so that $\left|V_{1}^{1}\right| \leqq\left|V_{2}^{1}\right|$, and let $V_{3}^{1}=V_{3}-\left\{v_{1}, v_{2}, v_{3}\right\}$. Then repeat this procedure with V_{1}^{1}, V_{2}^{1}, and V_{3}^{1}, and continue this procedure until reaching a nonnegative integer j such that $V_{3}^{j} \leqq V_{2}^{j}$. (Note that j may be zero.) Let

$$
V_{1}^{j+1}, V_{2}^{j+1}, V_{3}^{j+1}
$$

be a reordering of $V_{1}^{j}, V_{2}^{j}, V_{3}^{j}$ such that

$$
\left|V_{1}^{j+1}\right| \leqq\left|V_{2}^{j+1}\right| \leqq\left|V_{3}^{j+1}\right|
$$

and observe that

$$
0 \leqq\left|V_{3}^{j+1}\right|-\left|V_{2}^{j+1}\right| \leqq 2 .
$$

Continue the partition of G into copies of $K(2,3)$ by using three vertices w_{1}, w_{2}, w_{3}, from V_{3}^{j+1} and two vertices w_{4}, w_{5} from V_{2}^{j+1}. Let

$$
V_{1}^{j+1}, V_{2}^{j+1}-\left\{w_{4}, w_{5}\right\}, V_{3}^{j+1}-\left\{w_{1}, w_{2}, w_{3}\right\}
$$

be reordered by

$$
V_{1}^{j+2}, V_{2}^{j+2}, V_{3}^{j+2}
$$

so that

$$
\left|V_{1}^{j+2}\right| \leqq\left|V_{2}^{j+2}\right| \leqq\left|V_{3}^{j+2}\right| .
$$

We stop this procedure when $\left|V_{3}^{k}\right| \leqq 3$ for some $k \geqq j+1$. If

$$
\left|V_{1}^{k}\right|+\left|V_{2}^{k}\right|+\left|V_{3}^{k}\right| \leqq 4,
$$

then G has been partitioned into [$p / 5$] non-outerplanar graphs. Otherwise induce one more non-outerplanar graph with the remaining vertices. Thus $\pi(G) \geqq[p / 5]$, which completes the proof of the theorem.

Corollary 3. If $G=K\left(p_{1}, \cdots, p_{n}\right)$ where $n=2$ or 3 then $\pi(G)=$ $\min \left\{[p / 5],\left[\left(p-p_{n}\right) / 2\right]\right\}$.

Theorem 4. Let $G=K\left(p_{1}, \cdots, p_{n}\right)$ where $p_{n} \leqq\left(\frac{3}{2}\right)\left(p-p_{n}\right)$. Then $\pi(G) \geqq[p / 5]$.

Proof. We use induction and observe that Theorem 2 verifies the result for $n=2$ or 3 . Assume Theorem 4 holds for $n \geqq 3$ and let $G=K\left(p_{1}, \cdots, p_{n+1}\right)$ where $p_{n+1} \leqq\left(\frac{3}{2}\right)\left(p-p_{n+1}\right)$. The subgraph of G formed by removing all edges joining V_{1} with V_{2} is a complete n-partite graph $H=K\left(p_{1}^{\prime}, \cdots, p_{n}^{\prime}\right)$ where $p_{n}^{\prime}=\max \left\{p_{n+1}, p_{1}+p_{2}\right\}$. Since $p_{n}^{\prime} \leqq(3 / 2)\left(p_{1}^{\prime}+\cdots+p_{n-1}^{\prime}\right)$, the inductive assumption applies and we have $\pi(G) \geqq \pi(H) \geqq[p / 5]$.

The following lemma will be helpful.
Lemma 1. Let c be an integer such that $1<c \leqq n$. If $p_{n}-p_{n-c+1} \leqq 1$, then the complete n-partite graph $G=K\left(p_{1}, \cdots, p_{n}\right)$ contains [$\left.p / c\right]$ mutually disjoint copies of K_{c}.

Proof. We use induction on p. If the order of G is less than $n+c$, then $p_{n-c+1}=1$. We form one copy of K_{c} by selecting one vertex from each $V_{i}, i=n-c+1, \cdots, n$. The remaining vertices of G induce a complete graph on $p-c$ vertices. Thus G contains $[p / c]$ mutually disjoint copies of K_{c}.

