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Introduction

A subdivision of a graph G is a graph G1 obtained from G by replacing
an edge x = uv of G with a new vertex w together with edges uw and vw.
Graph H is said to be homeomorphic from graph G if H can be obtained
from G by a finite sequence of subdivisions. The subgraph of G induced
by a set W of vertices has vertex set W and its edge set is the set of edges
of G which are incident with two vertices of W. The subgraph of G induced
by an edge set Y has Y as its edge set and contains all vertices incident
with at least one edge of Y. For a real number r, [r ] denotes the greatest
integer not exceeding r, and {r} is the least integer not less than r.

Let p1 ~ p2 ~ ··· ~ p,, be positive integers. Then the complete
n-partite graph K(p1, ···, pn) has p = 03A3n1pi vertices, its vertex set can

be partitioned into subsets Vi, 1  i ~ n, such that |Vi| = p i , and two
vertices are adjacent if and only if they are in different Vi. The sets
V1, ···, Yn are called the partite sets of K(p1, ··· pn). If each p1 = 1,
K(p1, ···, pn) is denoted by Kn and called the complete graph on n
vertices.
An outerplanar graph is a graph which can be embedded in the plane

so that every vertex of G lies on the exterior region. In [5] Chartrand
and Harary have characterized outerplanar graphs as those graphs which
contain no subgraph homeomorphic from K4 or K(2,3).
We define, for each positive integer n, the vertex partition number of a

graph G, denoted by 1Cn(G), as the maximum number of subsets into
which the vertex set of G can be partitioned so that each set induces a
graph which contains a subgraph homeomorphic from Kn+1 or the

complete 2-partite graph K([n+2)/2], {(n+2)/2}). This general param-
eter was first introduced by Chartrand, Geller and Hedetniemi in [4].

For i = 1, 2, 3, 4, x;(g) is the maximum number of point induced
disjoint subgraphs of G which are totally disconnected, acyclic, outer-
planar, and planar, respectively.
The edge partition number 03C0’n(G) is defined analogously to 1Cn( G) with

the word ’vertex’ replaced by ’edge’. Then 03C0’1(G) is simply the number
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of lines of G. The only line partition number which has been given
considerable study is 03C0’4(G), which is called the coarseness of G. This has
been investigated by Beineke [ 1 ], Beineke and Chartrand [2], Guy [9],
and Beineke and Guy [3 ], with the last paper giving a partial formula for
7r’(K(m, n)).
The number 03C01(G) is the well-known line independence number, see

Harary [10]. The number 03C02(G) has been studied by Corradi and
Hajnal [7], Dirac and Erdôs [8], and Chartrand, Kronk, and Wall [6].
In this paper we investigate 03C03(G) which is called the point-outercoarse-
ness of G and is now denoted simply x(G).

Preliminary results

We make two easy observations and then commence the development
of the formula for 03C0(K(p1, ···, pn)). Any non-outerplanar graph has at
least 4 vertices and 6 edges. This implies

REMARK 1. If G is a graph with p points and q edges, then 03C0(G) ~ [p/4]
and 03C0(G) ~ [q/6].

The maximum number of vertices in any complete subgraph of G is
denoted co(G) and is called the clique number of G.

REMARK 2. If G has p vertices and 03C9(G) ~ 3, then 03C0(G) ~ [p/5].

THEOREM 1. Let G = K(P 1, Pn) with n~_ 2. If pn ~ (3 2)(p-pn),
then 03C0(G) = I(P-Pn)12].

PROOF. In any decomposition of G into non-outerplanar subgraphs,
each subgraph must include at least two vertices from ~n-11Vi. There
are p-pn vertices in this set so that 03C0(G) ~ [(p -pn)/2].
Any subgraph induced by a set consisting of three vertices from

and two vertices from ~n-11Vi is not outerplanar. From the hypothesis
that p-pn ~ (2 3)pn it follows that there are [(p-pn)/2] disjoint induced
non-outerplanar subgraphs of G. Thus rc(G) - [(p -pn)/2].
THEOREM 2. If G = K(p1, ···, pn) where n = 2 or 3, and pn ~ (3)

(p-pn), the 03C0(G) = [pl5].
PROOF. Since 03C9(G) ~ 3, Remark 2 implies that 03C0(G) ~ [p/5]. In

order to show that [pl5] ] non-outerplanar, mutually disjoint, induced
subgraphs of G exist we consider two cases.

CASE (i). n = 2. Since p1 ~ p2 ~ (3)pl -1 there are p2 -pl mutually
disjoint sets of vertices such that each set contains three vertices from V2
and two vertices from Vl. Each of these sets induces a non-outerplanar
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copy of K (2, 3). There are p1-2(p2-p1) = 3p1-2p2 ~ 0 other vertices
in Yl and p2-3(p2-p1) = 3p1-2p2 ~ 0 other vertices in Y2 . Call

these sets Y i and V’ respectively. If 3p1-2p2 = 0, 1, or 2, then we have
partitioned G into [p/5] non-outerplanar subgraphs. If 3p1-2p2 ~ 3,
then by alternating the use of three vertices from Y2 and two vertices
from V’1 with two from V’ and three from V’1, we can complete the
partition of Y(G) into [p/5] sets of cardinality five, each of which induces
a non-outerplanar graph. Thus 03C0(G) = [pi5l in this case.

CASE (ii). n = 3. If p1+p2 ~ p3 we consider graph H which is G
minus all edges joining V, to V2. From case (i). 03C0(G) ~ 03C0(H) ~ [pl5l.
Thus we suppose P3  7?i+p2’ For i = 1, 2, 3, let Vo Yi . Form one
copy of K(2, 3) with three vertices v1, v2 , v3, of Vo and two vertices v4 ,
vs of Vo. Let V11, Y2 be an ordering of V1 and V2-{v4, v5} so that
|V11| ~ 1 Vil, and let V’ 3 = V3 - {v1, v2 , v3}. Then repeat this procedure
with V11, Y2 , and V13, and continue this procedure until reaching a non-
negative integer j such that Vj3 ~ Vj2. (Note that j may be zero.) Let

be a reordering of Vj1, Vj2, Vj3 such that

and observe that

Continue the partition of G into copies of K(2, 3) by using three vertices
w1, w2 , w3, from Vj+13 and two vertices W4, W5 from Vj+12. Let

be reordered by

so that

We stop this procedure when |Vk3| ~ 3 for some k ~ j + 1. If

then G has been partitioned into [pl5] non-outerplanar graphs. Otherwise
induce one more non-outerplanar graph with the remaining vertices.
Thus 03C0(G) ~ [pI5], which completes the proof of the theorem.

COROLLARY 3. If G = K(p1, ···, pn) where n = 2 or 3 then 7r(G) =
min {[p/5], [(p-pn)/2]}.
THEOREM 4. Let G = K(Pl, ..., Pn) where pn ~ (t)(p - Pn). Then

03C0(G) ~ [pj5].
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PROOF. We use induction and observe that Theorem 2 verifies the
result for n = 2 or 3. Assume Theorem 4 holds for n ~ 3 and let

G = K(p1, ···, pn+1) whcre pn+1 ~ (3 2)(p-pn+1). Thé subgraph of G
formed by removing all edges joining VI with V2 is a complete n-partite
graph H = K(p’1, ···, p’n) where p’n = max{pn+1,p1 +p2}. Since

p’n ~ (3/2)(p’1+···+p’n+1), the inductive assumption applies and we
have 03C0(G) ~ 03C0(H) ~ [p/5].
The following lemma will be helpful.

LEMMA 1. Let c be an integer such that 1  c ~ n. If pn-pn-c+1 ~ 1,
then the complete n-partite graph G = K(p1,···,pn) contains [p/c]
mutually disjoint copies of Kc.

PROOF. We use induction on p. If the order of G is less than n + c, then

pn-c+1 = 1. We form one copy of Kc by selecting one vertex from each
Vi, i = n-c+1,···,n. The remaining vertices of G induce a complete
graph on p - c vertices. Thus G contains [p/c] mutually disjoint copies of
Kc.

Let the order of G be p ~ n + c and suppose the lemma is true for all
complete n-partite graphs with less than p vertices. Form one copy of
Kc by selecting one vertex from each of Vn-c+1,..., Vn. The graph H
induced by the remaining vertices of G is a complète n-partite graph with
p’n-p’n-c+1 ~ 1 where p’i is the order of the ith partite set of H. By
the induction hypothesis H contains [(p-c)/c] mutually disjoint copies
of Kc and the lemma is proved.

THEOREM 5.