Let the order of G be $p \geqq n+c$ and suppose the lemma is true for all complete n-partite graphs with less than p vertices. Form one copy of K_{c} by selecting one vertex from each of $V_{n-c+1, \ldots,}, V_{n}$. The graph H induced by the remaining vertices of G is a complete n-partite graph with $p_{n}^{\prime}-p_{n-c+1}^{\prime} \leqq 1$ where p_{i}^{\prime} is the order of the i th partite set of H. By the induction hypothesis H contains [$(p-c) / c$] mutually disjoint copies of K_{c} and the lemma is proved.

Theorem 5. Let $G=K\left(p_{1}, \cdots, p_{n}\right)$ where $n \geqq 4$. If $p \geqq 4 p_{n}$, then $\pi(G)=[p / 4]$.

Proof. We use induction on p_{n}. If $p_{n}=1, G$ is the complete graph with $p=n$ vertices and $\pi(G)=[p / 4]$. Suppose the theorem holds if $p_{n}=k \geqq 1$ and let $p_{n}=k+1$. Remove one vertex from each V_{n}, V_{n-1}, V_{n-2}, and V_{n-3}. The resulting graph H is a complete m-partite graph with $n \geqq m \geqq 4$ and the largest partite set in H has $p_{n-1}=k$ or p_{n} vertices. The latter case implies that $p_{n}-p_{n-3}=0$, and Lemma 1 proves the theorem. In the former case the inductive assumption implies $\pi(H)=[(p-4) / 4]$ and thus $\pi(G)=[p / 4]$.

The principal result

Before stating the main theorem, we prove another lemma.
Lemma 2. Let $G=K\left(p_{1}, \cdots, p_{n}\right)$ with $n \geqq 3$. If r is a positive integer such that $p \geqq 3 r, p_{1}+\cdots+p_{n-1} \geqq 2 r$, and $p_{1}+\cdots+p_{n-2} \geqq r$, then G contains at least r mutually disjoint triangles.

Proof. For $i=1, \cdots n$, let $V_{i}^{0}=V_{i}$. Form one triangle with vertices

$$
v_{n-2}, v_{n-1}, v_{n} \text { of } V_{n-2}^{0}, V_{n-1}^{0}, V_{n}^{0}
$$

respectively. Let

$$
V_{n}^{1}=V_{n}^{0}-\left\{v_{n}\right\} \text { and } V_{1}^{1}, \cdots, V_{n-1}^{1}
$$

be a recordering of

$$
V_{1}^{0}, \cdots V_{n-3}^{0}, V_{n-2}^{0}-\left\{v_{n-2}\right\}, V_{n-1}^{0}-\left\{v_{n-1}\right\}
$$

such that

$$
\left|V_{i}^{1}\right| \leqq\left|V_{i+1}^{1}\right| \text { for } i=1,2, \cdots, n-2
$$

Repeat this procedure until either

$$
\left|V_{n}^{k}\right|-\left|V_{n-2}^{k}\right| \leqq 1 \text { and }\left|V_{n-2}^{k}\right| \neq 0
$$

for some k or $\left|V_{n-2}^{k}\right|=0$ for some k. If the former occurs first, then from Lemma 1, it follows that G contains at least r mutually disjoint triangles. Thus suppose $\left|V_{n-2}^{k}\right|=0$ for some j and consider two cases.

CASE (i) $\left|V_{n-1}^{i}\right|-\left|V_{n-2}^{i}\right| \leqq 1$ for some $i<k$. Each of the k triangles which have been formed contain one vertex of V_{n} and two vertices from distinct $V_{j}, j=1, \cdots, n-1$. Since $\left|V_{n-1}^{i}\right|-\left|V_{n-2}^{i}\right| \leqq \mid$, Lemma 1 implies that at most one vertex of $\bigcup_{1}^{n-1} V_{j}$ is not included in one of the triangles. Thus $k=\left[\left(p_{1}+\cdots+p_{n-1}\right) / 2\right] \geqq r$.