PROOF. We use induction on pn. If pn = 1, G is the complete graph
with p = n vertices and 03C0(G) = [p/4]. Suppose the theorem holds if

pn = k ~ 1 and let p. = k + 1. Remove one vertex from each Vn,
Vn-1, Vn-2’ and Vn- 3’ The resulting graph H is a complete m-partite
graph with n ~ m ~ 4 and the largest partite set in H has pn-1 = k or
pn vertices. The latter case implies that pn -pn- 3 = 0, and Lemma 1

proves the theorem. In the former case the inductive assumption implies
x(H) = [(p -4)141 and thus 03C0(G) = [pl4].

The principal result

Before stating the main theorem, we prove another lemma.

LEMMA 2. Let G = K(p1,···,pn) with n ~ 3. If r is a positive integer
such that p ~ 3r, p1+···+pn-1 ~ 2r, and Pl +.. +pn-2 ~ r, then G
contains at least r mutually disjoint triangles.
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PROOF. For i = 1,... n, let V0i = Vi. Form one triangle with vertices

respectively. Let

be a recordering of

such that

Repeat this procedure until either

for some k or |Vkn-2| = 0 for some k. If the former occurs first, then from
Lemma 1, it follows that G contains at least r mutually disjoint triangles.
Thus suppose |Vkn-2| = 0 for some j and consider two cases.

CASE (i) |Vin-1|-|Vin-2| ~ 1 for some i  k. Each of the k triangles
which have been formed contain one vertex of Vn and two vertices from
distinct Vj, j = 1, ···, n-1. Since |Vin-1|-|Vin-2|~|, Lemma 1 implies
that at most one vertex of ~n-11 Vj is not included in one of the triangles.
Thus k = [(p1+···+pn-1)/2] ~ r.
CASE (ii). |Vin-1|-|Vin-2| &#x3E; 1 for all i &#x3E; k. In this case

Vin-1 ~ Vn-1 for i = 1, ···, k-1.

Hence each of the k triangles contains exactly one vertex from ~n-21Vj.
This implies

and completes the proof.

THEOREM 6. Let G = K(p1,···,pn) with n ~ 2, then

where

r = min {(p-pn-pn-1-pn-2), [(p - p. - pn - )/2], [(3p - 5p.)l 7] 1.

PROOF. If p ~ (5 3)pn or p ~ 4pn, the result follows from Theorems
1 and 5. Thus we consider only (5 3)pn  P  4 pn and distinguish three
cases depending on r.
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we have

That is the cardinality of ~n-31Vi does not exceed the cardinality of
V,,-2. Thus there are r mutually disjoint copies of K4 with one vertex
in each of the sets

n-3

Let G minus these 1" copies of K4 be denoted by H. Graph H has
p - 4r vertices, and we let vl = Vi n V(H) for i = n-2, n-1, n. Since
r ~ (3p - 5pn)/7 we have 2 3(pn-r)~p-pn-3r, where pn-r=|V’n|
and

Theorem 2 implies that n (H) = [(p - 4r)/5]. Hence

Since G does not contain more than r copies of K4, it is clear that

03C0(G) = [(p+r)/5].

CASE(ii). r = [(p-pn-pn-1)/2]  [(3p-5pn)/7]. In this case we

consider the complete (n -1 )-partite graph H = G - Vn. By hypothesis

and

Inequality (2) together with imply

Adding (2) and (3) we obtain

Since (1), (2), and (4) hold, Lemma 2 implies that H contains at least r
mutually disjoint triangles. The set Vn contains pn ~ pn-1 ~ r vertices.
Thus, G contains r mutually disjoint copies of K4, each of which has one
vertex from Vn and three vertices from ~n-11Vi. There are p-pn-3r
other vertices in ~n-11Vi and pn - r other vertices in Vn.
The graph G’ induced by the remaining vertices of G is a complete

m-partite graph, m ~ n. Since r  (3p-5pn)/7, we have
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That is the number of vertices in V(G’)-Vn is more than two-thirds the
number of vertices in V(G’)~Vn. From r=[(p-pn-pn-1)/2] it
follows that

If a maximum partite set of G’ is V(G’) n Yn, thcn (5) together with
Theorem 4 imply that 03C0(G’) ~ [(p-4r)/5], and thus 03C0(G) ~ r+
03C0(G’) ~ [(p+r)/5]. From (6) and the fact that |V(G’)-Vn| = p -pn - 3r
it follows that if V(G’) n Vn is not a largest partite set of G’, then a
largest partite set contains exactly pn - r + 1 = p - pn - 3r. Thus G’ is a
bipartite graph with partite sets V’1 and V2’ where |V’2| = p - pn - 3r and
|V’1| I =Pn-r. According to Theorem 4, 03C0(G’) ~ [(p-4r)/5] ] and