CASE (ii). $\left|V_{n-1}^{i}\right|-\left|V_{n-2}^{i}\right|>\mid$ for all $i>k$. In this case

$$
V_{n-1}^{i} \subset V_{n-1} \text { for } i=1, \cdots, k-1
$$

Hence each of the k triangles contains exactly one vertex from $\bigcup_{1}^{n-2} V_{j}$. This implies

$$
k=\left|\bigcup_{1}^{n-2} V_{j}\right| \geqq r
$$

and completes the proof.
Theorem 6. Let $G=K\left(p_{1}, \cdots, p_{n}\right)$ with $n \geqq 2$, then

$$
\pi(G)= \begin{cases}{\left[\left(p-p_{n}\right) / 2\right]} & \text { if } p \leqq\left(\frac{5}{3}\right) p_{n} \\ {[p / 4]} & \text { if } p \geqq 4 p_{n} \\ {[(p+r) / 5]} & \text { if }\left(\frac{5}{3}\right) p_{n}<p<4 p_{n}\end{cases}
$$

where

$$
r=\min \left\{\left(p-p_{n}-p_{n-1}-p_{n-2}\right),\left[\left(p-p_{n}-p_{n-1}\right) / 2\right],\left[\left(3 p-5 p_{n}\right) / 7\right]\right\} .
$$

Proof. If $p \leqq\left(\frac{5}{3}\right) p_{n}$ or $p \geqq 4 p_{n}$, the result follows from Theorems 1 and 5. Thus we consider only $\left(\frac{5}{3}\right) p_{n}<p<4 p_{n}$ and distinguish three cases depending on r.

CASE (i). $r=p-p_{n}-p_{n-1}-p_{n-2}$. Since

$$
p-p_{n}-p_{n-1}-p_{n-2} \leqq\left(p-p_{n}-p_{n-1}\right) / 2
$$

we have

$$
p-p_{n}-p_{n-1}-p_{n-2} \leqq p_{n-2} \leqq p_{n-1} \leqq p_{n}
$$

That is the cardinality of $\bigcup_{1}^{n-3} V_{i}$ does not exceed the cardinality of V_{n-2}. Thus there are r mutually disjoint copies of K_{4} with one vertex in each of the sets

$$
V_{n}, V_{n-1}, V_{n-2}, \bigcup_{1}^{n-3} V_{i}
$$

Let G minus these r copies of K_{4} be denoted by H. Graph H has $p-4 r$ vertices, and we let $V_{i}^{1}=V_{i} \cap V(H)$ for $i=n-2, n-1, n$. Since $r \leqq\left(3 p-5 p_{n}\right) / 7$ we have $\frac{2}{3}\left(p_{n}-r\right) \leqq p-p_{n}-3 r$, where $p_{n}-r=\left|V_{n}^{\prime}\right|$ and

$$
p-p_{n}-3 r=\left|V_{n-1}^{\prime} \cup V_{n-2}^{\prime}\right| .
$$

Theorem 2 implies that $\pi(H)=[(p-4 r) / 5]$. Hence

$$
\pi(G) \geqq r+[(p-4 r) / 5]=[(p+r) / 5]
$$

Since G does not contain more than r copies of K_{4}, it is clear that $\pi(G)=[(p+r) / 5]$.

CASE (ii). $r=\left[\left(p-p_{n}-p_{n-1}\right) / 2\right]<\left[\left(3 p-5 p_{n}\right) / 7\right]$. In this case we consider the complete $(n-1)$-partite graph $H=G-V_{n}$. By hypothesis

$$
\begin{equation*}
r \leqq p-p_{n}-p_{n-1}-p_{n-2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
2 r \leqq p-p_{n}-p_{n-1} \tag{2}
\end{equation*}
$$

Inequality (2) together with $\left[\left(p-p_{n}-p_{n-1}\right) / 2\right]<\left[\left(3 p-5 p_{n}\right) / 7\right]$ imply

$$
\begin{equation*}
r \leqq p_{n-1} \tag{3}
\end{equation*}
$$

Adding (2) and (3) we obtain

$$
\begin{equation*}
3 r \leqq \sum_{1}^{n-1} p_{i} \tag{4}
\end{equation*}
$$

Since (1), (2), and (4) hold, Lemma 2 implies that H contains at least r mutually disjoint triangles. The set V_{n} contains $p_{n} \geqq p_{n-1} \geqq r$ vertices. Thus, G contains r mutually disjoint copies of K_{4}, each of which has one vertex from V_{n} and three vertices from $\bigcup_{1}^{n-1} V_{i}$. There are $p-p_{n}-3 r$ other vertices in $\bigcup_{1}^{n-1} V_{i}$ and $p_{n}-r$ other vertices in V_{n}.

The graph G^{\prime} induced by the remaining vertices of G is a complete m-partite graph, $m \leqq n$. Since $r<\left(3 p-5 p_{n}\right) / 7$, we have

$$
\begin{equation*}
p-p_{n}-3 r>\frac{2}{3}\left(p_{n}-r\right) . \tag{5}
\end{equation*}
$$

That is the number of vertices in $V\left(G^{\prime}\right)-V_{n}$ is more than two-thirds the number of vertices in $V\left(G^{\prime}\right) \cap V_{n}$. From $r=\left[\left(p-p_{n}-p_{n-1}\right) / 2\right]$ it follows that

$$
\begin{equation*}
p_{n}-r+1 \geqq p-p_{n}-3 r . \tag{6}
\end{equation*}
$$

If a maximum partite set of G^{\prime} is $V\left(G^{\prime}\right) \cap V_{n}$, then (5) together with Theorem 4 imply that $\pi\left(G^{\prime}\right) \geqq[(p-4 r) / 5]$, and thus $\pi(G) \geqq r+$ $\pi\left(G^{\prime}\right) \geqq[(p+r) / 5]$. From (6) and the fact that $\left|V\left(G^{\prime}\right)-V_{n}\right|=p-p_{n}-3 r$ it follows that if $V\left(G^{\prime}\right) \cap V_{n}$ is not a largest partite set of G^{\prime}, then a largest partite set contains exactly $p_{n}-r+1=p-p_{n}-3 r$. Thus G^{\prime} is a bipartite graph with partite sets V_{1}^{\prime} and V_{2}^{\prime} where $\left|V_{2}^{\prime}\right|=p-p_{n}-3 r$ and $\left|V_{1}^{\prime}\right|=p_{n}-r$. According to Theorem $4, \pi\left(G^{\prime}\right) \geqq[(p-4 r) / 5]$ and $\pi(G) \geqq[(p+r) / 5]$.

In order to show that equality holds suppose $\pi(G)>[(p+r) / 5]$. Then there are more than r mutually disjoint copies of K_{4} in G. Each copy of K_{4} must contain two vertices from $\bigcup_{1}^{n-2} V_{i}$, so that $p-p_{n}-p_{n-1} \geqq$ $2(r+1)$. This implies that $\left[\left(p-p_{n}-p_{n-1}\right) / 2\right]>r$ which contradicts the hypothesis for this case. Hence $\pi(G)=[(p+r) / 5]$.

Case (iii). $r=\left[\left(3 p-5 p_{n}\right) / 7\right]$. In this case we let $H=G-V_{n}^{\prime}$. From the hypothesis for this case we have

$$
\begin{gather*}
r \leqq p-p_{n}-p_{n-1}-p_{n-2} \text { and } \tag{7}\\
2 r \leqq p-p_{n}-p_{n-1} \tag{8}
\end{gather*}
$$

Furthermore, $p-p_{n}-3 r \geqq p-p_{n}-3\left(\left(3 p-5 p_{n}\right) / 7\right)=\left(\frac{8}{7}\right) p_{n}-\left(\frac{2}{7}\right) p>0$. Thus $p-p_{n}>3 r$ which together with (7), (8) and Lemma 2 imply that H contains r mutually disjoint triangles.