03C0(G) ~ [(p+r)/5].
In order to show that equality holds suppose 03C0(G) &#x3E; [(p+r)/5]. Then

there are more than r mutually disjoint copies of K4 in G. Each copy of
K4 must contain two vertices from ~n-21Vi, so that p-pn-pn-1 ~
2(r+1). This implies that [(p-pn-pn-1)/2]&#x3E;r which contradicts the
hypothesis for this case. Hence 03C0(G) = [(p+r)/5].

CASE (iii). r = [(3p-5Pn)/7]. ln this case we let H = G - Vn. From
the hypothesis for this case we have

Furthermore, p-pn-3r ~ p-pn-3((3p-5pn)/7) = (8 7)pn - (2 7)p &#x3E; 0.

Thus p - pn &#x3E; 3r which together with (7), (8) and Lemma 2 imply that
H contains r mutually disjoint triangles.

Since 4Pn &#x3E; p, we have that 3Pn &#x3E; p - pn &#x3E; 3r. Thus Vn contains more
than r vertices. Graph G has at least r mutually disjoint copies of K4
each consisting of one vertex of Vn and three vertices of ~n-11 Vi, There
are p - 4r other vertices in G. These vertices induce a complete m-partite
subgraph G’ of G with precisely pn - r vertices of Vn and p - pn - 3r
vertices of ~n-11Vi. Since r ~ (3p - Spn)/7 we have

Let W be a maximum partite set of G’. If W = Y" n V(G’), then (9)
together with Theorem 4 imply that 03C0(G’) ~ [(p-4r)/5], and

03C0(G) ~ [(p+r)/S].
Suppose W ~ Vn n V(G’); then let k = 4p"-p. Thus,
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where {x} is the least integer not less than x. We have

Ifk = 1, then the number of vertices in G’ is p-4r = p-4pn+4{3k/7} =
-1+4 = 3, and 03C0(G) ~ r+[(p-4r)/5] = [(p+r)/5]. If k ~ 2, then
from (10) and (11) we have pn-r ~ (i)(p-Pn-3r). This implies that

Hence, according to Theorem 4,

Suppose x(G) &#x3E; [(p+r)/5]. Any decomposition of G into more than
[(p + r )/5 ] non-outerplanar graphs will necessarily contain r+t mutually
disjoint copies of K4, t &#x3E; 0. Let V11, V12, ···, V1m be the partite sets of the
complete m-partite graph H’ which remains after deleting these r + t

copies of K4 from G. The order of H’ is p - 4r - 4t and |V1m| ~ |V1c| where
V: = Vn n V(H1). We have r + t ~ pi4  Pn, and thus

Then

From the fact that i f we obtain

Using (12), (13), and (14) we have

According to Theorem 1,

Suppose t ~ 2. Since s ~ [(p-Pn-3r-3t)/2], the number of mutually
disjoint non-outerplanar subgraphs in this decomposition does not exceed

However, which implies
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Also

Since the right side of (15) is not more than the right side of (16), we have
r + t + s ~ [(p-pn-r-2)/2) ~ [(p+r)/5]. That is this decomposition
yields at most [(p+r)/5] mutually disjoint non-outerplanar subgraphs of
G.

If t = 1 and s = 0, othen this decomposition yields r + 1 mutually
disjoint non-outerplanar graphs and since |V1m| &#x3E; 0 there is at least one

vertex which is not included in any of the r + 1 copies of K4. Thus
r+1 ~ r+[(p-r)/5] = [(p+r)IS].

Finally, we suppose t = 1 and s &#x3E; 0. Each of these s graphs has at
least five vertices with two vertices in ~m-11 Vil . Since

one of these s graphs has six or more vertices. That is in the decomposition
of G into r+t+s non-outerplanar mutually disjoint graphs one graph
has more than 5 points. Thus there are r + t copies of K4, one non-outer-
planar graph with at least six verticcs and at most [(p-4r-4t-6)/5]
other non-outerplanar graphs. Since t = 1, this decomposition has at
most r + 2 + [(p - 4r -10)/5 ] = [(p+r)/5] non-outerplanar graphs.

Thus, in this case, x(G) = [(p+r)/5] and the theorem is proved.
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