Since $4 p_{n}>p$, we have that $3 p_{n}>p-p_{n}>3 r$. Thus V_{n} contains more than r vertices. Graph G has at least r mutually disjoint copies of K_{4} each consisting of one vertex of V_{n} and three vertices of $\bigcup_{1}^{n-1} V_{i}$. There are $p-4 r$ other vertices in G. These vertices induce a complete m-partite subgraph G^{\prime} of G with precisely $p_{n}-r$ vertices of V_{n} and $p-p_{n}-3 r$ vertices of $\bigcup_{1}^{n-1} V_{i}$. Since $r \leqq\left(3 p-5 p_{n}\right) / 7$ we have

$$
\begin{equation*}
\left(\frac{3}{2}\right)\left(p-p_{n}-3 r\right) \geqq p_{n}-r>0 \tag{9}
\end{equation*}
$$

Let W be a maximum partite set of G^{\prime}. If $W=V_{n} \cap V\left(G^{\prime}\right)$, then (9) together with Theorem 4 imply that $\pi\left(G^{\prime}\right) \geqq[(p-4 r) / 5]$, and $\pi(G) \geqq[(p+r) / 5]$.

Suppose $W \neq V_{n} \cap V\left(G^{\prime}\right)$; then let $k=4 p_{n}-p$. Thus,

$$
r=\left[\left(3 p-5 p_{n}\right) / 7\right]=\left[p_{n}-3 k / 7\right]=p_{n}-\{3 k / 7\}
$$

where $\{x\}$ is the least integer not less than x. We have

$$
\begin{gather*}
p_{n}-r=\{3 k / 7\} \text { and } \tag{10}\\
p-p_{n}-3 r=3 p_{n}-k-3\left(p_{n}-\{3 k / 7\}\right)=-k+3\{3 k / 7\} \tag{11}
\end{gather*}
$$

If $k=1$, then the number of vertices in G^{\prime} is $p-4 r=p-4 p_{n}+4\{3 k / 7\}=$ $-1+4=3$, and $\pi(G) \geqq r+[(p-4 r) / 5]=[(p+r) / 5]$. If $k \geqq 2$, then from (10) and (11) we have $p_{n}-r \geqq\left(\frac{2}{3}\right)\left(p-p_{n}-3 r\right)$. This implies that

$$
\left|V\left(G^{\prime}\right)-W\right| \geqq\left|V_{n}\right|-r=p_{n}-r \geqq\left(\frac{2}{3}\right)\left(p-p_{n}-3 r\right) \geqq\left(\frac{2}{3}\right)|W| .
$$

Hence, according to Theorem 4,

$$
\pi\left(G^{\prime}\right) \geqq[(p-4 r) / 5] \text { and } \pi(G) \geqq r+[(p-4 r) / 5]=[(p+r) / 5]
$$

Suppose $\pi(G)>[(p+r) / 5]$. Any decomposition of G into more than [$(p+r) / 5]$ non-outerplanar graphs will necessarily contain $r+t$ mutually disjoint copies of $K_{4}, t>0$. Let $V_{1}^{1}, V_{2}^{1}, \cdots, V_{m}^{1}$ be the partite sets of the complete m-partite graph H^{1} which remains after deleting these $r+t$ copies of K_{4} from G. The order of H^{1} is $p-4 r-4 t$ and $\left|V_{m}^{1}\right| \geqq\left|V_{c}^{1}\right|$ where $V_{c}^{1}=V_{n} \cap V\left(H^{1}\right)$. We have $r+t \leqq p / 4<p_{n}$, and thus

$$
\begin{equation*}
\left|V_{m}^{1}\right| \geqq\left|V_{c}^{1}\right| \geqq p_{n}-r-t>0 \tag{12}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\bigcup_{1}^{m-1} V_{i}^{1}\right| \leqq\left|V\left(H^{1}\right)\right|-\left(p_{n}-r-t\right)=p-p_{n}-3 r-3 t . \tag{13}
\end{equation*}
$$

From the fact that $r>\left(3 p-5 p_{n}\right) / 7-t$ we obtain

$$
\begin{equation*}
p-p_{n}-3 r-3 t<\left(\frac{2}{3}\right)\left(p_{n}-r-t\right) . \tag{14}
\end{equation*}
$$

Using (12), (13), and (14) we have

$$
\left|\bigcup_{1}^{m-1} V_{i}^{1}\right| \leqq p-p_{n}-3 r-3 t<\left(\frac{2}{3}\right)\left(p_{n}-r-t\right) \leqq\left(\frac{2}{3}\right)\left|V_{m}^{1}\right| .
$$

According to Theorem 1,

$$
\pi\left(H^{1}\right)=\left[\left|\bigcup_{1}^{m-1} V_{i}^{1}\right| / 2\right]=s
$$

Suppose $t \geqq 2$. Since $s \leqq\left[\left(p-p_{n}-3 r-3 t\right) / 2\right]$, the number of mutually disjoint non-outerplanar subgraphs in this decomposition does not exceed $\left.r+t+\left[\left(p-p_{n}-3 r-3 t\right) / 2\right] \leqq\left[p-p_{n}-r-t\right) / 2\right]$.
However, $r+2>\left(3 p-5 p_{n}\right) / 7+1$, which implies

$$
\begin{equation*}
\left[\frac{p-p_{n}-(r+2)}{2}\right] \leqq\left[\frac{p-p_{n}-\left(3 p-5 p_{n}+7\right) / 7}{2}\right]=\left[\frac{2 p-p_{n}}{7}-\frac{1}{2}\right] \tag{15}
\end{equation*}
$$

Also

$$
\begin{equation*}
\left[\frac{p+r}{5}\right] \geqq\left[\frac{\left(10 p-5 p_{n}-6\right) / 7}{5}\right]=\left[\frac{2 p-p_{n}}{7}-\frac{6}{35}\right] \tag{16}
\end{equation*}
$$

Since the right side of (15) is not more than the right side of (16), we have $r+t+s \leqq\left[\left(p-p_{n}-r-2\right) / 2\right] \leqq[(p+r) / 5]$. That is this decomposition yields at most $[(p+r) / 5]$ mutually disjoint non-outerplanar subgraphs of G.

If $t=1$ and $s=0$, othen this decomposition yields $r+1$ mutually disjoint non-outerplanar graphs and since $\left|V_{m}^{1}\right|>0$ there is at least one vertex which is not included in any of the $r+1$ copies of K_{4}. Thus $r+1 \leqq r+[(p-r) / 5]=[(p+r) / 5]$.

Finally, we suppose $t=1$ and $s>0$. Each of these s graphs has at least five vertices with two vertices in $\bigcup_{1}^{m-1} V_{i}^{1}$. Since

$$
\left|\bigcup_{1}^{m-1} V_{i}^{1}\right|<\frac{2}{3}\left|V_{m}^{1}\right|,
$$

one of these s graphs has six or more vertices. That is in the decomposition of G into $r+t+s$ non-outerplanar mutually disjoint graphs one graph has more than 5 points. Thus there are $r+t$ copies of K_{4}, one non-outerplanar graph with at least six vertices and at most [($p-4 r-4 t-6) / 5]$ other non-outerplanar graphs. Since $t=1$, this decomposition has at most $r+2+[(p-4 r-10) / 5]=[(p+r) / 5]$ non-outerplanar graphs.

Thus, in this case, $\pi(G)=[(p+r) / 5]$ and the theorem is proved.

REFERENCES

L. W. Beineke
[1] Genus, thickness, coarseness, and a crossing number, Proc. 1966 Symp. on Graph Theory, Tihany, Acad. Sci. Hung., 1967.
L. W. Beineke and G. Chartrand
[2] The coarseness of a graph, Comp. Math. 19 (1969), 290-298.
L. W. Beineke and R. K. Guy
[3] The coarseness of the complete bigraph, Canad. J. Math. 21 (1969), 1086-1096.
G. Chartrand, D. Geller and S. Hedetniemi
[4] Graphs with forbidden subgraphs, J. Combinatorial Theory, 10 (1971), 12-41. G. Chartrand and F. Harary
[5] Planar permutation graphs, Ann. Inst. H. Poincaré (Sect. B), 3 (1967), 433-438.
G. Chartrand, H. V. Kronk and C. E. Wall
[6] The point-arboricity of a graph. Israel J. Math., 6 (1968) 168-175.
K. Corrádi and A. Hajnal
[7] On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar. 14 (1963), 423-439.
G. Dirac and P. Erdös
[8] On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar. 14 (1963), 79-93.

R. K. Guy

[9] A coarseness conjecture of Erdös, J. Comb. Theory, 3 (1967), 38-42.
F. Harary
[10] Graph Theory, Addison-Wesley, Reading, Mass., 1969, 94-97.
(Oblatum 3-I-1972)
California State University Department of Mathematics 125 South Seventh Street SAN JOSE, Calif. 95192
USA

